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Algebraic Immunity Hierarchy of
Boolean Functions’

Ziran Tu Yingpu Deng
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, P.R.China
tuzr007 @126.com, dengyp @amss.ac.cn

Abstract: Algebraic immunity of Boolean functions is a very important concept in recently introduced
algebraic attacks on stream cipher. For a 71 -variable Boolean function f, the algebraic immunity Al (f)

n
takes values in {0,1,...,[51}. For every kK in this range, denote B,, the set of all A -variable

Boolean functions with algebraic immunity &k, and we know that B, is always non-empty. According to

the algebraic immunity, we can form a hierarchy of Boolean functions. Trivially, |B, =2 In general,

. n .
about this integer sequence |B ; Ik =1,...,1751 , very few results are known. In this paper, we show an

explicit formula for 1B, 1. That is, we obtain an exact formula for the number of Boolean functions with

algebraic immunity one. This is the first exact formula for the terms in the above integer sequence. We also
give a tight upper bound about non-linearity of Boolean functions with algebraic immunity one.

Key words: Boolean functions; algebraic attack; algebraic immunity; non-linearity; stream cipher

1 Introduction

Boolean functions are very important in stream ciphers, of which there are two models: the
combiner model and the filter model. They have been proved to be theoretically equivalent, but
the attacks do not work quite similarly on each model. What they have in common is that both the
combining function and the filtering function should be balanced, have high algebraic degree,
high non-linearity and high correlation immunity.

Recently, a new attack (1] [2] [3] upon stream cipher, the so-called algebraic attack,
brings a completely new criterion for the design of secure stream cipher systems, known as
algebraic immunity.

A Boolean function on 7 -variables is a mapping from F;' into F,, which is the finite field
with two elements. We denote B, the set of all n-variable Boolean functions. Any Boolean

function f in B, has a unique representation as multivariate polynomials over F,, which is
called the algebraic normal form (ANF)

* The work was supported by NNSF of China (No. 10501049) and 973 Project (No. 2004CB318000).
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fOxx)= Y a]]x

Ic(l....n} iel

where the q,'s are in F,. The algebraic degree deg(f) of f equals the maximum degree
of those monomials with nonzero coefficients in its algebraic normal form. A Boolean function fis
called affine, if deg(f)=1. The support of f is defined as Supp(f)={xe F,': f(x)=1}, and
the wt(f) is the number of vectors which lies in Supp(f) .

Definition 1.1[6] The algebraic immunity AI,(f) of an »n-variable Boolean function f
is defined to be the lowest degree of nonzero functions g suchthat fg=0 or (f+1)g=0.

It is known that for an arbitrary 7 -variable Boolean function f , we have Al (f)< [—;—-‘

Let B,,={feB,:Al (f)=k} where k=0,1,...,(%-\. From [5], we know that B, is

always non-empty. Thus we have an integer sequence IB,, Ik =0,1,...,[%_\. Trivially, 1B,,E2.

We are interested in what kinds of Boolean functions in B, ,, and their cardinals. If we know
this, we can successfully form a hierarchy of Boolean functions according to their algebraic

immunities , but unfortunately , for a general k , it seems rather difficult to determine
completely the number |B,,| ,so far as we know, there is little results about this. For
example, the references [7] [4] give some lower bound for IB | -I.
[3]
In this paper, we have a try to understand more about this problem, we can give an explicit
formula to count the number of Boolean functions in B, , this is the first nontrivial exact

formula for the terms in the above integer sequence, and we also give a tight upper bound on
non-linearity for those functions.

2 Main Results

In this section, we give our main results and their proofs. Let us start with a simple fact.

Lemma 2.1 Let fe B, be anon-constant Boolean function, then Al (f)=1 if and only if
there exists a hyper-plane (i.e. (n-—1)-dimensional subspace of F,") H in F" such that
Supp(fYc H or Supp(f)oH or Supp(f)g_ﬁ or Supp(f) oH , where E=FZ" \H.

Proof. Al (f)=1 means there exists a degree- 1 function g such that fg=0 or

(f+1)g=0, the support of g is a hyper-plane or its complement, then it's easy to derive the
lemma.

Lemma 2.2 We choose m distinct vectors from F,' to form a mXn matrix over F,
with rank r,denote the total number of this kind of matrices by f,(m,r),then

0 r>m
fn(m’r)={ r n r-1 .
folm=1,r)- 2" —=m)+ f,(m—-1,r—=1)- (2" =2"") otherwise

Proof. Suppose we've already had a matrix composed by m-—1distinct non-zero vectors
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&,,0,,...&, in Fy' , we need to choose ,, such that rank{e,,a,,....;,}=r, there are two cases
to be considered: first, if rank{e,a,,...,c, }=r, then we should choose a, in the subspace
spanned by ¢,4,...«,, , there are 2"—-m choices for ¢, ; second , if
rank{;,@,,...a,_}=r—1,we should choose &, not in the subspace spanned by @,,@,,....@,,, ,
there are 2" —2""' possibilities, then we obtain our recursive relation.

When m=r, from [8] we know

f(rhn=2"-1)-(2"-2)-...(2" -2
and by Lemma 2.2 we can obtain iteratively all f,(m,r).
Lemma 2.3 We denote F,(m,r) the number of possibilities to choose m distinct non-zero
vectors from F,' whoserankis r, then F, (m,r)= f,(m,r)/ m!
Proof. It is obvious.

Now, we can deduce our formula to count the number of 7 -variable Boolean functions
with algebraic immunity one, this is the following theorem.

2"~1 n
Theorem 2.4 We have |B,,l=2-2""+%" " F, (m,r)- 2.2 -1)- (=)™ .

m=1 r={

Proof. By Lemma 2.1, we only need to consider the following set
A={XcF':X#@,X+F,,3 a hyper-plane H such that XcHor XcH or XoH

or X 2H}, and |Al is what we want, because IAKIB,,|.

Let us give an order on all 2" -1 non-zero vectors in F;', and let @ be the i-th vector

and H; be the hyper-plane which is {x€ F;' <x,a >=0}, where <x,a > denotes the inner-
productof x and ¢;,i=12,..,2"-1.

We denote A={XCF :X#Q,X#F ,X#H,X#H, and XcH, or XcH, or

. 271
XDH, or X2H,}, we have 1Al= UA,. 142" =2 | jn which 2™' -2 is the number of non-

i=1

constant affine functions. By the Inclusion and Exclusion-Principle, then

UarZia-Tiana e 34 ms(jar

iy geesdy j=1

We need to compute IﬂA,j .

j=l

If m=1, itiseasy to compute that 14, =22-(2*" —2). Now suppose m>1, we can divide
ﬂAi/ into two parts
j=t

m

Na= U {X(;Fz":X;tQ,XgﬁS,.J_}U U_{Xc_:Fz":X;th",XQOS,.I}

j=t Sy =HyorS, =H, j=l Sy=HyorS, =H, J=1

Since {XcF':X#0,X gﬂS,.j} and {XcF:X#F.X QUS-',} are symmetric, these

j=1 j=t
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two parts have the same cardinal, so we can only consider the first part. If rank{e, ., ... }=r,

m . m
then ﬂH,._ is a n-r -dimensional subspace, and then ﬂS,.j is either @ or a n—r -dimensional
g
j=l1 j=1

flat, and note that the components of the first part are disjoint, in other words, there are 2" disjoint
flats with dimension n—r , we get

| U (X F' :xQﬁs,.ju:z'-(zz” -1)

Sij =H,Jarsl.} =F7J J=1
id L
then N4, =277 -1).
=1

When we choose randomly m non-zero vectors from F,', its rank may distribute from 1 to

Min{m,n} , by lemma 2.3, there are F,(m,r) possibilities that the rank of this group of vectors is r.
We have

> IﬁA,.j |=z":Fn(m,r)'2’+l 277 -1).
r=1

i dypeerdy j=1

2"-1 n

Finally, 1AE2"-2+Y > F,(mr)-2"" -2 =1)-(-)™ +F,(L,1)-2* - (¥ -2).
m=2 r=l

n

2"-1
=2 _mt Z ZE, (m,r)- o (22--r —1)- (_1)m+1

m=1 r=1
This proves our theorem.

Remark: From our formula, we have the following table.

n B, B, 1/IB,)

1 2 0.5

2 14 0.875

3 198 0.7734375

4 10582 0.161468505859

5 7666550 0.00178500777110457420349121093750

6 1081682871734 0.000000058638145973718101833238591780

7 9370945806264076577334 2.75387346428130707474160629154766355497062¢-17

We can see from the above table, that B, constitutes only a very small part of B,, and

as n growsup, the proportion of B,, in B, approaches 0.
It is well known that for any a€ F;', the value

Wj ()= z (_l)f(x)+<x,a>

xFy

is called the Walsh coefficient of fat . The non-linearity of Boolean function f can be

expressed via its Walsh coefficients by
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1
nl(f)=2"" =~ Max, . IW, ()1,

We also derive a tight upper bound on the non-linearity of Boolean functions with algebraic
immunity one.

Theorem 2.5 Let f be in B, with Al (f)=1, then nl(f y=<<2"? | and this bound is
tight.

Proof. Suppose f and g in B,, it's easy to verify that
2-(=1)78 =1+ (-1 + (=1 - (-1)*¢.
By the definition of Walsh coefficient, we have
2-W, (@) =Wy()+W, () + W, () -W,, (@).
if f-g=0, then
2"-0,0+W,  (@)=W (2)+W, (a)

Since AI,(f)=1, we assume g(x)=<pf,x>+q,, in which £ is nonzero in F,’ and q,
isin F,.Let =(0,0,..,0), we get

2" + (=1 W,(B) =W, (0).
Then 2" AW, (0) 1+1W,(B) < 2- Max, _,, \W, ()]

i n- 1 n- n— -
Finally nl(f)=2" == Max, . (W, ()27 =27 =27
Note that the upper bound we obtained above is also tight. For n=1, the above bound
gives
nl(f)<% , that is, nl(f)=0. Suppose n=2. Consider f(x,x,,....x,)=xx, in B,,

clearly AI (f)=1, because xx,(x,+x,)=0.The Walsh coefficientof f at (a,q,,...a,)€F;
is

W, (s 0y enny) = Z (~])Parantanttan, z (—1)rmrantan ﬁ Z (=1)**

xeF x.5eF, i=3 xeF,
If (ay,8,,.,)#(0,0,..,0), then W,(a,,a,,..,a,)=0.By W,(0,0,...,0)=2"",
W,(o,l,o,...,O)=W,(1,0,0,...,0)=2"'1 and W,(1,1,0,..,0)=-2"", we get nl(f)=2"">.

3 Conclusion

According to the algebraic immunity, we can form a hierarchy of Boolean functions. It is
very difficult to determine the number of Boolean functions with a specified algebraic immunity.
In this paper, we obtain the first complete answer to this problem, that is, we give the exact

formula for the number of any 7 -variable Boolean functions with algebraic immunity one, and
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we also give a tight upper bound of non-linearity for those functions.
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Joint Linear Complexity of Multiple Linear
Recurring Sequences

Fangwei Fu' Harald Niederreiter’ Ferruh Ozbudak®
!Chern Institute of Mathematics, Nankai University, Tianjin 300071, P.R.China
*Department of Mathematics, National University of Singapore, Singapore 117543, Republic of Singapore
3Department of Mathematics, Middle East Technical University, Ankara 06531, Turkey
fwfu@nankai.edu.cn, nied @math.nus.edu.sg, ozbudak @metu.edu.tr

Abstract: In this paper, we study the joint linear complexity of multisequences consisting of linear recurring

sequences. The expectation and variance of the joint linear complexity of random multisequences consisting of
linear recurring sequences are determined. Then we enumerate the multisequences consisting of linear recurring
sequences with fixed joint linear complexity. A general formula for the appropriate counting function is derived.

Key words: Linear recurring sequences; joint linear complexity; expectation; variance; counting function

Extended Abstract

The linear complexity of sequences is one of the important security measures for stream cipher
systems [1,5,18,22,23]. The linear complexity of a finite or periodic sequence is the length of the
shortest linear feedback shift register that can generate it. When a sequence is used in stream ciphers as
a keystream, it must have high linear complexity to resist an attack by the Berlekamp-Massey
algorithm, since one can use the Berlekamp-Massey algorithm to generate the whole sequence from
some initial terms. It is well known that a stream cipher system is completely secure if the keystream is
a ““truly random" sequence that is uniformly distributed.

A fundamental research problem in stream ciphers is to determine the expectation and
variance of the linear complexity of random sequences that are uniformly distributed. Recently,
in the study of vectorized stream cipher systems [4,12] the joint linear complexity of
multisequences has been investigated {1,2,5,8-10,16-21,26,27]. The multisequence shift-register
synthesis with applications to decoding cyclic codes has been studied in [6,7,24,25].

Rueppel [22,23] determined the expectation and variance of the linear complexity of random
finite sequences over the binary field. Gustavson [11] derived the general formula for the counting
function of the linear complexity of finite sequences over a finite field. Dai, Imamura, and Yang
[2], Feng and Dai [8], Niederreiter [18,19], and Niederreiter and Wang [20,21,26] studied the
expectation and variance and counting function of the joint linear complexity of finite
multisequences over a finite field.

For periodic sequences, Rueppel [22,23] determined the expectation of the linear complexity of

random periodic sequences over the binary field for some special values of the period. Blahut and



