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Preface

*“A group is defined by means of the laws of combinations of its symbols,”
according to a celebrated dictum of Cayley. And this is probably still as
good a one-line explanation as any. The concept of a group is surely one
of the central ideas of mathematics. Certainly there are a few branches of
that science in which groups are not employed implicitly or explicitly. Nor
is the use of groups confined to pure mathematics. Quantum theory,
molecular and atomic structure, and crystallography are just a few of the
areas of science in which the idea of a group as a measure of symmetry has
played an important part.

The theory of groups is the oldest branch of modern algebra. Its origins
are to be found in the work of Joseph Louis Lagrange (1736-1813), Paulo
Ruffini (1765-1822), and Evariste Galois (1811-1832) on the theory of
algebraic equations. Their groups consisted of permutations of the variables
or of the roots of polynomials, and indeed for much of the nineteenth
century all groups were finite permutation groups. Nevertheless many of the
fundamental ideas of group theory were introduced by these early workers
and their successors, Augustin Louis Cauchy (1789-1857), Ludwig Sylow
(1832-1918), Camille Jordan (1838-1922) among others.

The concept of an abstract. group is clearly recognizable in the work of
Arthur Cayley (1821-1895) but it did not really win widespread acceptance
until Walther von Dyck (1856-1934) introduced presentations of groups.

The stimulus to study infinite groups came from geometry and topology,
the influence of Felix Klein (1849-1925), Sophus Lie (1842-1899), Henri
Poincaré (1854-1912), and Max Dehn (1878-1952) being paramount.
Thereafter the standard of infinite group theory was borne almost single-
handed by Otto Juljevi¢ Schmidt (1891-1956) until the establishment of the
Russian school headed by Alexander Gennadievi¢ Kuro3 (1908-1971;
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viii Preface

In the meantime the first great age of finite group theory had reached its
apogee in the period immediately before the First World War with the work
of Georg Frobenius (1849-1917), William Burnside (1852-1927), and Issai
Schur (1875-1936). After 1928, decisive new contributions were made by
Philip Hall, Helmut Wielandt, and, in the field of group representations,
Richard Dagobert Brauer (1901-1977). The present intense interest in the
classification of finite simple groups is very largely the legacy of their work.

This book is intended as an introduction to the general theory of groups.
Its aim is to make the reader aware of some of the main accomplishments of
group theory while at the same time providing a reasonable coverage of
basic material. The book is addressed primarily to the student who wishes to
learn the subject, but it is hoped that it will also prove useful to specialists
in other areas as a work of reference.

An attempt has been made to strike a balance between the different
"branches of group theory, abelian groups, finite groups, infinite groups,
and to stress the unity of the subject. In'choice of material I have been guided
by its inherent interest, accessibility, and connections with other topics. No
book of this type can be comprehensive, but I hope it will serve as an intro-
duction to the several excellent research level texts now in print.

The reader is expected to have at least the knowledge and maturity
of a graduate student who has completed the first year of study at a North
American university or of a first year research student in the UK. He or she
should be familiar with the more elementary facts about rings, fields, and
modules, possess a sound knowledge of linear algebra and be able to use
Zorn's Lemma and transfinite induction. However, no knowledge of homo-
logical algebra is assumed: those homological methods required in the
study of group extensions are introduced as they become necessary. This
said, the theory of groups is developed from scratch. Many readers may
therefore wish to skip certain sections of Chapters 1 and 2 or to regard them
as a review.

A word about the exercises, of which there are some 650. They are to be
found at the end of each section and must be regarded as an integral part of
the text. Anyone who aspires to master the material should set out to solve
as many exercises as possible. They vary from routine tests of comprehension
of definitions and theorems to more challenging problems, some theorems in
their own right. Exercises marked with an asterisk are referred to at some
subsequent point in the text.

Notation is by and large standard, and an attempt has been made to keep
it to a minimum. At the risk of some unpopularity, I have chosen to write all
functions on the right. A list of commonly used symbols is placed at the
beginning of the book. '

While engaged on this project I enjoyed the hospitality and benefited
from the assistance of several institutions: the University of Illinois in
Urbana-Champaign, the University of Warwick, Notre Dame University,
and the University of Freiburg. To all of these and to the National Science
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Foundation I express my gratitude. I am grateful to my friends John Rose
and Ralph Strebel who read several chapters and made valuable comments
on them. It has been a pleasure to cooperate with Springer-Verlag in this
venture and I thank them for their unfailing courtesy and patience.

University of Illinois DEREK ROBINSON
Urbana, Illinois
August, 1980
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Chapter 1
Fundamental Concepts of Group Theory

In this first chapter we introduce the basic concepts of group theory, develop-
ing fairly rapidly the elementary properties that will be familiar to most
readers.

1.1 Binary Operations, Semigroups, and Groups

A binary operation on a set is a rule for combining two elements of the set.
More precisely, if S is a nonempty set, a binary operation on S is a function
a:S x § — S. Thus a associates with each ordered pair (x, y) of elements of S
an element (x, y)a of S. It is better notation to write x o y for (x, y), referring
to “o” as the binary operation.

If o is associative, that is, if

(i) (xoy)ez = xo(yo2z)is valid for all x, y, z in S, the pair (S, o) is called a
semigroup.

Here we are concerned with a very special type of semigroup. A semigroup
(G, o) is called a group if it has the following properties.

(ii) There exists in G an element e, called a right identity, such that xc e = x
forall x in G.

(iii) To each element x of G there corresponds an element y of G, called a
right inverse of x, such that xo y = e.

While it is clear how to define left identity and left inverse, the existence of
such elements is not presupposed; indeed this is a consequence of the group
axioms.



