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Preface

Dynamics of Civil Structures, Volume 4 represents one of the eight volumes of technical papers presented at the 32nd IMAC,
A Conference and Exposition on Structural Dynamics, 2014, organized by the Society for Experimental Mechanics, and held
in Orlando, Florida, February 3-6, 2014. The full proceedings also include volumes on Dynamics of Coupled Structures;
Nonlinear Dynamics; Model Validation and Uncertainty Quantification; Structural Health Monitoring; Special Topics in
Structural Dynamics; Topics in Modal Analysis I; and Topics in Modal Analysis I1.

Each collection presents early findings from experimental and computational investigations on an important area within
structural dynamics. Dynamics of civil structures is one of these areas.

The Dynamics of Civil Structures Technical Division serves as a primary focal point within the SEM umbrella for
technical activities devoted to civil structures testing, monitoring. and assessment. This volume covers dynamic testing
and analysis of all kinds of civil engineering structures such as buildings, bridges, stadiums, and dams. Over the last few
years, there has been an interest in input and output modal analysis, as well as output only, ambient vibration testing of
bridges. In addition to the material in this volume, a number of technical contributions devoted to new methods, nonlinear
dynamics, wind turbine dynamics, and monitoring related to civil structure dynamics may be found in other volumes of these
proceedings.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Orlando, FL, USA Fikret Necati Catbas
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Chapter 1
Automatic Modal Identification Based on Narrow-Band Algorithms

Tong Wang, F. Necati Catbas, and Lingmi Zhang

Abstract A procedure for the automatic modal identification based on Narrow-Band algorithms is presented in this paper.
The Lagrange interpolation polynomial is firstly utilized to find the modal peaks automatically. Then the modal assurance
criterion values between adjacent modal vectors are calculated to decide the fitting band automatically. The procedure
can be applied to Narrow-Band algorithms both for experimental and operational modal analysis. The result of automatic
identification of real life testing and experimental data is finally demonstrated.

Keywords Automatic identification * Narrow-band ¢ Automatic peak finding « Experimental modal analysis
Operational modal analysis

1.1 Introduction

The technique of modal analysis has been developing for more than three decades. There are two types of modal analysis: one
is Experimental Modal Analysis (EMA), and the other is Operational Modal Analysis (OMA). Both input (excitation) and
output (response) signals are utilized in EMA, while only the output responses are used in OMA. Since EMA is generally
conducted in a lab with good experimental environment, the data acquired is usually of high signal to noise ratio (SNR),
and good identification result could be obtained. In some field conditions, the tested structures cannot be artificially excited,
therefore only the responses from the natural loadings such as wind and traffic can be utilized to extract the modal parameters.

The identification algorithms for modal analysis can be classified into three types: Narrow-Band, Select-Band and Broad-
Band. The Narrow-Band algorithms identify modes one by one, among which the most typical algorithm is CMIF (Complex
Mode Indicator Function) [1] for EMA and FSDD (Frequency Spatial Domain Decomposition) [2] for OMA. The Select-
Band algorithms identify several modes from one or several selected frequency bands in one time. The well-known FDPR
(Frequency Domain Poly-References) [3] and RFOP (Rational Fraction Orthogonal Polynomials) [4] algorithms both belong
to that type. The Broad-Band algorithm can identify modes in a broad frequency band or even the full band. The most famous
broad band algorithm is pLSCF (poly-reference Least Squares Complex Frequency domain) [5] or so-called polyMAX.

The Narrow-Band algorithms are now widely applied, because they are proved to be easy-to-use and very powerful.
Especially in the operational analysis for large-scale civil engineering structures such as buildings and bridges, the FSDD
shows great advantages [6]. However, compared to other kinds of modal identification algorithms, more interactions and time
are needed to complete the whole analysis: the peaks have to be selected one by one, and the fitting bands for each modes
have to be set and adjusted manually to get better result. An auto identification method will be great to the structural health
monitoring (SHM) [7].

T. Wang (771) » L. Zhang

State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University
of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China

e-mail: w78 @nuaa.edu.cn

F.N. Catbas

Department of Civil, Environmental and Construction Engineering, University of Central Florida,
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In this paper, a procedure for the automatic modal identification based on Narrow-Band algorithms is presented. The
Lagrange interpolation polynomial is firstly utilized to pick the modal peaks automatically. Then the modal assurance
criterion values between adjacent modal vectors are calculated to decide the fitting band automatically. The procedure can
be applied to Narrow Band algorithms both for experimental and operational modal analysis. Two application examples are
demonstrated to validate the procedure: an EMA test of an aircraft model and an OMA test of a 15-story office building.

1.2 The Mode Indicator Function

The Narrow-Band algorithms are based on the Mode Indication Function (MIF), which is defined as the singular values of
the frequency response function (FRF) matrix in EMA or power spectrum density (PSD) matrix in OMA.

FRF (jw) =UXVH (1.1)

PSD (jw) =UZU"! (1.2)

In the above equations U and V are the singular vector matrices, and X is the singular value matrix. The mode indicator
functions consists of the singular values in X matrix at each spectral line. Note that in OMA, the PSD matrix are always a
square matrix.

The peaks in the MIF plot indicate the existence of modes, and the peak frequencies give the approximate estimation of the
damped natural frequencies. The magnitude of specific modal peak is relative to the strength of the mode. The mode shape
vectors can also be obtained from the corresponding singular vectors. Therefore, the modes can be automatically detected by
applying some automatic peak-finding algorithms on the MIF plots.

1.3 Automatic Peaks Finding

There are many methods for the auto peak finding, such as Local Maximum method, First Derivative method and Second
Derivative method. The simplest way is to find the maximum value in a selected band. It is suitable for the case that only one
mode is available. A more common way is to make use of the fact that the first derivative of a peak has a downward-going
zero-crossing at the peak maximum. Another method is based on the law that the second derivative of a peak has a local
minimum value. However, due to the presence of noise in the real signal, besides the real signal peaks, many other false
peaks may be found. To avoid this problem, the signal could be smoothed, and a magnitude threshold of peak values could
be set.

In this paper, the first derivative method is used to find peaks automatically. For the sake of getting better estimation
of numerical differentiation, the four-order Lagrange interpolation polynomial is applied to calculate the derivative. Five
adjacent points should be included for the construction of a four-order Lagrange polynomial. Assuming five points located
at (xg. f(xg)), (x1. f(x1)). (x2, f(x2). (x3, f(x3) and (x4, f(x4)), we can write the four-order Lagrange polynomial as:

4 4 .
Py(xp+th) = Z n :—:—j S (xp) (1.3)
=0 j=0
J#Fi

where h is the x interval: h= x| —x, and t is O, 1., 2, 3 and 4 respectively. Then the derivation of the polynomial can be
obtained:

(43 =302 4+700—50) L. 408 =271 +-501—24
P/ (xo +th) = T)f (o) = L o )f (x1)

I (4r]—26tilj—38!—12)f (2] — (411—2|’:/,+261_8),f' (%) (1.4)

41— 1817 420—6) .
+ ¢ V) S (xq)
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By taking Eq. (1.4), the first derivate values at the five points can be estimated. The peaks can be detected by checking
the downward-going zero-crossing parts in the first derivate data array. In order to reduce the number of false peaks, a proper
peak magnitude threshold value can be set.

1.4 Automatic Curve Fitting

To get the accurate modal frequency and damping ratio in a Narrow-Band identification algorithm, the modal enhancement
is required. It could be proved that the in the vicinity of the modal peak, the enhanced FRF/PSD can be decoupled to a single
degree of freedom FRF/PSD.

In the CMIF algorithm, an enhanced FRF for the 7" mode can be defined as:

H (jo) = uf FRF (jw)v, (1.5)
And in the FSDD algorithm, an enhanced PSD for the /" mode can be defined as:
G (jw) = u,H PSD(jw)Tu,- (1.6)

Where U, and V, are the corresponding singular vectors to the specified modal peak in the mode indicator function.

The modal frequency and damping ratio can be obtained by the least-square fitting to the enhanced FRF or PSD. The
coherence between the singular vector at the peak and the singular vector at the neighboring spectral lines can be estimated
by calculating the Modal Assurance Criterion (MAC).

IUrHU/ll

MAC = 1
UHUURU;

(1.7)

Here Uj is a singular vector at one adjacent spectral line. If there is only one dominant mode in the enhanced FRF/PSD,
the MAC value should be close to unity. The farther the spectral line from the peak. the smaller the MAC value is. Therefore,
by setting a MAC threshold such as 0.8, it is possible to determine a reasonable fitting band.

1.5 Auto Identification of an Aircraft Model

A delta-shaped aircraft model is utilized as an EMA application example for automatic Narrow-Band modal identification.
The model is made of aluminum with dimension of 1,240 mm in length and 1,100 mm in wing span. A hammer impact test
with two reference accelerometers and 41 roving impact DOFs was performed to do the modal analysis. A FRF matrix with
800 spectrum lines was obtained by the signal processing. The modal indicator function estimated from the FRF matrix is
showed in Fig. 1.1.

By applying the auto peak finding procedure described as above, eight modes are detected, including the first one as a
rigid body mode. As shown in Fig. 1.2, the downward-going zero-crossing positions in the first derivative indicate the modal
peaks in the modal indicator function very clearly.

Figure 1.3 shows the enhanced FRF of the one mode at 57 Hz. The curve fitting band between two vertical lines is
automatically determined by setting a MAC threshold of 0.8. The identified modal frequencies and damping ratios are shown
in Table 1.1.

1.6 Auto Identification of CFT Building

The auto identification procedure was also applied to a 15-story office building with concrete-filled-tube (CFT) located in
Tokyo. The field ambient accelerations of 53 measurement degree of freedoms were acquired with 14 accelerometers in four
groups, with two as references. The FSDD Narrow-Band algorithm is utilized to do the operational modal analysis. The
PSD matrix was first calculated, and then the mode indicator functions were estimated by the singular value decomposition.
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Fig. 1.3 One auto-determined fitting band in the enhance FRF of the aircraft model

Figure 1.4 shows the average mode indicator functions and the eight modes auto-detected by the presented peak-finding
procedure. Figure 1.5 shows the first derivative of the mode indicator function. Figure 1.6 shows the enhanced PSD of the
one mode at 0.7 Hz, in which the curve fitting band between two vertical lines is automatically determined by setting a MAC
threshold of 0.7. The identified modal frequencies and damping ratios are shown in Table 1.2.
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Table 1.1 Auto-identified modal Mode  Frequency (Hz)  Damping (%)
parameters of the aircraft model I 0.92 0.84
2 14.92 0.30
3 25.56 0.30
4 36.41 0.15
5 49.75 0.13
6 57.08 0.17
7 70.27 0:21
8 76.16 0.14
Fig. 1.4 Peuks found in the Mode Indicator Function
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1.7 Conclusion

I. Two Narrow-Band identification methods, CMIF for experimental modal analysis, FSDD for operational modal analysis,

are briefly reviewed.

o

from which the modal peaks can be automatically detected.

. The four-order Lagrange interpolation polynomial is applied to obtain the first derivative of the mode indicator function.
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Fig. 1.6 One auto-determined fitting band in the enhance PSD of the CFT building

Table 1.2 Aum-idenliﬁcq modal Mode Frequency (Hz)  Damping (%)
parameters of the CFT building ) 0.76 081

2 0.85 0.93

3 111 0.84

4 2.23 0.88

5 2.46 1.29

6 2.94 171

7 3.84 2.18

8 4.28 2.44

[°8]

. By calculating the MAC between the singular vector at the peak and the singular vector at the neighboring spectral lines,
a fitting band in the enhanced FRF or PSD can be automatically to estimate the accurate modal frequency and damping
ratio.

4. The auto-identification procedure was successfully applied to the experimental modal analysis of an aircraft model and to

the operational modal analysis of a 15-story building.
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Chapter 2
Cable Parameters for Homogenous Cable-Beam Models

for Space Structures

Kaitlin Spak, Gregory Agnes, and Daniel Inman

Abstract In this paper, a method to determine the effective homogenous beam parameters for a stranded cable is presented.
There is not yet a predictive model for quantifying the structural impact of cable harnesses on space flight structures, and
towards this goal, the authors aim to predict cable damping and resonance behavior. Cables can be modeled as shear beams,
but the shear beam model assumes a homogenous, isotropic material, which a stranded cable is not. Thus, the cable-beam
model requires calculation of effectively homogenous properties, including density, area, bending stiffness, and modulus of
rigidity to predict the natural frequencies of the cable. Through a combination of measurement and correction factors, upper
and lower bounds for effective cable properties are calculated and shown to be effective in a cable-beam model for natural
frequency prediction.

Keywords Cable parameters « Cable modeling ¢ Cable bending stiffness ¢ Cable beam model « Cable vibration

Nomenclature

A Cross-sectional area

¢ Viscous damping coefficient

D Cable outer diameter

d Individual wire diameter

E Elastic modulus

El Cable bending stiffness

F Transfer function matrix for use in distributed transfer function method
G Shear modulus

G(s) Hysteretic damping function

/4 Moment area of inertia

k Spring stiffness, varies by cable size
L Beam length

M, N Leftand right boundary condition matrices for distributed transfer function method
r Layer diameter

Svys,,  System matrix

s Laplace transformed time coordinate
T Axial tension in cable

T Transtformation matrix

t Time coordinate
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Vv Volume fraction

w Beam displacement as a function of time and distance

X Spatial coordinate; distance along the beam in the axial direction

B Lay angle

n State space vector of displacement solution and derivatives for distributed transfer function method
K Shear coefficient

v Poisson’s ratio

P Density

¢ Angle between cable neutral axis and individual wire, as viewed from cable end

11/ Total beam rotation

2.1 Introduction

The control of space structures depends on accurate knowledge of their dynamic response to inputs. Thus, space structure
models need to be high-fidelity and as realistic as possible to ensure accurate positioning. When lightweight structures are
dressed with relatively heavy power and signal cables, the structures” dynamic response changes [ 1, 2]. In an effort to quantify
and predict the dynamic response of cabled space structures, the study of cable dynamics is becoming increasingly important
as requirements for dynamic mechanical stability of spacecraft become more stringent [3].

Cables used on spacecraft span a wide range of sizes, construction, and insulation. Currently, determination of cable
parameters such as bending stiffness are performed experimentally through dynamic testing, and studies conducted to date
used experimental data to back out the desired cable properties [4]. Ideally, cable parameters could be input into models
based on basic measurements and properties of the cable rather than relying on experimental testing, which is more expensive
and time consuming, and must be performed for each individual cable configuration. Therefore, this effort was conducted
to determine how cable parameters could be simply calculated from wire measurements, material properties, and cable
configuration.

In this paper, methods to determine cabled beam parameters a priori are presented. The cable parameters are used in a
shear beam model to predict the natural frequencies of four types of cable. Comparison to experimental data to establish the
validity of these methods concludes the paper.

2.2 Background

Cables can be modeled as shear beams [3]. Using a beam model is relatively straightforward and provides useful dynamic
response data that can incorporate tension, internal damping and connection points. Beam models are not capable of
determining internal friction forces directly, but instead rely on effective beam properties such as bending stiffness and
damping to capture the frictional effects. Thus, determining these parameters to accurately portray the dynamic response is
important.

The cables used for space structures are generally made of an aluminum or copper core surrounded by EMI shielding and
some type of electrical insulation. A core wire surrounded by layer wires is known as a strand. Cables have a core wire or
strand surrounded by helically twisted wires or strands in successive layers. An “m x n” designation is used to describe cable

CORE

Fig. 2.1 A 7 x 7 multi-strand
cable consisting of a 1 X 7 core
strand surrounded by a single
layer of 1 x 7 strands
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configuration, in which m is the number of strands and n is the number of wires in each strand. Figure 2.1 shows the layout
of a 7 x 7 stranded cable comprising a | x 7 core and six | x 7 layer strands. Cables made up of wires in multiple small
strands are more flexible than cables made up of a single strand with the same total number of wires. Cables may be helically
twisted, in which each layer is wrapped in the same direction, or contra-helically twisted, in which the wrapping direction
alternates with each successive layer. The lay angle is the angle that the layer wires makes with the core; cable lay angles
generally range from 2.5° to 35°, with most mathematical analysis of cable behavior departing from reality beyond 20° [5].

2.3 Cable Anatomy

The cable configurations investigated were | x 7, [ x 19, | x 48, and 7 x 7, as shown in Fig. 2.2. Five samples of each cable
type were used, which were provided at cost by Southern California Braiding, Inc. a manufacturer of space-flight compatible
cables. The cables were manufactured and wrapped on a planetary machine which ensured repeatability and uniformity
between each sample. A contra-helical lay was used so that the cables would lay as straight as possible and natural curvature
would not be a factor in the overall cable bending behavior. Cables were tied every 4-6 in. and wrapped with an outer layer
of Kapton.

All of the cables used in this study were made with MIL27500-26TG2T 14 wire. This wire, commonly used for space
applications, consists of two 26 AWG twisted wire pairs individually insulated, an EMI shield made of tinned copper, and
outer Tefzel (ETFE) insulation layer. Figure 2.3 shows the components that make up the individual wire that is bundled
together to make the cable. Figure 2.4 shows an idealized layout of the wire used for calculations. The wire has a left hand
(s) lay and is shrink-wrapped with the Tefzel insulation. so there is an evident twist to the wire. The maximum and minimum
wire diameters resulting from the twisting effect are averaged to give the effective wire diameter of 2.5 mm used throughout
the study. Wire size measurements were taken from published values when possible [6] and verified with actual measurement.

It is clear that the properties of the wire are different depending on whether the copper cores of the 26AWG wires are
aligned with the horizontal (bending) axis or with the vertical axis.

Fig. 2.2 Cable configurations
investigated for this study; from
left 1o right, 1 X7, 1 X 19, 1 x 48,
and 7x7

Fig. 2.3 Deconstructed cable
wire, from top to bortom: Kapton
wrapped cable, individual wire,
and wire components: EMI
shield, two 26AWG twisted wire
pairs, and wire filler label
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Fig. 2.4 Anatomy of MIL27500-26TG2T14 Wire Composition
MIL27500-26TG2T 14 wire )
Tefzel Jacketing

Tinned Copper EMI Shielding

TefzelJacketingon AWG 26 Wire

Copper Coreof AWG 26 Wire

Fig. 2.5 DTFM cable model
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2.4 Beam Model

Although there are many ways to model helical cables, for the purposes of determining dynamic response and interaction
between cables and structures, a beam model has many advantages. Instead of modeling the forces in between the wires,
which is difficult at best, the beam model assumes that the cable can be modeled as a homogenous cylindrical beam,
with damping incorporated through damping terms of various forms and variable bending stiffness. The difficulty lies in
determining the homogenous beam parameters to use, since a stranded cable is certainly neither isotropic nor homogenous.
Past studies have “smeared” the cable properties across each layer to some success [7].

Since the ultimate goal of this work is to determine the effect of cable harnesses on the damping and dynamics of space
structures, a model that can eventually incorporate the cable connection points is desirable. Thus, the distributed transfer
function method (DTFM) was used to solve the beam model derived from the equation of motion. The distributed transfer
function method provides exact solutions for the dynamic response of both branched and un-branched systems without
requiring calculation of the system eigensolutions [8]. For the cables investigated here, an un-branched system was used
with five segments and four mounting points, following the method of Yang [9]. Figure 2.5 shows the model configuration,
designed to mimic the experimental test setup in terms of cable segments and boundary conditions.

The equation of motion is put into state space form and is combined with boundary condition matrices to form the
characteristic equation. For an un-branched system such as a straight cable, the characteristic equation consists of the
exponential of the state space matrix and transition matrices that relate the sections and include the spring connections
to ground as shown in Fig. 2.5.

To use the DTF method for a cable, the basic beam equation of motion is modified to include shear terms, a tension term,
and damping terms (both viscous and hysteretic). The full equation of motion is:
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