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Deterministic chaos offers a striking explanation for irregular behaviour and anomalies
in systems which do not seem to be inherently stochastic. The most direct link between
chaos theory and the real world is the analysis of time series from real systems in
terms of nonlinear dynamics. This book provides experimentalists with methods for
processing, enhancing, and analysing measured signals using these methods; and for
theorists it demonstrates the practical applicability of mathematical results.

The framework of deterministic chaos constitutes a new approach to the analysis of
irregular time series. Traditionally, nonperiodic signals have been modelled by linear
stochastic processes. But even very simple chaotic dynamical systems can exhibit
strongly irregular time evolution without random inputs. Chaos theory offers completely
new concepts and algorithms for time series analysis which can lead to a thorough
understanding of the signals. The book introduces a broad choice of such concepts and
methods, including phase space embeddings, nonlinear prediction and noise reduction,
Lyapunov exponents, dimensions and entropies, as well as statistical tests for
nonlinearity. Related topics such as chaos control, wavelet analysis, and pattern
dynamics are also discussed. Applications range from high-quality, strictly deterministic
laboratory data to short, noisy sequences which typically occur in medicine, biology,
geophysics, and the social sciences. All the material discussed is illustrated using real
experimental data.

This book will be of value to any graduate student and researcher who needs to be
able to analyse time series data, especially in the fields of physics, chemistry, biology,
geophysics, medicine, economics, and the social sciences.



Preface

The paradigm of deterministic chaos has influenced thinking in many fields
of science. As mathematical objects, chaotic systems show rich and surprising
structures. Most appealing for researchers in the applied sciences is the fact that
deterministic chaos provides a striking explanation for irregular behaviour and
anomalies in systems which do not seem to be inherently stochastic.

The most direct link between chaos theory and the real world is the analysis of
time series from real systems in terms of nonlinear dynamics. On the one hand,
experimental technique and data analysis have seen such dramatic progress that,
by now, most fundamental properties of nonlinear dynamical systems have been
observed in the laboratory. On the other hand, great efforts are being made
to exploit ideas from chaos theory in cases where the system is not necessarily
deterministic but the data displays more structure than can be captured by
traditional methods. Problems of this kind are typical in biology and physiology
but also in geophysics, economics, and many other sciences.

In all these fields, even simple models, be they microscopic or phenomeno-
logical, can create extremely complicated dynamics. How can one verify that
one’s model is a good counterpart to the equally complicated signal that one
receives from nature? Very often, good models are lacking and one has to study
the system just from the observations made in a single time series, which is
the case for most nonlaboratory systems in particular. The theory of nonlinear
dynamical systems provides new tools and quantities for the characterisation of
irregular time series data. The scope of these methods ranges from invariants
such as Lyapunov exponents and dimensions which yield an accurate description
of the structure of a system (provided the data are of high guality) to statistical
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Preface

techniques which allow for classification and diagnosis even in situations where
determinism is almost lacking.

This book provides the experimental researcher in nonlinear dynamics with
methods for processing, enhancing, and analysing the measured signals. The
theorist will be offered discussions about the practical applicability of mathe-
matical results. The time series analyst in economics, meteorology, and other
fields will find inspiration for the development of new prediction algorithms.
Some of the techniques presented here have also been considered as possible
diagnostic tools in clinical research. We will adopt a critical but constructive
point of view, pointing out ways of obtaining more meaningful results with
limited data. We hope that everybody who has a time series problem which
cannot be solved by traditional, linear methods will find inspiring material in
this book.

Dresden and Wuppertal
November 1996



Acknowledgements

If there is any feature of this book that we are proud of, it is the fact that
almost all the methods are illustrated with real, experimental data. However,
this is anything but our own achievement — we exploited other people’s work.
Thus we are deeply indebted to the experimental groups who supplied data sets
and granted permission to use them in this book. The production of every one
of these data sets required skills, experience, and equipment that we ourselves
do not have, not forgetting the hours and hours of work spent in the laboratory.
We appreciate the generosity of the following experimental groups:

NMR laser. Our contact persons at the Institute for Physics at Ziirich University
were Leci Flepp and Joe Simonet; the head of the experimental group
is E. Brun. (See Appendix C.2.)

Vibrating string. Data were provided by Tim Molteno and Nick Tufillaro, Otago
University, Dunedin, New Zealand. (See Appendix C.3.)

Taylor—Couette flow. The experiment was carried out at the Institute for Applied
Physics at Kiel University by Thorsten Buzug and Gerd Pfister. (See
Appendix C4.)

Atrial fibrillation. This data set is taken from the MIT-BIH Arrhythmia Database,
collected by G. B. Moody and R. Mark at Beth Israel Hospital in
Boston. (See Appendix C.6.)

Human ECG. The ECG recordings we used were taken by Petr Saparin at
Saratov State University. (See Appendix C.7.)

ix



Acknowledgements

Foetal ECG. We used noninvasively recorded (human) foetal ECGs taken by
John F. Hofmeister at the Department of Obstetrics and Gynecology,
University of Colorado, Denver CO. (See Appendix C.7.)

Phonation data. This data set was made available by Hanspeter Herzel at the
Technical University in Berlin. (See Appendix C.8.)

Autonomous CO; laser with feedback. The data were taken by Riccardo Meucci
and Marco Ciofini at the INO in Firenze, Italy. (See Appendix C.10.)

Human posture data. The time series was provided by Steven Boker and Bennett
Bertenthal at the Department of Psychology, University of Virginia,
Charlottesville VA. (See Appendix C.9.)

We used the following data sets published for the Santa Fe Institute Time
Series Contest, which was organised by Neil Gershenfeld and Andreas Weigend
in 1991:

Human breath rate. The data we used is part of data set B of the contest. It
was submitted by Ari Goldberger and coworkers. (See Appendix C.5.)

NH; laser. We used data set A and its continuation, which was published after
the contest was closed. The data was supplied by U. Hiibner, N. B.
Abraham, and C. O. Weiss. (See Appendix C.1.)

During the composition of the text we asked various people to read all or
part of the manuscript. The responses ranged from general encouragement to
detailed technical comments. In particular we thank Peter Grassberger, James
Theiler, Daniel Kaplan, Ulrich Parlitz, and Martin Wiesenfeld for their helpful
remarks. Members of our research groups who volunteered to comment on
some of the computer programs are Rainer Hegger, Andreas Schmitz, Marcus
Richter, and Frank Schmiiser.

Finally, we acknowledge support by the Sonderforschungsbereich 237 of the
Deutsche Forschungsgemeinschaft.

Last not least we acknowledge the support by Simon Capelin from Cambridge
University Press and the excellent help in questions of style and English grammar
by Sheila Shepherd.



Contents

Part 1

Chapter 1

Chapter 2

21
2.2
23
231

24
2.5

Chapter 3

31
32
33
34
35

Preface Vii
Acknowledgements iX
Basic topics [

Introduction: Why nonlinear methods? 3

Linear tools and general considerations 13

Stationarity and sampling 13
Testing for stationarity 15
Linear correlations and the power spectrum 18

Stationarity and the low-frequency component in
the power spectrum 22

Linear filters 23
Linear predictions 25

Phase space methods 29

Determinism: Uniqueness in phase space 29
Delay reconstruction 33

Finding a good embedding 34 -

Visual inspection of data 37

Poincare surface of section 37



Contents

Chapter 4  Determinism and predictability 42

4.1 Sources of predictability 43

4.2 Simple nonlinear prediction algorithm 44

43 Verification of successful prediction 46

44 Probing stationarity with nonlinear predictions 49
4.5 Simple nonlinear noise reduction 51

Chapter 5 Instability: Lyapunov exponents 58

5.1 Sensitive dependence on initial conditions 58
5.2 Exponential divergence 59
53 Measuring the maximal exponent from data 62

Chapter 6  Self-similarity: Dimensions 69

6.1 Attractor geometry and fractals 69

6.2 Correlation dimension 70

6.3 Correlation sum from a time series 72

6.4 Interpretation and pitfalls 75

6.5 Temporal correlations, nonstationarity, and space time
separation plots 81

6.6 Practical considerations 84

6.7 A useful application: Determination of the noise level 86

Chapter 7 Using nonlinear methods when determinism is weak 9/

71 Testing for nonlinearity with surrogate data 93

7.1.1 The null hypothesis 95

7.1.2 How to make surrogate data sets 96

7.1.3 Which statistics to use 99

7.14 What can go wrong 102

7.1.5 What we have learned 103

7.2 Nonlinear statistics for system discrimination 104

7.3 Extracting qualitative information from a time series 108

Chapter 8§  Selected nonlinear phenomena 12

8.1 Coexistence of attractors 112
8.2 Transients 113
8.3 Intermittency 114



Contents

8.4
8.5
8.6

Pary 2

Chapter 9

9.1
9.1.1
9.1.2
9.2
9.3
9.3.1
93.2
94
9.5
9.5.1
95.2
9.5.3
9.6

Chapter 10

10.1
10.2
10.3
10.3.1
103.2
10.3.3
1034
10.3.5
10.4

Chapter 11

11.1
11.2
11.2.1

Structural stability 718
Bifurcations 119
Quasi-pertodicity 121

Advanced topics 123

Advanced embedding methods 125

Embedding theorems 125

Whitney’s embedding theorem 126

Takens’s delay embedding theorem 127

The time lag 130

Filtered delay embeddings 134

Derivative coordinates 134

Principal component analysis 135
Fluctuating time intervals 139

Multichannel measurements 141

Equivalent variables at different positions 141
Variables with different physical meanings 142
Distributed systems 143

Embedding of interspike intervals 145

Chaotic data and noise 150

Measurement noise and dynamical noise 150
Effects of noise 151

Nonlinear noise reduction 154

Noise reduction by gradient descent 155

Local projective noise reduction 156
Implementation of locally projective noise reduction
How much noise is taken out? 163

Consistency tests 167

An application: Foetal ECG extraction 168

More about invariant quantities 172

Ergodicity and strange attractors 173
Lyapunov exponents II 174

The spectrum of Lyapunov exponents and
invariant manifolds 174

159

iii



iv

Contents

11.2.2
11.2.3
11.24
11.2.5
11.3

11.3.1
11.3.2
114

114.1
114.2
1143
11.4.4
11.5

11.5.1
11.5.2

Chapter 12

12.1
12.1.1
12.1.2
12.1.3
12.2
12.3
12.3.1
12.3.2
12.4
124.1
12.4.2
1243
1244
12.5
12.5.1
12.5.2
12.6

Chapter 13

13.1
13.1.1

Flows versus maps 176

Tangent space method 177

Spurious exponents 178

Almost two-dimensional flows 184
Dimensions II 184

Generalised dimensions, multifractals 186
Information dimension from a time series 188
Entropies 189

Chaos and the flow of information 189
Entropies of a static distribution 191
The Kolmogorov-Sinai entropy 193
Entropies from time series data 194
How things are related 198

Pesin’s identity 198

Kaplan—~Yorke conjecture 199

Modelling and forecasting 202

Stochastic models 204

Linear filters 204

Nonlinear filters 206

Markov models 207

Deterministic dynamics 207
Local methods in phase space 208
Almost model free methods 209
Local linear fits 209

Global nonlinear models 211
Polynomials 211

Radial basis functions 212

Neural networks 213

What to do in practice 214
Improved cost functions 215
Overfitting and model costs 216
The errors-in-variables problem 217
Model verification 219

Chaos control 223

Unstable periodic orbits and their invariant manifolds
Locating periodic orbits 225

224



Contents

13.1.2
132
13.3
134
13.5
13.6
13.7

Chapter 14

14.1
14.1.1
14.1.2
14.2
14.3
14.3.1
14.3.2
1433

Stable /unstable manifolds from data 229
OGY-control and derivates 231

Variants of OGY-control 234

Delayed feedback 235

Chaos suppression without feedback 235
Tracking 236

Related aspects 237

Other selected topics 239

High dimensional chaos 239

Analysis of higher dimensional signals 241
Spatially extended systems 245

Analysis of spatiotemporal patterns 247
Multiscale or self-similar signals, wavelets 249
Dynamical origin of multiscale signals 250
Scaling laws 252

Wavelet analysis 254

Appendix A  Efficient neighbour searching 257
Appendix B Program listings 262
Appendix C Description of the experimental data sets

References 288
Index 300

278



Part 1

Basic topics






Chapter |

Introduction: Why nonlinear methods?

You are probably reading this book because you have an interesting source of
data and you suspect it is not a linear one. Either you positively know it is
nonlinear because you have some idea of what is going on in the piece of world
that you are observing or you are led to suspect that it is because you have tried
linear data analysis and it has failed.!

Linear methods interpret all regular structure in a data set, such as a dominant
frequency, as linear correlations (to be defined in Chapter 2 below). This means,
in brief, that the intrinsic dynamics of the system are governed by the linear
paradigm that small causes lead to small effects. Since linear equations can only
lead to exponentially growing or periodically oscillating solutions, all irregular
behaviour of the system has to be attributed to some random external input to
the system. Now, chaos theory has taught us that random input is not the only
possible source of irregularity in a system’s output: nonlinear, chaotic systems
can produce very irregular data with purely deterministic equations of motion.
Of course, a system which has both, nonlinearity and random input, will most
likely produce irregular data as well.

Although we have not yet introduced the tools we need to make quantitative
statements, let us look at a few examples of real data sets. They represent very
different problems of data analysis where one could profit from reading this
book since a treatment with linear methods alone would be inappropriate.

1. Of course you are also welcome to read this book if you are not working on a
particular data set.



Introduction: Why nonlinear methods?

T T T o O 0 o @
0 6o o 0 ¢ Tl
o
> o Yoo 00 65094006 © Op 0o @ 0 0 OO
o
— o o ©
3 o & o ®
o
2 ® ® o
32 & ° o
© 4 e < ° °
= < (SIS
) @ ¢ o5 o ° °
% & ¢ ° e °
= o °
o ° 00
© o
o < o < ° o © < ° o
4 1L o 1 < 1 1
0 20 40 60 80 100
time

Figure 1.1 100 successive measurements of the laser intensity of an NMR
laser. The time unit here is set to the measurement interval.

Example 1.1 (NMR laser data) In a laboratory experiment carried out by
Flepp, Simonet & Brun at the Physics Department of the University of Ziirich,
a Nuclear Magnetic Resonance laser is operated under such conditions that
the amplitude of the (radio frequency) laser output varies irregularly over time.
From the set-up of the experiment it is clear that the system is highly nonlinear
and random input noise is known to be of very small amplitude compared to
the amplitude of the signal. Thus it is not assumed that the irregularity of the
signal is just due to input noise. In fact, it has been possible to model the
system by a set of differential equations which does not involve any random
components at all; see Flepp et al (1991). Appendix C.2 contains more details
about this data set.

Successive values of the signal appear to be very erratic, as can be seen in
Fig. 1.1. Nevertheless, as we shall see later, it is possible to make accurate
forecasts of future values of the signal using a nonlinear prediction algorithm.
Fig. 1.2 shows the mean prediction error depending on how far into the future
the forecasts are made. Quite intuitively, the further into the future the forecasts
are made, the larger will the uncertainty be. After about 35 time steps the
prediction becomes worse than when just using the mean value as a prediction
(horizontal line). We have fitted the growth by an exponential with an exponent
of 0.3, which is indicated as a dashed line. We used the simple prediction
method which will be described in Section 4.2. For comparison we also show
the result for the best linear predictor that we could fit to the data (crosses). We
observe that the predictability due to the linear correlations in the data is much
weaker than the one due to the deterministic structure, in particular for short
prediction times. The predictability of the signal can be taken as a signature
of the deterministic nature of the system. See Section 2.5 for details on the
linear prediction method used. The nonlinear structure which leads to the short-
term predictability in the data set is not apparent in a representation such as
Fig. 1.1. We can, however, make it visible by plotting each data point versus its
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Figure 1.2 The average prediction error (in units of the data) for a longer
sample of the NMR laser output as a function of the prediction time. For an
explanation of the different symbols see the text of Example 1.1.

predecessor, as has been done in Fig. 1.3. Such a plot is cailed a phase portrair.
This representation is a particularly simple application of a basic tool which
will often be used in nonlinear time series analysis, the time delay embedding.
This concept will be formally introduced in Section 3.2. In the present case we
just need a data representation which is printable in two dimensions, |

Example 1.2 (Human breath rate} One of the data sets used for the Santa Fe
Institute time series competition in 1991-92 [Weigend & Gershenfeld (1993}]
was provided by A. Goldberger from Beth Israel Hospital in Boston [Rigney et
al {1993); see also Appendix C.5]. Out of several channels we selected a 16 min
record of the air flow through the nose of a human subject. A plot of the data
segment we used is shown in Fig 1.4.

In this case only very little is known about the origin of the fluctuations of the
breath rate. The only hint that nonlinear behaviour plays a role comes from the
data itself: the signal is not compatible with the assumption that it is created by
a Gaussian random process with only linear correlations (possibly distorted by
a nonlinear measurement function). This we show by creating an artificial data
set which has exactly the same Iinear properties but has no further determinism
built in. This data set consists of random numbers which have been rescaled
to the distribution of the values of the original (thus also mean and variance
are identical) and filtered so that the power spectrum is the same. (How this is
done, and further aspects, are discussed in Chapter 4 and Section 7.1.) If the
measured data are properly described by a linear process we should not find
any significant differences from the artificial ones.



