Environmental GEOLOGY

Carla W. Montgomery

FOURTH EDITION

Environmental GEOLOGY

Carla W. Montgomery Northern Illinois University

Wm. C. Brown Publishers

Dubuque, IA Bogota Boston Buenos Aires Caracas Chicago Guilford, CT London Madrid Mexico City Sydney Toronto

Book Team

Executive Editor Jeffrey L. Hahn
Developmental Editor Mary Hill
Production Editor Julie L. Wilde
Interior Designer K. Wayne Harms
Cover Designer Eric Engelby
Art Editor Carla Goldhammer
Photo Editor Carrie Burger
Permissions Coordinator Gail I. Wheatley

Wm. C. Brown Publishers

A Division of Wm. C. Brown Communications, Inc.

Vice President and General Manager Beverly Kolz
Vice President, Publisher Earl McPeek
Vice President, Director of Sales and Marketing Virginia S. Moffat
Vice President, Director of Production Colleen A. Yonda
National Sales Manager Douglas J. DiNardo
Marketing Manager Jane Ducham
Advertising Manager Janelle Keeffer
Production Editorial Manager Renée Menne
Publishing Services Manager Karen J. Slaght
Permissions/Records Manager Connie Allendorf

Wm. C. Brown Communications, Inc.

President and Chief Executive Officer G. Franklin Lewis
Corporate Senior Vice President, President of WCB Manufacturing Roger Meyer
Corporate Senior Vice President and Chief Financial Officer Robert Chesterman

Cover: Main: © Mike and Carol Werner/Comstock, Inc. Inset: © Kevin Schafer/Tom Stack and Associates.

Copyedited by Catherine S. Di Pasquale

Copyright © 1986, 1989, 1992, 1995 by Wm. C. Brown Communications, Inc. All rights reserved

A Times Mirror Company

Library of Congress Catalog Card Number: 93-73780

ISBN 0-697-15811-X

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America by Wm. C. Brown Communications, Inc., 2460 Kerper Boulevard, Dubuque, IA 52001

10 9 8 7 6 5 4 3 2 1

he *environment* is the sum of all the features and conditions surrounding an organism that may influence it. An individual's physical environment encompasses rocks and soil, air and water, such factors as light and temperature, and other organ-

isms present. One's social environment might include a network of family and friends, a particular political system, and a set of social customs that affect one's behavior.

Geology is the study of the earth. Since the earth provides the basic physical environment in which we live, all of geology might in one sense be regarded as environmental geology. However, the term *environmental geology* is usually restricted to refer particularly to geology as it relates directly to human activities, and that is the focus of this book. Environmental geology is geology applied to living. We will examine how geologic processes and hazards influence human activities (and sometimes the reverse), the geologic aspects of pollution and wastedisposal problems, and several other topics.

Why environmental geology? One reason for studying environmental geology might simply be curiosity about the way the earth works, about the *how* and *why* of natural phenomena. Another reason is that we are increasingly faced with environmental problems to be solved and decisions to be made, and in many cases, an understanding of one or more geologic processes is essential to finding an appropriate solution.

Of course, many environmental problems cannot be fully assessed and solved using geologic data alone. The problems vary widely in size and in complexity. In a specific instance, data from other branches of science (such as biology, chemistry, or ecology), as well as economics, politics, social priorities, and so on may have to be taken into account. Because a variety of considerations may influence the choice of a solution, there is frequently disagreement about which solution is "best." Our personal choices will often depend strongly on our beliefs about which considerations are most important.

An introductory text cannot explore all aspects of environmental concerns. Here, the emphasis is on the physical constraints imposed on human activities by the geologic processes that have shaped and are still shaping our natural environment. In a real sense, these are the most basic, inescapable constraints; we cannot, for instance, use a resource that is not there, or build a secure home or a safe dam on land that is fundamentally unstable. Geology, then, is a logical place to start in developing an understanding of many environmental issues. The principal

aim of this book is to present the reader with a broad overview of environmental geology. Because geology does not exist in a vacuum, however, the text, from time to time, introduces related considerations from outside geology to clarify other ramifications of the subjects discussed. Likewise, the present does not exist in isolation from the past and future; occasionally, the text looks both at how the earth developed into its present condition and where matters seem to be moving for the future. It is hoped that this knowledge will provide the reader with a useful foundation for discussing and evaluating specific environmental issues, as well as for developing ideas about how the problems should be solved.

bout the Book

This text is intended for an introductory-level college course. It does not assume any prior exposure to geology or college-level mathematics or science courses. The metric system is used throughout, except where other units are conventional within a discipline. (For the convenience of students not yet "fluent" in metric units, a conversion table is included in appendix D, and in some cases, metric equivalents in English units are included within the text.)

Each chapter opens with an introduction that sets the stage for the material to follow. In the course of the chapter, important terms and concepts are identified by boldface type, and these terms are collected as "Terms to Remember" at the end of the chapter for quick review. To emphasize the present relevance of the material in the text and to illustrate the variety of current environmental problems, many chapters include actual case histories or specific examples. To these, each reader could no doubt add others from personal experience. Additional supplementary information is included in boxes set off from the main body of the text. Each chapter concludes with exercises that allow students to test their comprehension of text material and to apply that knowledge to real-world situations.

The book starts with some background information: a brief outline of earth's development to the present, and a look at one major reason why environmental problems today are so pressing—the large and rapidly growing human population. This is followed by a short discussion of the basic materials of geology—rocks and minerals—and some of their physical properties, which introduces a number of basic terms and concepts that are used in later chapters.

The next several chapters treat individual processes in detail. Some of these are large-scale processes, which may involve motions and forces in the earth hundreds of kilometers below the surface, and may lead to dramatic, often-catastrophic events like earthquakes and volcanic eruptions. Other processes—such as the flow of rivers and glaciers, or the blowing of the wind—occur only near the earth's surface, altering the landscape and occasionally causing their own special problems. In some cases, geologic processes can be modified, deliberately or accidentally; in others, human activities must be adjusted to natural realities.

A subject of increasing current concern is the availability of resources. A series of five chapters deals with water resources, soil, minerals, and energy, the rates at which they are being consumed, probable amounts remaining, and projections of future prospects. In the case of energy resources, we consider both those sources extensively used in the past, and new sources that may or may not successfully replace them in the future.

Increasing population and increasing resource consumption seem to lead to an increasing volume of waste to be disposed of; thoughtless or inappropriate waste disposal commonly leads to increasing pollution. Three chapters examine the interrelated problems of air and water pollution and the strategies available for the disposal of various kinds of wastes.

The final few chapters deal with a more diverse assortment of subjects. Environmental problems spawn laws intended to solve them; the environmental-law chapter looks briefly at a sampling of laws related to geologic matters discussed earlier in the book, as well as at some of the problems with such laws. The land-use planning and engineering geology chapter examines geologic constraints on construction schemes and the broader issue of trying to determine the optimum use(s) for particular parcels of land. Medical geology, a relatively new field covered in the last chapter, concerns the relationship between health and the geologic setting in which we live.

Relative to the length of time we have been on earth, humans have had a disproportionate impact on this planet. Appendix A explores the concept of geologic time and its measurement, and looks at the rates of geologic and other processes by way of putting human activities in temporal perspective. Appendix B gives an introduction to topographic and geologic maps and satellite imagery. Appendix C provides short reference keys to aid in rock and mineral identification.

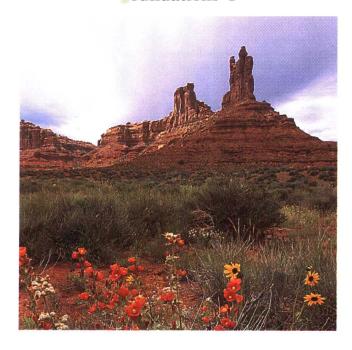
Available with this text is an Instructor's Manual containing over 750 test questions. The test questions found in the Instructor's Manual are also available on Wm. C. Brown's classroom testing software, for use with the Macintosh® and IBM® PC computers. Also available are 100 acetate transparencies of key text illustrations and 100 color slides. These are designed to aid instructors in class presentations and to enhance student learning activities.

cknowledgments

A great many people have contributed to the development of one or another edition of this book. Portions of the manuscript of the first edition were read by Colin Booth, Lynn A. Brant, Arthur H. Brownlow, Ira A. Furlong, David Huntley, John F. Looney, Jr., Robert A. Matthews, and George H. Shaw, and the entire book was reviewed by Robert A. Marston and Donald J. Thompson. The second edition benefited from reviews by William N. Mode, Laura L. Sanders, Jeffrey J. Gryta, Martin Reiter, Robert D. Hall, Robert B. Furlong, David Gust, and Stephen B. Harper, and the third was further refined with the help of Susan M. Cashman, Robert B. Furlong, William N. Mode, Frank Hanna, Laura L. Sanders, Paul Nelson, and Michael A. Velbel. This fourth has been strengthened through the input of reviewers: Pascal de Caprariis, Indiana University-Purdue; James Cotter, University of Minnesota-Morris; John Vitek, Oklahoma State University; Paul Schroeder, University of Georgia; Steven Lund, University of Southern California; Barbara Ruff, University of Georgia; Gordon Love, Radford University; Herbert Adams, California State University-Northridge; Michael McKinney, University of Tennessee; Thomas E. Hendrix, Grand Valley State University; Clifford Thurber, University of Wisconsin-Madison; Ali Tabidian, California State University-Northridge; Dru Germanoski, Lafayette College; and Randall Scott Babcock, Western Washington University. The thoughtful suggestions of all of these individuals, and many other users who have offered additional advice, have substantially improved the text, and their help is most gratefully acknowledged. Any remaining shortcomings are, of course, my own responsibility.

M. Dalechek, C. Edwards, I. Hopkins, and J. McGregor, at the USGS Photo Library in Denver, have provided invaluable assistance with the photo research over the years. The encouragement of a number of my colleagues—particularly Colin Booth, R. C. Flemal, Donald M. Davidson, Jr., R. Kaufmann, and Eugene C. Perry, Jr.—was a special help during development of the first edition. The ongoing support and interest of fellow author, deanly colleague, and ecologist Jerrold H. Zar has, in turn, helped immensely to make the revision cycles survivable. Thanks are also due to the approximately two thousand environmental-geology students I have taught, many of whom in the early years suggested that I write a text, and whose classes collectively provided a testing ground for many aspects of the presentations herein.

My family has been immensely supportive of this undertaking from the inception of the first edition. A very special vote of appreciation goes to my husband Warren—ever-patient sounding board, occasional photographer and field assistant—in whose life this book has so often loomed so large.


Last, but assuredly not least, I would like to express my deep gratitude to the entire WCB book team, for their enthusiasm, professionalism, and just plain hard work, without which successful completion of this project would have been impossible.

Dedication iii Boxes xiii Preface xv

SECTION I

oundations 1

An Overview of Our Planetary Environment 3

Earth in Space and Time 4
The Early Solar System 4
The Planets 4
Earth, Then and Now 4
Life on Earth 7

Geology, Past and Present 8 The Geologic Perspective 8 Geology and the Scientific Method 8 The Motivation to Find Answers 8 Wheels Within Wheels: Earth Cycles and Systems 10 Nature and Rate of Population Growth 11 Growth Rates: Causes and Consequences 11 Growth Rate and Doubling Time 12 Impacts of the Human Population 13 Farmland and Food Supply 13 Population and Nonfood Resources 15 Uneven Distribution of People and Resources 15 Disruption of Natural Systems 17 Is Extraterrestrial Colonization a Solution? 17 Summary 17 Terms to Remember 18 Exercises 18

Rocks and Minerals 21

Atoms, Elements, Isotopes, Ions, and Compounds 22 Atomic Structure 22 Elements and Isotopes 22

Ions 22

Compounds 22

Minerals—General 24

Minerals Defined 24

Suggested Readings/References 19

Identifying Characteristics of Minerals 24

Other Physical Properties of Minerals 26

Types of Minerals 27

Silicates 27

Nonsilicates 28

Rocks-General 29

Rocks Defined 29

Igneous Rocks 29

Sediments and Sedimentary Rocks 30

Metamorphic Rocks 32

Physical Properties of Geological Materials 35

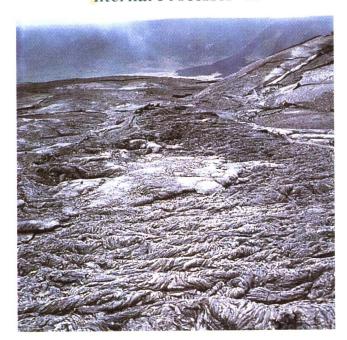
Porosity and Permeability 35

Stress, Strain, and the Strength of Geological Materials 35

The Rock Cycle 36

Summary 38

Terms to Remember 39


Exercises 39

Suggested Readings/References 39

Vi

SECTION II

nternal Processes 41

Plate Tectonics 43

Plate Tectonics—General Principles 44 Lithosphere and Asthenosphere 44

Locating Plate Boundaries 44

Plate Movements—Accumulating Evidence 46

The Topography of the Sea Floor 46

Magnetism in Rocks—General 46

Paleomagnetism and Seafloor Spreading 46

Age of the Ocean Floor 48

Polar-Wander Curves 48

Other Evidence 50

Types of Plate Boundaries 51

Divergent Plate Boundaries 51

Transform Boundaries 52

Convergent Plate Boundaries 53

How Far, How Fast, How Long, How Come? 54

Past Motions, Present Velocities 54

Why Do Plates Move? 56

History of Plate Tectonics 56

Plate Tectonics and the Rock Cycle 57

Summary 58

Terms to Remember 58

Exercises 58

Suggested Readings/References 59

Earthquakes 61

Earthquakes—Basic Theory 62

Basic Terms 62

Earthquake Locations 62

Seismic Waves and Earthquake Severity 64

Seismic Waves 64

Locating the Epicenter 66

Magnitude and Intensity 67

Earthquake-Related Hazards and Their Reduction 69

Ground Motion 69

Ground Failure 72

Tsunamis and Coastal Flooding 72

Fire 74

Earthquake Prediction and Forecasting 74

Seismic Gaps 74

Earthquake Precursors 74

The Earthquake Cycle and Forecasting 75

Current Status of Earthquake Prediction 76

Earthquake Control? 78

Unlocking Locked Faults 78

Fluid Injection 79

Earthquake Awareness, Public Response 79

Concerns Related to Predictions 79

Public Response 80

Further Thoughts on Modern and Future U.S. Earthquakes 80

Areas of Widely Recognized Risk 80

Other Potential Problem Areas 82

Summary 85

Terms to Remember 85

Exercises 85

Suggested Readings/References 85

Volcanoes 89

Magma Sources and Types 90

Kinds and Locations of Volcanic Activity 90

Individual Volcanoes—Locations 90

Seafloor Spreading Ridges, Fissure Eruptions 91

Shield Volcanoes 92

Volcanic Domes 92

Cinder Cones 92

Composite Volcanoes 94

Hazards Related to Volcanoes 95

Lava 95

Pyroclastics 97

Lahars 99

Pyroclastic Flows-Nuées Ardentes 100

Toxic Gases 102

Steam Explosions 103

Secondary Effects: Climate and Atmospheric Chemistry 103

Issues in Predicting Volcanic Eruptions 104
Classification of Volcanoes by Activity 104

Volcanic Precursors 104

Response to Eruption Predictions 105

Present and Future Volcanic Hazards in the United States 106

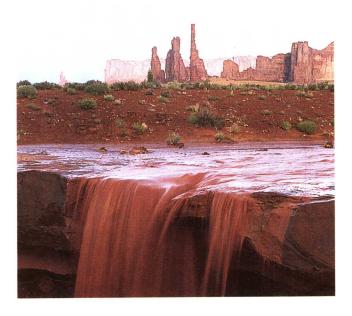
Hawaii 106

Cascade Range 106

The Aleutians 106

Other Volcanic Areas 107

Summary 111


Terms to Remember 111

Exercises 111

Suggested Readings/References 111

urface Processes 113

Streams and Flooding 115

The Hydrologic Cycle 116

Streams and Their Features 116

Streams—General 116

Sediment Transport 117

Velocity, Gradient, and Base Level 117

Velocity and Sediment Sorting 118

Floodplain Evolution 118

Flooding 120

Factors Governing Flood Severity 121

Flood Characteristics 122

Upstream and Downstream Floods 122

Stream Hydrographs 123

Flood-Frequency Curves 123

Consequences of Development in Floodplains 125

Reasons for Floodplain Occupation 125

Effects of Development on Flood Hazards 126

Strategies for Reducing Flood Hazards 128

Restrictive Zoning and "Floodproofing" 128

Retention Ponds, Diversion Channels 128

Channelization 129

Levees 129

Flood-Control Dams and Reservoirs 132

Summary 133

Terms to Remember 133

Exercises 133

Suggested Readings/References 135

Coastal Zones and Processes 137

Nature of the Coastline 138

Emergent and Submergent Coastlines 141

Wave-Cut Platforms 141

Drowned Valleys 141

Coastal Erosion, Sediment Deposition, and Transport 143

Sand Transport and Beach Erosion 143

Cliff Erosion 144

Especially Difficult Coastal Environments 145

Barrier Islands 148

Estuaries 149

Land Reclamation from Estuaries 149

Further Thoughts on Coastal Dynamics 150

Present and Future Sea-Level Trends 150

Storms and Coastal Erosion 151

Costs of Construction—and Reconstruction—in High-Energy

Environments 151 Recognition of Coastal Hazards 152

Summary 154

Terms to Remember 154

Exercises 155

Suggested Readings/References 155

Mass Movements 157

Factors Influencing Slope Stability 158

Effects of Slope 158

Effects of Fluid 158

Effects of Vegetation 159

Earthquakes 160

Quick Clays 161

Impact of Human Activities 162

Types of Mass Wasting 163

Falls 164

Slumps and Slides 164

Flows and Avalanches 166

Scales and Rates of Movements 166

Consequences of Mass Movements 167
Possible Preventive Measures 169
Slope Reduction 169
Retention Structures 170
Fluid Removal 170
Other Slope-Stabilization Measures 170
Recognizing the Hazards 173
Landslide Warnings? 175

Summary 175 Terms to Remember 176 Exercises 176 Suggested Readings/References 176

Geology and Climate: Glaciers, Deserts, and Global Climate Trends 179

Glaciers and Glacial Features 180

Glacier Formation 180

Types of Glaciers 180

Movement and Change of Glaciers 180

Glacial Erosion and Deposition 183

Wind and Its Geologic Impacts 184

Wind Erosion 187

Wind Deposition 189

Dune Migration 189

Loess 190

Deserts and Desertification 191

Causes of Natural Deserts 191

Desertification 192

Causes of Desertification 193

Desertification in the United States 194

Impact of Desertification 194

Global Climate, Past and Future 194

Evidence of Climates Past 195

Ice Ages and Their Possible Causes 195

The Greenhouse Effect and Global Warming 198

Summary 202

Terms to Remember 202

Exercises 202

Suggested Readings/References 203

esources 205

Resources, People, and Standards of Living 206 Projection of Resource Supply and Demand 207

Water as a Resource 211

The Global Water Budget 212

Subsurface Waters 212

Aquifer Geometry 213

Confined and Unconfined Aquifers 213

Other Factors in Water Availability 213

Consequences of Groundwater Withdrawal 215

Lowering the Water Table 215

Compaction and Surface Subsidence 216

Saltwater Intrusion 218

Other Impacts of Urbanization on Groundwater Systems 219

Loss of Recharge 219

Artificial Recharge 219

Other Features Involving Subsurface Water 220

Sinkholes 220

Karst 220

Water Quality 220

Measures of Water Quality 221

Hard Water 222

Water Use, Water Supply 223

General U.S. Water Use 223

Surface Water versus Groundwater as Supply 223

Regional Variations in Water Use 224

Extending the Water Supply 225

Conservation 225

Interbasin Water Transfer 225

Desalination 229

Summary 231

Terms to Remember 231

Exercises 232

Suggested Readings/References 232

ix

Soil as a Resource 235

Soil Formation 236

Soil-Forming Processes: Weathering 236 Soil Profiles, Soil Horizons 238

Chemical and Physical Properties of Soils 239

Color, Texture, and Structure of Soils 239

Soil Classification 240

Soils and Human Activities 240

Lateritic Soil 240

Soil Erosion 242

Soil Erosion versus Soil Formation 245

Strategies for Reducing Erosion 246

Summary 249

Terms to Remember 249

Exercises 249

Suggested Readings/References 250

Mineral Resources 253

Ore Deposits 254

Definition 254

Distribution 254

Types of Mineral Deposits 254

Igneous Rocks and Magmatic Deposits 254

Hydrothermal Ores 256

Relationship to Plate Margins 256

Sedimentary Deposits 258

Other Low-Temperature Ore-Forming Processes 259

Metamorphic Deposits 260

Mineral and Rock Resources—Examples 260

Metals 261

Nonmetallic Minerals 261

Rock Resources 262

Mineral Supply and Demand 262

U.S. Mineral Production and Consumption 262

World Mineral Supply and Demand 262

Minerals for the Future: Some Options Considered 265

New Methods in Mineral Exploration 265

Marine Mineral Resources 268

Conservation of Mineral Resources 269

Impacts of Mining Activities 270

Underground Mines 271

Surface Mines 271

Mineral Processing 272

Summary 274

Terms to Remember 274

Exercises 274

Suggested Readings/References 275

Energy Resources—Fossil Fuels 277

Oil and Natural Gas 278

Formation of Oil and Gas Deposits 278

Oil and Gas Migration 279

The Time Factor 280

Supply and Demand for Oil and Natural Gas 280

Oil 281

U.S. Oil Supplies 281

Natural Gas 283

Future Prospects 283

Enhanced Oil Recovery 283

Geopressurized Natural Gas and Other Alternate Gas Sources 284

Conservation 284

Oil Spills 284

Coal 286

Formation of Coal Deposits 286

Coal Reserves and Resources 286

Limitations on Coal Use 288

Gasification 288

Liquefaction 290

Environmental Impacts of Coal Use 290

Sulfur in Coal 290

Ash 290

Coal-Mining Hazards and Environmental Impacts 290

Oil Shale 294

Tar Sand 295

Summary 297

Terms to Remember 297

Exercises 297

Suggested Readings/References 298

Energy Resources—Alternative Sources 301

Nuclear Power—Fission 303

Fission—Basic Principles 303

The Geology of Uranium Deposits 304

Limitations of Uranium Supply 304

Extending the Nuclear Fuel Supply 304

Concerns Related to Nuclear Reactor Safety 305

Concerns Related to Fuel Handling 307

Radioactive Wastes 307

Concluding Observations 307

Nuclear Power—Fusion 310

Solar Energy 311

Solar Heating 312

Solar Electricity 313

Potential Environmental Impacts of Large-Scale Commitment to Solar Electricity 313

Geothermal Power 314

The Geothermal Resource 314

Applications of Geothermal Energy 314

Environmental Considerations of Geothermal Power 316

Limitations on Geothermal Power 316

Alternative Geothermal Sources 317 Summary of Geothermal Potential 317

Hydropower 317

Tidal Power 318

Wind Energy 318

Biomass 320

Alcohol As Fuel 322

Biogas 322

Summary 322

Terms to Remember 323

Exercises 323

Suggested Readings/References 323

aste Disposal and Pollution 325

Waste Disposal 327

Solid Wastes—General 328

Municipal Waste Disposal 328

Open Dumps 329

Sanitary Landfills 329

Incineration 331

Ocean Dumping 332 Reducing Waste Volume 333

Handling (Nontoxic) Organic Matter 333

Recycling 333

Other Options 335

Liquid-Waste Disposal 335

Secure Landfills 335

Deep-Well Disposal 338

Other Strategies 339

Sewage Treatment 339

Septic Systems 339

Municipal Sewage Treatment 340

Radioactive Wastes 343

Nature of Radioactive Wastes 344

Historical Suggestions: Space, Ice, and Plate Tectonics 345

Seabed Disposal 345

Bedrock Caverns for Liquid Waste 345

Bedrock Disposal of Solid High-Level Wastes 346

No High-Level Radioactive Waste Disposal Yet 350

Summary 350

Terms to Remember 350

Exercises 350

Suggested Readings/References 351

Water Pollution 353

General Principles 354

Geochemical Cycles 354

Residence Time 354

Residence Time and Pollution 355

Point and Nonpoint Pollution Sources 355

Industrial Pollution 356

Inorganic Pollutants—Metals 357

Other Inorganic Pollutants 359

Organic Compounds 359

Problems of Control 359

Thermal Pollution 360

Organic Matter 361

Nature and Impacts 361

Biochemical Oxygen Demand 361

Eutrophication 362

Agricultural Pollution 363

Fertilizers 363

Sediment Pollution 364

Herbicides and Pesticides 364

Reversing the Damage—Surface Water 365

Dredging 365

Physical Isolation or Chemical Treatment of Sediments 367

Decontamination; Aeration 367

Groundwater Pollution 368

The Surface-Groundwater Connection 370

Reversing the Damage—Groundwater 372

In Situ Decontamination 372

Decontamination after Extraction 374

Summary 375

Terms to Remember 375

Exercises 375

Suggested Readings/References 376

Air Pollution 379

Atmospheric Chemistry—Cycles and Residence Times 380 Costs of Air Pollution 381

Types and Sources of Air Pollution 381

Particulates 381

Carbon Gases 382

Sulfur Gases 383

Nitrogen Gases 383

Ozone 384

Lead 385

Other Pollutants 388

Acid Rain 388

The Nature of Acid Rain 388

Regional Variations in Rainfall Acidity and Impacts 388

Air Pollution and Weather 393

Thermal Inversion 393

Impact on Precipitation 394

Toward Air-Pollution Control 394

Air-Quality Standards 394

Control Methods 396

Automobile Emissions 396

Cost and Effect 396

Summary 399

Terms to Remember 399

Exercises 399

Suggested Readings/References 399

ther Related Topics 401

Environmental Law 403

Resource Law: Water 404

Surface-Water Law 404

Groundwater Law 405

Resource Law: Minerals and Fuels 405

Mineral Rights 405

Mine Reclamation 406

International Resource Disputes 406

Law of the Sea and Exclusive Economic Zones 406

Antarctica 407

Pollution and Its Control 409

A Clean Environment—By What Right? 409

Water Pollution 410

Air Pollution 410

Waste Disposal 410

The Environmental Protection Agency 412

Defining Limits of Pollution 413

Cost-Benefit Analysis 413

Problems of Quantification 413

Cost-Benefit Analysis and the Federal Government 414

Laws Relating to Geologic Hazards 415

Controls on Construction in Areas of Landslide Hazard 415

Response to Earthquake Hazards 416

Flood Hazards, Flood Insurance 417

Problems with Geologic-Hazard Mitigation Laws 417

The National Environmental Policy Act (1969) 418

Summary 420

Terms to Remember 420

Exercises 421

Suggested Readings/References 421

Land-Use Planning and **Engineering Geology 423**

Land-Use Planning-Why? 424

Conversion of Rural Land 424

Some Considerations in Planning 424

Land-Use Options 424

Multiple Use 425

Sequential Use 425 Maps as a Planning Tool 425

Engineering Geology—Some Considerations 428

Case Histories, Old and New 435

The Leaning Tower of Pisa 435

The Panama Canal 436

The Rotterdam Subway, Holland 437

Tower Latino Americano, Mexico City 438

Dams and Their Failures 438

The St. Francis Dam 438

Other Examples 439

Summary 442

Terms to Remember 442

Exercises 442

Suggested Readings/References 442

Medical Geology 445

Basic Principles of Medical Geology 446

Trace Elements 446

Dose-Response Curves 446

Geology, Trace Elements, and Health 447

Controls on Elemental Intake 447

Iodine 448

xii

Contents

Fluorine 450 Zinc 451 Selenium 451 Radon 453

Cases in Which Connections are Less Clear 453

Radioactivity and Cigarettes 453

Regional Variations in Heart Disease 453

Cardiovascular Disease in Georgia 455

Other Intriguing Patterns 455

Further Complicating Factors 456

Cause-and-Effect or Coincidence? 456

Trace-Element Interactions 457

Impacts of Human Activities 458

Summary 458

Terms to Remember 459

Exercises 459

Suggested Readings/References 460

Appendix A Geologic Time, Geologic Process Rates 461

Introduction 461 Relative Dating 461

Arranging Events in Order 461

Correlation 461

Uniformitarianism 462

How Old is the Earth? 463

Early Efforts 463

The Nineteenth-Century View 463

Radiometric Dating 464

The Discovery of Radioactivity 464

Radioactive Decay and Dating 464

Choice of an Isotopic System 465

Radiometric and Relative Ages Combined 465

The Geologic Time Scale 466

Geologic Process Rates 466

Examples of Rate Determination 466

The Danger of Extrapolation 467

Summary 467

Terms to Remember 467

Suggested Readings/References 467

Appendix B Introduction to Topographic and Geologic Maps and Satellite Imagery 468

Maps and Scale 468

Topographic Maps 468

Contour Lines, Contour Intervals 468

Other Features on Standard Topographic Maps 469

Obtaining Topographic Maps 469

Geologic Maps 470

Basic Concepts Related to Geologic Maps 470

Interpretation from Geologic Maps—Examples 472

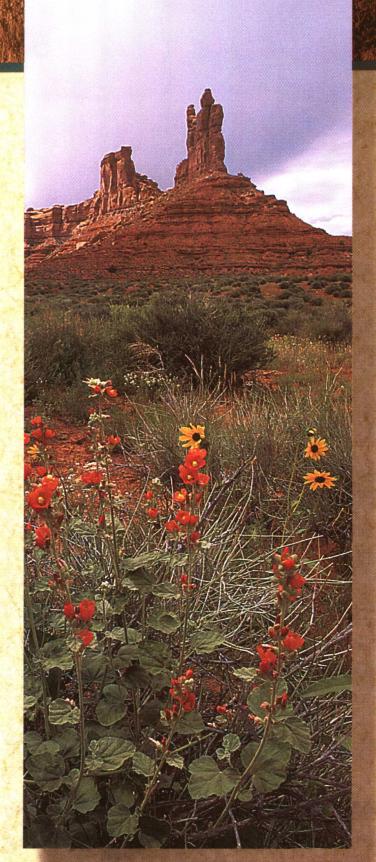
Cross Sections 474

Obtaining Geologic Maps 476

Remote Sensing and Satellite Imagery 476

Landsat Images and Applications 476

Appendix C Mineral and Rock Identification 479


Appendix D Units of Measurement— Conversions 483

Glossary 484 Index 490

Oxes

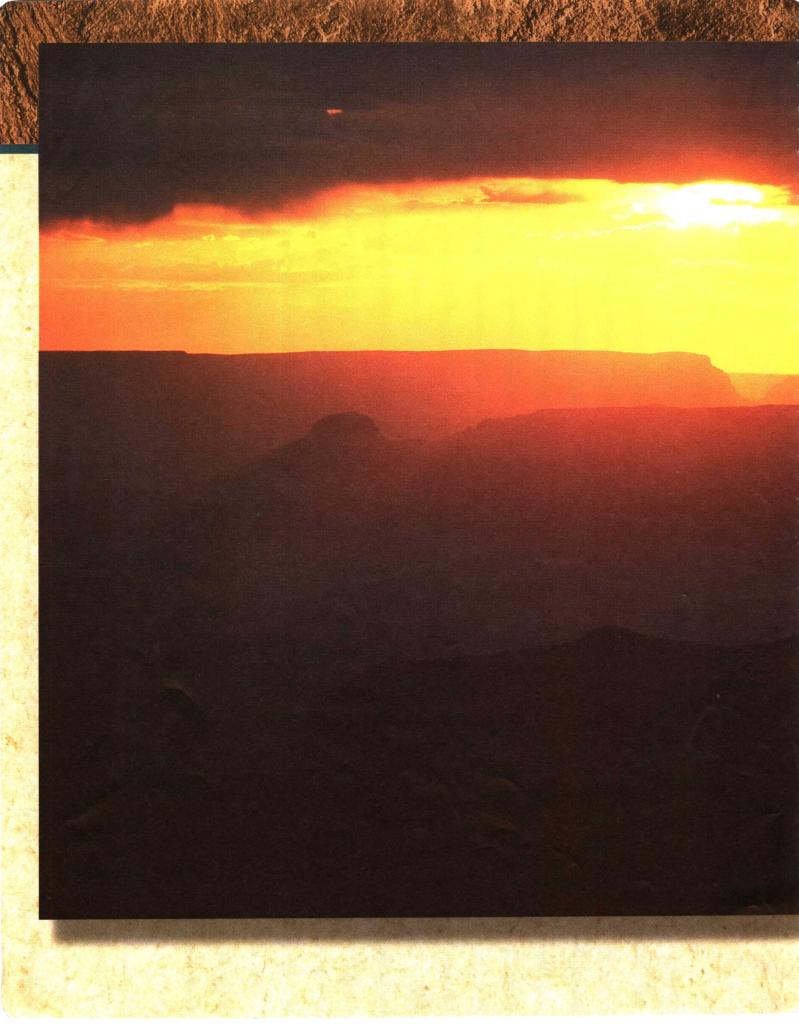
- 1.1 Exponential Growth Examined 14
- **2.1** The Periodic Table 23
- 2.2 Chemical Symbols: A Scientific Shorthand 24
- **3.1** Plate Tectonics and Radioactive Waste: New Solutions? 58
- **4.1** Seismic Waves as Clues to the Earth's Interior 66
- **4.2** Lessons from Loma Prieta 86
- 5.1 Life on a Volcano's Flanks 108
- **6.1** How Big Is the One-Hundred-Year Flood? 126
- **6.2** Life on the Mississippi 130
- **6.3** Lakes Can Flood, Too 134
- 7.1 Trouble on the Texas Coast 146
- 7.2 Great Lakes Shoreline Erosion on the Rise? 153
- **8.1** The Vaiont Reservoir Disaster: A Landslide of Human Making 164
- **8.2** Landslide Control in the Rockies: An Example 172
- 9.1 Glaciers as a Water Source 181
- **9.2** Winds and Currents, Climate and Commerce: El Niño 201
- 10.1 The Great Depression—in Groundwater 216
- 10.2 The Ogallala Aquifer System 228
- 10.3 A Crisis of Surface-Water Supply: The Colorado River Basin 230
- **11.1** The Dust Bowl Dust Storms—A One-Time Event? 244
- 11.2 Soil Erosion, and Feeding a Hungry World 250
- **12.1** Additional Reflections on Mineral Economics and Supplies: Copper as an Example 266
- **12.2** Antarctica and the Question of Environmental Impact of Mineral Resource Development 268
- 12.3 U.S. National Policy Response to Potential Mineral Shortages: Strategic Mineral Stockpiling 274
- 13.1 An Aside on Some Economics of Drilling for Petroleum Fuels 285

- 13.2 Diary of an Oil Spill: The Exxon Valdez 287
- 13.3 Caution: Fossil Fuels Below! 292
- 13.4 The Synfuels Scenario 297
- 14.1 Nuclear Fission Power: Fallen Idol? 306
- 14.2 Crisis at Chernobyl—and After 308
- 14.3 Risk Assessment, Risk Projection 310
- **14.4** New Energy Diet for a Small User: Hawaii 321
- **15.1** Toxic-Waste Time Bombs? The Chaos at Love Canal 336
- **15.2** Whose Garbage Was This? Superfund to the Rescue! 340
- 15.3 Radiation—What Does It Do? 343
- **15.4** Wanted: One Disposal Site for High-Level Waste 348
- 16.1 DDT: Dream Cure to Disaster 361
- 16.2 "Who Killed Lake Erie?" 370
- **16.3** Groundwater Pollution and Control, Rocky Mountain Arsenal 374
- 17.1 The Mysterious "Ozone Hole" 387
- 17.2 Indoor Air Pollution 390
- 17.3 Air Pollution and Health: The Standard Air-Pollution Index 395
- 18.1 Future Directions in Environmental Law: Solar-Access Law 414
- 18.2 EIS Examples: To Build and Not to Build 416
- **18.3** An Exercise in Impact Analysis on a Grand Scale: The Trans-Alaska Pipeline 418
- **19.1** Land-Use Planning and the Siting of Nuclear Power Plants 432
- **19.2** The Federal Government and Land-Use Planning 435
- **19.3** The SSC as an Engineering-Geology Problem 437
- **19.4** Testing, Testing—Modeling Nature for Greater Safety 441

Section I

Foundations

sense of historical perspective helps us to appreciate current problems and to anticipate future ones. Many modern environmental problems, such as acid rain and groundwater pollution, have come upon us very recently. Others, such as the hazards posed by earthquakes, volcanoes, and landslides, have always been with us. Recognition of the impact of natural hazards is worldwide; the 1990s have been designated the United Nations Decade for Natural Disaster Reduction.


Chapter 1 briefly summarizes the major events in the earth's development, and allows us to begin to see where human activities fit in. It provides some information about the solar system to help the reader judge the degree to which other planets might provide solutions to such problems as lack of resources and living space. It also introduces the concept of cyclicity in natural processes, and points out that the interrelationships among natural processes may be complex.

The size and growth of earth's human population bear strongly on the ways and extent to which geology and people interact, which is what environmental geology is all about. In fact, many of our problems are as acute as they are simply because of the sheer number of people who now live on the earth. This point will be particularly evident in discussions of resources, pollution, and waste disposal. Again, the global impact of the issues is underscored by the fact that in 1992, more than 170 nations came together in Rio de Janeiro for the United Nations Conference on Environment and Development, to address such issues as global climate change, sustainable development, and environmental protection.

It is difficult to talk for long about geology without discussing rocks and minerals, the stuff of which the earth is made. Chapter 2 introduces these materials and some of their basic properties. Specific physical and chemical properties of rocks and soils are important in considering such diverse topics as resource identification and recovery, waste disposal, assessment of volcanic or landslide hazards, weathering processes and soil formation, and others.

For the most part, the earth has been shaped by slow processes operating over very long periods of time; millions of years of sediment deposition create thick beds of sedimentary rocks like these. Thousands of years of erosion by wind and water have shaped them into the forms we see today. Valley of the Gods State Park, Utah.

O Doug Sherman/Geofile.

An Overview of Our Planetary Environment

illions of years ago, out of a swirling mass of gas and dust, evolved a system of varied planets hurtling around a nuclear-powered star—our solar system. One of these planets, and one only, gave rise to life. Over time, a tremendous diversity of life forms and ecological systems developed, while the planet too evolved and changed, its interior churning, its landmasses shifting, its surface constantly being reshaped. Within the last several million years, the diversity of life on earth has included humans, increasingly competing for space and survival on the planet's surface. With the control over one's surroundings made possible by the combination of intelligence and manual dexterity, humans have found most of the land on the planet inhabitable; they have learned to use not only plant and animal resources, but minerals, fuels, and other geologic materials; in some respects, humans have even learned to modify natural processes that inconvenience or threaten them. As we have learned how to study our planet in systematic ways, we have developed an ever-increasing understanding of the nature of the processes shaping, and the problems posed by, our geological environment. As the human population grows, however, it becomes increasingly difficult for that population to survive on the resources and land remaining, to avoid those hazards that cannot be controlled, and to refrain from making irreversible and undesirable changes in environmental systems. The urgency of perfecting our understanding, not only of natural processes but also of our impact on the planet, is becoming more and more apparent.

The Grand Canyon and its environment, also millions of years in the making, are not immune to short-term human impacts: tourist traffic on trails accelerates erosion, pollution makes the air over the canyon hazier, and the desire for ever more energy leads to consideration of damming the Colorado River for hydropower and creating a reservoir on the canyon floor.

© Doug Sherman/Geofile.