P % #F & K

Network New Technologies

SE H X E R

BEE HiGm FER NE

B A E AR

KD

ZRARFHBAH

nAEMRNT

A EMRATEREBF R, NMAEENRRN—EBRFNARR. BT X
B, InE AR EE B KREHHXBFERN, ARG N i & M4 il T
H, xDSL 35 R P ¥k, BhilEEH COMA FIEARRE, HEHAM RS DB $4T B4 USB
MTAERE, NEMEEXRLRBAMPNA, THENPMENES SHRTE, REHHE.
IPTV 1 MP3 FIZEALNIR, PIGRIERTI%E Coogle IXBEAR, MEMESEHEAR, HHIMN
KREORERBRTE, BRI ENMEZSNEET .

HH AR LR EBRFEAR R RN A B, N ERE RN BEE RSN 5
#, BARY, MiREE, REFASS, ¥FRTRERBEATETMESARLE. Arft
BIRAE. BERFFENME TERAREEARFEAKRELLEM NS EEY.

B B

EREE T 1999 FMA R (RKEIGFHFEAR) BITE) ME: “¥4
TESTRERN B ¥ IES, BEINEBRARE, HLFBIEEWRE.” Xk
HFENRBNEINL S EWMRNEIL ARk, TREARIZUBHMR
REWEFERBNEK. BFIE 2001 FHRT CLFMRFEEERF#HE
THARBHFRBIETRL) HHRE: “AREEFEQEL M HEESS
WHIT AR REE . BHFRATENEDER. FEBAEEL, &
BENT—F, NFE=FA, INEHFRBEEBTAEER 5%~10%. "Hm
BT R T EUHBEBRBUREWROIER Y. XHLREOEEENAY
BAEFAR, WEREISTUMARNIEE, FETHRLUMNIGERLC., &
BEAXUERE, MEERRATENIECHEM BT EWRES, EETEL
MPRTH RN . EEIXWITREZ IEENLELEET K%
TOEMVIS R EERNADIR, E b e R R T X R R RE N TR A
—, URSFAEROEE RN,

R REIEHEZN B NETINESEWAIRNAERR, F¥4ER
ESsSHARSHRARFEMIR, XAZERBAGEHRITHEAZRNEY
BWSMERIC NS . KA ESMUFE KRR S 80t 5 KA E A EM A, 7]
AR A4 e B %Mk 75 1 i) 24 80 B fr_E e B SRR, FIRRARSE
XBERNXEFFEEAER. BEHRMEFTRENE. T@EEHFHRES
M IR R, UERBEDHRNY CRRGRENNER. BREFK
M WERERIC MR P XOHERRE, XHFEFERFTEERELHERMR
HREHER, MIERERREWICHGERE, REFE—RNAIZEE
WA RER IR BILRER K RE RS EEM R RENNR PN ERT
Ko

FETWFIHMABERMGHERY, FEILNAEBROER: FRAK
EX, HEGHIAR, SHENEEEREER, BMEARTL. BELAT
BRMFAEER. NTHEIMN, BTSERIERE. BRARENRER, &
EmEEEUERNTAEMEIFXEWVMRANIEREZEM. fliw: XER#EE
ARSI A NTSC . TLEMEMAEANR ., KEERSIH BB AEHE, RS
PRHERR S RERAAHIA R . R FEARE AR SR SR B R AR R AR
BN EM, MESEIENEFERABINGERL, XRSERMSHIREL. X
B —XKKEEMH T ERRK, HIRRRREZRRGNREENN, H
FMERKTFE R “AR” FIRAK KB . BRELOFEERARME
7 TR R AR AT I BB A SR B0, B IR AR T 5 B 3 T L 33 KA
M EERRREM . BIMRDBER K8, —AEMERKERE L RBU
ARENABFRENNZEZRNREFE, FOREH, BFRTEEEN A
REHERANTE. BHiURKARREMHFNETEEREAERTRELIRE

1

FIREHE B AHEMREETXEOER, ERELFERNBERLME
IR AR R VR RS R, B LM EAM R R BT R IE
BMRE B, BTRIERARARSS.

Gt ZENE RGBS 5T EH SRR AR AR AR TR R T
PEHE T, FRASRDEXEREHM, YERSIRERFTHBEE, AF
FENTRLRER, KUALAMFELRBHNERE, ARBEENT
WERFRMERFMFAARTUKREEAN . FEMPESETIEFERE
X P R A RERE SR B EARNER. BOAENBT WA LB
REMBATIAR. ST, P EE. JRANHREDUINE, FEA
EBREXMNFETHEEARER, BRFENATHEREDE. AN
P 24 BN 23 7 8K #F Ethereal S5 7] M\ ELEXP T .

EEMPOREBZETHIN (NAREREFHEA). @kt GHaEhrN
s B, IEHd (RENBEERS, HaiRmE). sl (4
A AT M SR AT . KB A+, F—Roulid s
7 JLAN 167 2 f B PR S PR S (e T HRAS:. Web BB 34 B D TSR,
BANBTHEBERPEPYL. RER. WL, IRV M Web Znf4T T4
B, FNEBT RE D RAET ERPRALH .. BZRTNHAT BHFEAN
R xDSL (AR . GSM B35 CDMA BiR. E=BTAHATH
BRYERMUSBEAETALN THERE. FWUATNAT IPv4 5 IPv6 KIXTLL,
FL B R EMLKES. BLATNATHITREEFRSK. B
KM AT RHRRETR. SANRTNET U0 ZMAHK J2EE
5 NET st e, UREIRENEAMIR. FLETN BT SHEEBETH
% F L. MP3. HDTV # IPTV (M B . F/\ETNHAT Google HET
% Blogging (M%) HIEEHE. FLATNHAT BRRARXIMNBIXNH
WTHEERE., B+HRTNETHXAERFENINERE TSR RH.

ABERRZH ERAFEERA. S AARBENROERENTN, R
EXHME FENPXARRE, XENTHERE T ERRIASE R
B NGB, FEXH LT RANE, WHERKEE. SRTHE
SR, B RNERHESCAIR AR . BRI LURIE R EEFER I A BRENE
UM, TOHAEHE R ESNAE. BH HEH I RS H RSO N
BARBRMANA, HEHNERSE.

MmEE
sdhe@ynu.edu.cn

2006 £2 H5H

H x

UNIT 1 Internet Protocols & Analyzer (EBXMHMESHTR) 11
Section A. Network Applications & Layered Architectures (RN 5RE45#) /2

Section B. Overview of TCP/IP Architecture (TCP/IPZ#4) /17
Section C. Application Layer Protocols & TCP/IP Utilities (5 F Eh i TCP/IP L &)/27
Unit 2 Access Network Technology (BEAMEAR) /42
Section A. Digital Subscriber Line (x DSL ¥ F F ¥F #%)/43
Section B. The Mobile Telephone System (%3 #1115 R4t)/50
Section C. Code Division Multiple Access (CDMAE 4} £ B AB AR)62
Unit 3 Computer Peripherals Through USB (G##HL4H 80 USB) /69
Section A. Universal Serial Bus Communications G #4178 £ki# {5 USB) /70
Section B. USB Interfaces and Devices (USB #: [58 {F %) 173
Unit 4 Network layer (MEE2) /79
Section A. IPv6 vs. IPv4 (IPv6 55 IPv4 [fEEEL) /80
Section B. Wireless LANs (L4 /RIHM) /84
Section C. Node Lookup in Peer-to-Peer Networks (X% M4&+5 2 #)) /90
Unit 5 Network Test, troubleshooting & packet capture (P4 #37) /96
Section A. Network Test Commands (I8 #iAF54) /97
Section B. Troubleshooting & Packet Capture (/%512 W5 Gm3RMMNLHT) /105
Unit 6 Computer Software (L4 /114
Section A. J2EE vs. .Net (J2EE 5 .NET L) /115
Section B. Database Overview (¥IEE#EAR) /119
Section C. Choosing a Database Product GEFEEIEEF=M) /125
Unit 7 Multimedia Communication (ZE4EfE) /130
Section A. Streaming Media Protocols (FZEAH0 /131
Section B. MP3 (MP3% k) /136
Section C. High Definition Television (HDTV) (E¥EMiEHL) /139
Unit 8 Network Application Extension (& NFHYR) /144
Section A. How Google Works (Google 2#{f TYEH) /146
Section B. The IPTV Challenge for Telco Operators (IPTV Xf B {5 k& HHEAR) /150
Section C. IPTV: Television Comes Through ADSL Cifiit ADSL &4 IP #.4L) /157
Section D. Blogging (%) /161
Unit 9 Information Security ({§ B &4) /166
Section A. Malicious Software CEERM) /167
Section B. Virus Countermeasures CREXTHUERIE) /178
Unit 10 Firewall Design Principles (B K3 R3E) /184
Section A. Firewall Characteristics (i kK3E%FtE) /186
Section B. Types of Firewalls (B kiR E) /189
Section C. Firewall Configurations (Bfi kK3EMIBCE) /197
Exercises Answer (JESHER) /200
Reference (&%3CWR) /208

Unit 1 Internet Protocols & Analyzer (HEERBHRESHTTR)

UNIT 1 Internet Protocols & Analyzer
HERM ST TR

SUMMARY (R&RE)

A HITTEMAA T INTERNET B EBER 55 A4 I TAERE, DAR MBIk
Ba. BE=EAFTEAAR: _
R BERENLESSBEEH:

TCP/IP MU BT LA

N A B AR TCPIP XA TR,

B—Y: REABRENLSEELBER. — N2 ERNRNERERRE U #
B — AP EEE b s — RS R R A R . IR E RN BRFRBM LM # 8%
Ak 45— —Web J ¥, 3842 ZEVIR B TR AR TAE SRR, SR BLER T REH
(& ST R B R o Bl TAEH, URZENARAA TR TR RS . th
W WE S ERFF: HTTP M N %, DNS HaZEHA SMTP BFlpf: tEwER
FR4 TCP #1 UDP, XM I3, OSI AL EBS SRR, $—Rua#HREN
AXHMLE, FHRKHEEBER, TCP/IP M4 1 EHERM L.

%, TCP/IP MEHESHTLR. AWAREH: 1. TCPIP MMKEH; 2.
TCP/IP & 18] Bt TAER, LAA T —AM1e] 8) EL B P 4% (1 S SR 138 B R 4% i & Y TP
HHE R E R B R VE R, FZEE XUT I R A TP BRI, B IR AR
3. MEE. HERE. HRENNEREZ EROMHETEN: 4. mTERRSTHiY
44Hi T B Ethereal RiBIk 54 M%E LSRR, G ENMERET TCPIP B
W% P YVIR S 882 R FERE TESE.

=%, NABRHR TCPIP XA R, 1. THEER Telnet hill, AFTLUEY
EFEAHMSEIASIEEEFRE S 2. X4ERTHMY FTP, EW UEASRKFM
23R E R M L2 A BB AR SO, FTP XRFRCHRRH: ASCIH.
EBCDIC. BESUEMEHEIER: 3. BX AR HTTP RIMEN, EEXTES
FLInATE T Web 31 %2235 1M FIZREX Web JRE-2BH0ME R, 40 T HITP HEENE
¥l, A48T HTTP RERE BRI EEFMNA, Cookies fl Web £iEMNA; 4. ME
A48T P EFE T A: PING, TRACEROUTE, IPCONFIG, NETSTAT, TCPDUMP %%,

OBJECTIVES (33 H#)

o TREEEMEMAILS: WebJK. BTHRA:. 542 EWM FTP UM TIFRE;
o HELFH R MA ppp B MEE SN RS BN HBOTAETK, EMNZHE
TR A E L. TP MOERUR AT B B FHLER, BRFRROSHER,

o FIAIMBE YL HTE Ethereal HHTRGELR, FIRAKNMREAEDHIIT.

el |

Unit 1 Internet Protocols & Analyzer (HEFIHBR RS IR)

UNIT 1 Internet Protocols & Analyzer

Section A

(EERM P R TR

Network Applications and Layered Architectures

(MENHS T RS

be called upon
¥AT

[kritikal fank({an]
REMTHR
transfer of funds
[treensfo:] B &4
B

coherent
[kauhierent] adj.
—3H, B
proprietary
network
architectures
[prapraiotari]

[‘atkitekt[o]
AfFAEAB>
B msERR
routing and
forwarding
[ru:tin]
BEEHE
hopsina
network

P& (I Bk BL

Communication networks can be called upon to support an extremely
wide range of services. We routinely use networks to talk to people, to send
e-mail, to transfer files, and to retrieve information. Business and industry
use networks to carry out critical functions, such as the transfer of funds,
and the automated processing of transactions, to query or update database
information. Increasingly, the Internet is also being used to provide
“broadcast” services along the lines of traditional radio and television. It is
clear then that the network must be designed so that it has the flexibility to
provide support for current services and to accommodate future services. To
achieve this flexibility, an overall network architecture or plan is necessary.

The overall process of enabling two or more devices to communicate
effectively across a network is extremely complex. Of course, we’ve
identified the many elements of a network that are required to enable
effective communication. Early network designers recognized the need to
develop architectures that would provide a structure to organize these
functions into a coherent form. As a result, in the early 1970s various
computer companies developed proprietary network architectures. A
common feature to all of these was the grouping of the communication
functions into related and manageable sets called layers. We saw that
communication functions can be grouped according to the following tasks:

® The transport across a network of data from a process in one
machine to the process at another machine.

® The routing and forwarding of packets across multiple hops in a
network.

® The transfer of a frame of data from one physical interface to
another.

These layers of functions build on top of each other to enable
communications. We use the term network architecture to refer to a set of
protocols that specify how every layer is to function.

The decomposition of the overall communications problem into a set of
layers is a first step to simplifying the design of the overall network. In
addition the interaction between layers needs to be defined precisely. This is
done through the definition of the service provided by each layer to the layer
above, and through the definition of the interface between layers through

2

Unit 1 Internet Protocols & Analyzer (EEER#HEESMHTR)

decomposition
[dizkompazifen]
n. %

invoke [in'Vauk]
v. WA

without regard to
AE5R

as long as HE
monolithic
[monaliBik]

n. B8R (B)
obsolete
['obsali:t]

adj. REIREG
incremental
[inkrimental]
adj. iy
Open Systems
Interconnection
reference model
FHRELES
A OSI
sockets ['sokit]
xRy

utilities TH, #
]

network protocol
analyzer
[preutekol][‘enal
aizo] R EX B WL 4}
g

multiplicity
n. BHHE

which a service is requested and through which results are conveyed. A
clearly defined service and interface allows a layer to invoke a service from
the layer below without regard to how the service is implemented by any of
the layers below. As long as the service is provided as specified, the
implementation of the underlying layers can be changed. Also, new services
that build on existing services can be introduced at any time, and in turn
enable other new services at layers above. This provides flexibility in
modifying and evolving the network. In contrast, a monolithic network
design that uses a single large body of hardware and software to meet all the
network requirements can quickly become obsolete and also is extremely
difficult and expensive to modify. The layered approach accommodates
incremental changes much more readily.

In this section we develop the notion of a layered architecture, and we
provide examples from TCP/IP, the most important current network
architecture. The discussion is organized as follows:

1. Web-browsing and e-mail applications are used to demonstrate the
operation of a protocol within a layer and how it makes use of the
communication services of the layer below. We introduce the
HTTP, DNS, and SMTP application layer protocols in these
examples.

2. The Open Systems Interconnection (OSI) reference model is
discussed to show how the overall communication process can be
organized into functions that are carried out in seven layers.

3. The TCP/IP architecture is introduced and compared to the OSI
reference model. We present a detailed end-to-end example in a
typical TCP/IP Internet. We use a network protocol analyzer to
show the exchange of messages and packets in real networks. This
section is key to seeing the big picture because it shows how all
the layers work together.

Two optional sections present material that is useful in developing lab
exercises and experiments involving TCP/IP:

4. We introduce Berkeley sockets, which allow the student to write
applications that use the services provided by the TCP/IP protocols.
We develop example programs that show the use of UDP and TCP
sockets.

5. 'We introduce several important TCP/IP application layer protocols:
Telnet, FTP, and HTTP. We also introduce several utilities and a
network protocol analyzer that can be used as tools to study the
operation of the Internet.

1. Examples of Protocols, Services and Layering

A protocol is a set of rules that goverms how two or more
communicating parties are to interact. When dealing with networks we run
into a multiplicity of protocols, such as HTTP, FTP, and TCP. The purpose of
a protocol is to provide some type of communication service. For example,
the HTTP protocol enables the retrieval of web pages, and the TCP protocol

3

Unit 1 Internet Protocols & Analyzer (EERRBIKZSHTHR)

retrieval
[ritrizvel}

n. Bl B

a stack of layers
BHER
concrete
[konkri:t] adj. &
&

adjacent
[e'dzeisant]

adj. 4ViEM
client/server
BB S
listening to a
port T30
daemon

[dizman]

n. Internet)
EEEF

httpd

n. THRRES
&

uniform resource
locator (URL)&
— RN
Hyper Text
Transfer
Protocol (HTTP)
BRI

the sequence of
events BAF M
FF

enables the reliable transfer of streams of information between computers. In
this chapter, we will see that the overall communications process can be
organized into a stack of layers. Each layer carries out a specific set of
communication functions using its own protocol, and each layer builds on
the services of the layer below it.

This section uses concrete examples to illustrate what is meant by a
protocol and to show how two adjacent layers interact. Together the
examples also show the advantages of layering. The examples use two
familiar applications, namely, e-mail and Web browsing. We present a
simplified discussion of the associated protocols.

1.1 HTTP, DNS, and SMTP

All the examples discussed in this section involve a client/server
application. A server process in a computer waits for incoming requests by
listening to a port. A port is an address that identifies which process is to
receive a message that is delivered to a given machine. Widely used
applications have well-known port numbers assigned to their servers, so that
client processes in other computers can readily make requests as required.
The servers provide responses to those requests. The server software usually
runs in the background and is referred to as a daemon. For example, httpd
refers to the server daemon for HTTP.

® Example—HTTP and Web Browsing

Let us consider an example of browsing through the World Wide Web
(WWW). The WWW consists of a framework for accessing documents that
are located in computers connected to the Internet. These documents are
prepared using the Hyper Text Markup Language (HTML) and may consist
of text, graphics, and other media and are interconnected by links that appear
within the documents. The WWW is accessed through a browser program
that displays the documents and allows the user to access other documents
by clicking one of these links. Each link provides the browser with a
uniform resource locator (URL) that specifies the name of the machine
where the document is located as well as the name of the file that contains
the requested document.

The Hyper Text Transfer Protocol (HTTP) specifies rules by which the
client and server interact so as to retrieve a document. The rules also specify
how the request and response are phrased. The protocol assumes that the
client and server can exchange messages directly. In general, the client
software needs to set up a two-way connection prior to the HTTP request.

Figure 1 and Table 1 show the sequence of events and messages that
are involved in retrieving a document. In step 1 a user selects a document by
clicking on its corresponding link. For example, the browser may extract the
URL associated with the following link:

http://www.comm.utoronto.ca/comm.html

Unit 1 Internet Protocols & Analyzer (HEBMBRESHLR)

Step 1

The user clicks on a link to indicate which document is to be
retrieved. The browser must determine the Internet address of
the machine that contains the document. To do so, the browser
sends a query to its local name server.

Step 2

Once the address is known, the browser establishes a
connection to the server process in the specified machine,
usually a TCP connection. For the connection to be successful,
the specified machine must be ready to accept TCP
connections.

Step 3

e o=

The browser runs a client version of HTTP, which issues a
request specifying both the name of the document and the
possible document formats it can handle.

Step
4-6

e H—

The machine that contains the requested document runs a
server version of HTTP. It reacts to the HTTP request by
sending an HTTP response which contains the desired
document in the appropriate format.

Step
7-8

(X7

The user may start to view the document. The TCP connection
is closed after a certain timeout period.

Figure 1 Retrieving 2 document from the web

Step

Event

Message Content

User selects document.

Network software of client
locates the server host and
establishes a two-way
connection.

HTTP client sends message
requesting document.

GET /comm.html HTTP/1.1

HTTP daemon listening on
TCP port 80 interprets
message.

HTTP daemon sends a result
code and a description of the
information that the client
will receive.

HTTP /1.1 200 OK

Date: Mon, 06 Jan 2003 23:56:44 GMT Server:
Apache/1.3.23 (Unix)

Last Modified: 03 Sep 2002 02:58:36 GMT
Content-Length: 8218

Content-Type: text/html

<html>

HTTP daemon reads the file
and sends requested file
through the TCP port.

<head><title></title> ...
What is Communications?

Text is displayed by client
browser, which interprets
the HTML format.

HTTP daemon disconnects
the connection after the
connection is idle for some
timeout period.

Table 1 Retrieving a document from the web: HTIP message exchange

Unit 1 Internet Protocols & Analyzer (HEEMBEAHTLR)

Domain Name
System query
[daumein}

[kwiorl 4 R
SEW
ephemeral port
number
[ifemarol] I it
%1148 duration
n. FREREE
server daemon
BEBEGEF
idle [‘aidi]

adj. ZFHEP
timeout period
5 e R

two peer
processes [pialF§
AR BER
two-way
connection

X 16 B

ORI HTTP &
FHILEREBZ
R B4R B Rk
BYF LREBE
8, HEEn
TCP #7448

The client software must usually carry out a Domain Name System
(DNS) query to determine the IP address corresponding to the host name,
www.comm.utoronto.ca. (We discuss how this query is done in the next
example.) The client software then sets up a TCP connection with the WWW
server (the default is port 80) at the given IP address (step 2). The client end
identifies itself by an ephemeral port number that is used only for the
duration of the connection. The TCP protocol provides a reliable
byte-stream transfer service that can be used to transmit files across the
Internet.

After the connection is established, the client uses HTTP to request a
document (step 3). The request message specifies the method or command
(GET), the document (comm.html), and the protocol version that the
browser is using (HTTP/L1). The server daemon identifies the three
components of the message and attempts to locate the file (step 4).

In step 5 the daemon sends a status line and a description of the
information that it will send. Result code 200 indicates that the client request
was successful and that the document is to follow. The message also
contains information about the server software, the length of the document
(8218 bytes), and the content type of the document (text/html). The request
was for an image, the type might be image/gif. If the request is not
successful, the server sends a different result code, which usually indicates
the type of failure, for example, 404 when a document is not found.

In step 6 the HTTP daemon sends the file over the TCP connection. In
the meantime, the client receives the file and displays it (step 7). The server
maintains the TCP connection open so it can accept additional requests from
the client. The server closes the TCP connection, it remains idle for some
timeout period (step 8).

The HTTP example clearly indicates that a protocol is solely concerned
with the interaction between the two peer processes, that is, the client and
the server. The protocol assumes that the message exchange between peer
processes occurs directly as shown in Figure 2.2.

HTTP
server

HTTP
client

—

Figure 2 HTTP client/server interaction

Because the client and server machines are not usually connected
directly, a connection needs to be set up between them. In the case of HTTP,
we require a two-way connection that transfers a stream of bytes in correct
sequential order and without errors. The TCP protocol provides this type of
communication service between two processes in two machines connected to
a network. Each HTTP process inserts its messages into a buffer, and TCP
transmits the contents of the buffer to the other TCP in blocks of information
called segments, as shown in Figure 3. Each segment contains port number
information in addition to the HTTP message information. HTTP is said to
use the service provided by TCP in the layer below. Thus the transfer of
messages between HTTP client and server in fact is virtual and occurs
indirectly via the TCP connection® as shown in Figure 3. Later you will

6

Unit 1 Internet Protocols & Analyzer (HEXRBHYEMTTR)

socket system
calls EERFRE
HIAA

kernel n. B
DNS query %45
B BEAR
ISP HEXM R %
303

resolve [rizolv]

v. WHT
ON%4ER
HTTP AN
wmfARAT TCP
Brig it 4 .
4 HTITP /%
HEERERIL
TCP E#N, &
FEfTHR—R
FIMEEFRE
FAAE. XFA
FARPTTIRRA
A, RELER
RE WA
JE, BERBX
LRERZEAE
. BERS
WHEXT—F
e TP
%, FaE—&
8%, AmER
2%/, TCP 5L
UDP. Ul R3iht
{5 B .ELHTTP
EETCPEZN
MEZ)RETX
BEERGE WA

FERE .

see that TCP, in turn, uses the service provided by IP.

Ephemeral

port # Port 80

[GET | s0.# |

[#0380 [STATUS |

Figure 3 TCP provides a pipe between the HTIP client and HTIP server

It is worth noting exactly how the HTTP application protocol
invokes the service provided by TCP. When the HTTP client software
first needs to set up the TCP connection, the client does so by making a
series of socket system calls. These calls are similar to function calls
except that control is passed to the operating system kernel when a
socket system call is made. A socket system call specifies a certain action
and may contain parameters such as socket type, for example, TCP or
UDP, and address information. Thus the interaction between the HTTP
layer and the TCP layer takes place through these socket system calls.®

® Example—DNS Query

The HTTP example notes that the client first needs to perform a DNS
query to obtain the IP address corresponding to the domain name. This step
is done by sending a message to a DNS server. The Domain Name System
(DNS) is a distributed database that resides in multiple machines on the
Internet and is used to convert between names and addresses and to provide
e-mail routing information. Each DNS machine maintains its own database
and acts as a DNS server that other machines can query. Typically the
requesting machine accesses a local name server, which, for example, may
reside in a university department or at an ISP. These local name servers are
able to resolve frequently used domain names into the corresponding P
addresses by caching recent information. When unable to resolve a name,
the local name server may sometimes send a query to a root name Server, of
which there are currently 13 distributed globally. When a root server is
unable to determine an IP address, it sends a query to an authoritative name
server. Every machine on the Internet is required to register with at least two
authoritative name servers. If a given name server cannot resolve the domain
name, the queried name server will refer to another name server, and this
process continues until a name server that can resolve the domain name is

found.

We now consider a simple case where the resolution takes place in the
first server. Table 2 shows the basic steps required for this example. After
receiving the address request, a process in the host, called the resolver,

7

Unit 1 Internet Protocols & Analyzer (EBMHESITTHR)

resolver [rizolvo)

BAMITE

composes the short message shown in step 2. The OPCODE value in the
DNS message header indicates that the message is a standard query. The
question portion of the query contains the following information: QNAME
identifies the domain name that is to be translated. The DNS server can
handle a variety of queries, and the type is specified by QTYPE. In the
example, QTYPE = A requests a translation of a name to an IP address.
QCLASS requests an Internet address (some name servers handle non-IP
addresses). In step 3 the resolver sends the message to the local server using
the datagram communication service UDP.

Step

Event Message content

Application requests name
1| to address translation.

Resolver composes query
2 | message.

Header: OPCODE=SQUERY Question:
QNAME-=tesla.comm.toronto.edu, QCLASS=IN,
QTYPE=A

Resolver sends UDP
3 | datagram encapsulating the
query message.

Header: OPCODE=SQUERY,
RESPONSE, AA Question: QNAME=

DNS server looks up address | tesla.comm.toronto.edu, QCLASS=IN,
4 | and prepares response. QTYPE=A
Answer: tesla.comm.toronto.edu. 86400 IN A
128.100.11.1

DNS sends UDP datagram
5 | encapsulating the response
message.

Time-to-Live

field FIRBH

3
(TTL)
User
Datagram
Protocol
['proutekal]
JiiVak &k 0d
W(UDP)
connection-

less

BN

Table 2 DNS query and response

The short message returned by the server in step 4 has the Response
and Authoritative Answer bits set in the header. This setting indicates that
the response comes from an authority that manages the domain name. The
question portion is identical to that of the query. The answer portion contains
the domain name for which the address is provided. This portion is followed
by the Time-to-Live field, which specifies the time in units of seconds that
this information is to be cached by the client. Next are the two values for
QCLASS and QTYPE. IN again indicates that it is an Internet address.
Finally, the IP address of the domain name is given (128.100.11.1).

In this example the DNS query and response messages are transmitted
by using the communication service provided by the User Datagram
Protocol (UDP). The UDP client attaches a header to the user information to
provide port information (port 53 for DNS) and encapsulates the resulting
block in an IP packet. The UDP service is connectionless; no connection
setup is required, and the datagram can be sent immediately. Because DNS
queries and responses consist of short messages, UDP is ideally suited for
conveying them.

The DNS example shows again how a protocol, in this case the DNS
query protocol, is solely concerned with the interaction between the client

8

Unit 1 Internet Protocols & Analyzer (EEIMBHMEAHTR)

Simple Mail
Transfer
Protocol (SMTP)
LR i
w

plain [plein]
adj. @K

thereafter
[Ocora:fte]
adv. RE

and server processes. The example also shows how the transfer of messages
between client and server, in fact, is virtual and occurs indirectly via UDP
datagrams.

® Example—SMTP and E-mail

Finally, we consider an e-mail example, using the Simple Mail
Transfer Protocol (SMTP). Here a mail client application interacts with a
local SMTP Server to initiate the delivery of an e-mail message. The user
prepares an e-mail message that includes the recipient’s e-mail address, a
subject line, and a body. When the user clicks Send, the mail application
prepares a file with the above information and additional information
specifying format, for example, plain ASCII or Multipurpose Internet Mail
Extensions (MIME) to encode non-ASCII information. The mail application
has the name of the local SMTP server and may issue a DNS query for the IP
address. Table 3 shows the remaining steps involved in completing the
transfer of the e-mail message to the local SMTP Server.

Before the e-mail message can be transferred, the application process
must set up a TCP connection to the local SMTP server (step 1). Thereafter,
the SMTP protocol is used in a series of exchanges in which the client
identifies itself, the sender of the e-mail, and the recipient (steps 2-8). The
client then transfers the message that the SMTP Server accepts for delivery
(steps 9-12) and ends the mail session. The local SMTP Server then repeats
this process with the destination SMTP Server. To locate the destination
SMTP server, the local Server may have to perform a DNS query of type
MX (mail exchange). SMTP works best when the destination machine is
always available. For this reason, users in a PC environment usually retrieve
their e-mail from a mail server using the Post Office Protocol version 3
(POP3) instead.

Step

Event Message content

SErver.

The mail application establishes a TCP
1 connection (port 25) to its local SMTP

SMTP daemon issues the following
2 message to the client, indicating that it
is ready to receive mail.

220 tesla.comm.toronto.edu ESMTP Send
mail 8.9.0/8.9.0; Thu, 2 Jul 1998 05:07:59
-0400 (EDT)

Client sends a HELO message and

3 . . . HELO bhaskara.comm.utoronto.ca
identifies itself.
. 250 tesla.comm.toronto.edu Hello
4 | SMTP daemon issues a 250 message, | . cears comm [128.100.10.9], pleased
indicating the client may proceed.
to meet you
. , MAIL FROM:
5 | Client sends sender’s address. <baneriea @ COMM.UIOLONL0.C2> .
6 If successful, SMTP daemon replies 250<banerjea @ comm.utoronto.ca>
with a 250 message. Sender ok
7 Client sends recipient’s address. RCPT TO: <alg@nal.utoronto.ca>
8 | A 250 message is returned. 250<alg @nal.utoronto.ca> Recipient ok
Client sends a DATA message
9 | requesting permission to send the mail | DATA

message.

Unit 1 Internet Protocols & Analyzer (HEERBREAWRTR)

10 The daemon sends a message giving 354 Enter mail, end with “ ” on a line by
the client permission to send. itself
11 | Client sends the actual text. Hi Al This section on email sure needs a
lot of work ...
Daemon indicates that the message is
12 | accepted for delivery. A message 10 is 259 FAADO803 Message accepted for
delivery
returned.
13 Client indicates that the mail session is QUIT
over.
14 Daemon confirms the end of the 221 tesla.comm.toronto.edu closing
session. connection
Table 3 Sending e-mail
fg;::* lid 1.2 TCP and UDP Transport Layer Services
The e-mail, DNS query, and HTTP examples show how multiple
. protocols can operate by using the communication services provided by the
OUDP M TCP and UDP protocols. Both the TCP and UDP protocols operate by using
¥ Ht#, H the connectionless packet network service provided by IP.
REAR B UDP provides connectionless transfer of datagrams between processes
FBUFATEA in hosts attached to the Internet. UDP provides port numbering to identify
RN, the source and destination processes in each host. UDP is simple and fast
but provides no guarantees in terms of delivery or sequence addressing®.
congestion TCP provides for reliable transfer of a byte stream between processes in
control[ken'ds hosts attached to the Internet. The processes write bytes into a buffer for
transfer across the Internet by TCP. TCP is considerably more complex than
estfenkentroll UDP. TCP involves the establishment of a connection between the two
HEPEH processes. To provide their service, the TCP entities implement error
detection and retransmission as well as flow control algorithms. In addition,
. TCP also implements congestion control, which regulates the flow of
file-sharing segments into the network. This topic is discussed later.
p v S

peer-to-peer

applications
[=eplikeif an]
X 4R £ Y A

transient
['treenzient]
adj. EEH

Indeed, an entire suite of protocols has been developed to operate on
top of TCP and UDP, thereby demonstrating the usefulness of the layering
concept. New services can be quickly developed by building on the services
provided by existing layer protocols.

® Peer-to-Peer File Sharing

File-sharing applications such as Napster and Gnutella became
extremely popular as a means of exchanging MP3 audio and other files. The
essence of these peer-to-peer applications is that ordinary PCs (“peers”)
attached to the Internet can act not only as clients, but also as transient file
servers while the applications are activated. When a peer is interested in
finding a certain file, it sends a query. The response provides a list of peers
that have the file and additional information such as the speed of each peer’s
connection to the Internet. The requesting peer can then set up a TCP
connection to one of the peers in the list and proceed to retrieve the file.

The technically difficult part in peer-to-peer file sharing is maintaining
the database of peers that are connected at a given point in time and the files

10

Unit 1 Internet Protocols & Analyzer (ERMEBIEAHTTHA)

overlay

n. W

up to some
maximum
number of hops
HIINANMRKH
FIsEBh (B &
vendor ['vendo:]
BEw

locking in
customers with a
single vendor
ErgeiRt
ol

open systems
architecture
[a:kitekt| o] FF K
MRELH

partition
[pa:tifen]

v. }i5, 4%
unified [Ju:nifaid]
adj. &—8, M
EY:)

copper wire
pairs

[kops wais pea]
W ERER
coaxial cable
[keu'zeksal keibl]
Pl R

pin

n. 360

that they have available for sharing. The Napster approach used a centralized
database that peers could contact when they became available for file
sharing and/or when they needed to make a query. The Gnutella approach
uses a distributed approach where the peers organize themselves into an
overlay network by keeping track of peers that are assigned to be adjacent to
them. A query from a given peer is then broadcast by sending the query to
each neighbor, their neighbors’ neighbors, and so on up to some maximum
number of hops.

Peer-to-peer file sharing provides another example of how new services
and applications can be deployed very quickly over the Internet. Peer-to-peer
file sharing also brings up many legal, commercial, and cultural issues that
will require many years to resolve.

2. The OSI Reference Model

The early network architectures developed by various computer
vendors were not compatible with each other. This situation had the effect of
locking in customers with a single vendor. As a result, there was pressure in
the 1970s for an open systems architecture that would eventually lead to the
design of computer network equipment that could communicate with each
other. This desire led to an effort in the International Organization for
Standardization (ISO) first to develop a reference model for open systems
interconnection (OSI) and later to develop associated standard protocols.
The OSI reference model partitioned the communications process into seven
layers and provided a framework for talking about the overall
communications process and hence was intended to facilitate the
development of standards. The OSI work also provided a unified view of
layers, protocols and services. This unified view has provided the basis for
the development of networking standards to the present day.

The Seven-Layer OSI Reference Model

Consider an application that involves communications between a
process in computer A and a process in computer B. The OSI reference
model divides the basic communication functions required for computers A
and B to communicate into the seven layers shown in Figure 4. In this
section, we will discuss the functions of the seven layers starting from the
bottom (physical layer) to the top (application layer).

The physical layer deals with the transfer of bits over a communication
channel, for example, the digital transmission system and the transmission
media such as copper wire pairs, coaxial cable, radio, or optical fiber. The
layer is concerned with the particular choice of system parameters such as
voltage levels and signal durations. The layer is also concerned with the
procedures to set up and release the physical connection, as well as with
mechanical aspects such as socket type and number of pins. For example, an
Ethernet physical layer standard defines the connector and signal interfaces
in a PC.

11

Unit 1 Internet Protocols & Analyzer (HEERM#MYEAHTTE)

Presentation
layer 2
Session layer &
EE

Transport layer
HRE
Network Layer
%2

Data link layer
FORERE
Physical layer 4
B2E

be prone to
[praun]
5T, HRT

coordinate
[kau2:dinit]
vt. Hil, BHE

flat addressing
space &
b]

hierarchical
addressing
scheme
[haia'ra:kikal]

[skizm] 42 K HY
HhkJ5 R
network nodes
[naud]
RIS R
traverse
[treeva(:)s]

vt. B, Fd

> Application B

|

Application A —~

Application .| Application
layer layer
Presentation Presentation
layer layer
Session Session
layer N i layer
Transport |« »| Transport
layer ___ Communication petwork layer
Network | Network _ | Netwark © .| Network
laver i layer - o layer layer
Data link | _ Data link .| Datalink | Data link
layer layer g layer & layer
Physical | .| Physical - .| Physical | - Physical
layer layer layer layer
[L 1 1] I

" Electrical and/or optical signals
Figure 4 The seven-layer OSI reference model

The data link layer provides for the transfer of frames (blocks of
information) across a transmission link that directly connects two nodes. The
data link layer inserts framing information in the sequence of transmitted
bits to indicate the boundaries of the frames. It also inserts control and
address information in the header and check bits to enable recovery from
transmission errors, as well as flow control. The data link control is
particularly important when the transmission link is prone to transmission
errors. Historically, the data link layer has included the case where multiple
terminals are connected to a host computer in point-to-multipoint fashion.

The OSI data link layer was defined so that it included the functions of
LANSs, which are characterized by the use of broadcast transmissions. The
notion of a “link,” then, includes the case where multiple nodes are
connected to a broadcast medium. As before, frames flow directly between
nodes. A medium access control procedure is required to coordinate the
transmissions from the machines into the medium. A flat addressing space is
used to enable machines to listen and recognize frames that are destined to
them. Later in this chapter we will discuss the Ethernet LAN standard.

The network layer provides for the transfer of data in the form of
packets across a communication network. One key aspect of the network
layer is the use of a hierarchical addressing scheme that identifies the point
of attachment to the network and that can accommodate a large number of
network users. A key aspect of the packet transfer service is the routing of
the packets from the source machine to the destination machine, typically
traversing a number of transmission links and network nodes where routing

12

