,,/

i%&ﬂﬁﬁﬂﬁiﬂ&?ﬂ

Oxford

DICTIONARY OF

COMPUTING

N MR
S B R

(W&%*%ﬁﬂi)

LiBgMERE HMM
W o5 50 38 20 7 B
41 SHANGHAI N;O;)#;UNi(HN(«HMv(€DUCATION PRESS

@R DUUE AR iR R 5
Oxford Dictionary of

Computing

with Chinese Translation

e 5 DU
it 5L e

Valerie Illingworth % J54R
KER RWiF

VLM B iR

o % 4t SHANGHAI FOREIGN LANGURGE EDUCATION PAESS

B H &SR B (CIP) M iR

FHEI BT BEYIAR / KBRGFE. — 18,
LM IMESE AR, 2007

(A B BEE T A4 218 S DU R

ISBN 978 - 7 - 5446 - 0546 - 5

Lo L 3 0 BN AU - 30
V. TP3-61

o [AR AR B B4 CIP 385 (2007) %5 118436 5

© Market House Books Ltd. and Shanghai Forcign Language
Education Press 2006
This edition is published under licence from Oxford University Press
for salc in the Mainland part of the People’s Republic of China only.
Akl Py A TR CF R A R B b e AR I R K B A
ki
Oxford Dictionary of Computing was originally published in English in
1996. This Translation is published by arrangement with Oxford
University Press. .
CH TSP LI O JEIB IFAR 1996 4231 AR, A S5 D0 U AR 1h 4 K 2 iy
MEFEBERUE I
B . 09-~2005-385

HRRAT: ST SRR ok T s R

: CIMESHERIBA¥PI) R4S 200083

=24 i%: 021-65425300 (ZAHD

-7 HEFH: bookinfo@sflep.com.cn
i) ht: hp://www.sflep.com.cn http://www.sflep.com

BELwAE: IR

: MW EEZE R

: FHEBIE_ EHERITHY

1 787X960 1/32 EfI3K 36.125 F¥ 1280TF-F
: 2007 FF ORI AN 2007 £FE 9 B3 1 XERKY
: 3500 At

SFEHEN T
EFxHxnE

S: ISBN978-7-5446-0546-5 / H - 0229
#r: 63.00 T
R R B . BT A M AR

N #

(i 3 R AL)
b 45 A R

FBE RS E : Valerie Illingworth %
BB R IFE: KR

HYRE: KEH
WIT B R
Hmigit: £h4
AR it FIRTE

R B A

FHE 1990 EFUEEURFETH > LWL
FER LS T HKRE 40 R, IRTHRIFHEER L
HW AR EEFEIFERA, B, BrRHERRK
AT HE R 1% 2 1] 2 0 3 XX AR BR DL 5F o i R
I BMEAFE. Ah.RBELI X2 RAFFRIE, H#F
Bl 4 #ARFHREWH NZRFI P AN M, AR
AXEWARREREXKBIR, RAEHE M5
RAKF HE 2R RATGTEN 2 ¥ B8
¥ EEFEURAEER.

HEXXBERETRERROSBAAE, FREG
REARAEHTERL. FEMXEREARER, BA
HEEHEP¥I LV ACMAERERE,

EHSMEEE R
2007 4 6 H

Preface &

The world of computing continues to expand and to cross
new frontiers of public awareness. Jargon grows apace, and
confusion abounds as the field moves from the domain of
specialists into general knowledge. In preparing the Dictionary
of Computing, we have recognized the need for clear
explanations of the concepts that affect more and more aspects
of life and the terminology that accompanies them. The
dictionary is aimed mainly at students and teachers of
computing but should also be of value to professional and
amateur computer users.

The fourth edition of the dictionary contains nearly 6000
entries and a comprehensive cross-reference system. Almost
1700 new entries have been added and many of the existing
entrics have been extensively updated. This reflects recent
advances in all aspects of computing, especially in personal
computing, multimedia, and graphics, networking and the
Internet, artificial intelligence, and computer security.

The principal areas of interest include:

e computer applications, for example in industry, the office,
science, education, and the home;

e the means of achieving these applications in terms of
hardware, software, computer organization,
telecommunications,and user interaction;

® security, safety, and legal aspects of computing;

® the world of computing ~ the major computer manufacturers
and organizations;

e underlying concepts and theories of computing and where
appropriate of electronics, mathematics, and logic.

We would like to express our thanks and appreciation to all
those involved in the preparation of the new edition. Over
thirty-five practitioners in diverse branches of computing and
associated fields produced the new and updated entries. The
dictionary has been compiled and prepared for computer
typesetting by Market House Books Ltd.

February 1996 Valerie Illingworth
Ian Pyle

Guide to the dictionary {# %A

Alphabetical order in this dictionary ignores spaces,
punctuation, and numbers in the entry titles. Greek letters in
an entry title are spelt out. Entry titles that consist only of
numbers appear at the beginning of the dictionary.

Synonyms and generally used abbreviations are given either
in brackets immediately after the relevant entry title, or
occasionally in the text of the entry with some additional
information or qualification.

An asterisk (*) used before a word or group of words
indicates to readers that they will find at the entry so marked
further information relevant to the entry that is being read.
The asterisk is not used before all the words in an article that
are themselves entry titles as this would lead to an unhelpful
proliferation of asterisks.

Some entries simply cross-refer the reader to other articles.
These may be synonyms or abbreviations or terms more
conveniently discussed under the article referred to. In the
latter case, the relevant term will appear in the entry in italic
type.

A distinction is made between an acronym and an
abbreviation: an acronym can be pronounced while an
abbreviation cannot. The entry for an acronym usually appears
at the acronym itself whereas the entry for an abbreviation
usually appears at the unabbreviated form, unless the
abbreviation is in common use.

Some terms listed in the dictionary are used both as nouns
and verbs. This is usually indicated in the text of an entry if
both forms are in common use. In many cases a noun is also
used in an adjectival form to qualify another noun. This occurs
too often to be noted.

Typography and character set

R S5t ER

The typefaces and characters
used in the dictionary entries
follow normal conventions
for printing mathematical
and technical texts (rather
than the more rigorous styles

used in some specialist
computing texts) .

operation, etc. symbol
A i, spocion R
OR operation. disjunction v+

NOT operation, negation o~
NAND operation (Y
NOR operation v O

For sct S and/or set T

x 18 a2 member of § x€S

x is not a member of § x€ S
Sisasubsctof T SCT

S is a proper subset of T SCrT
complement of § s ~ S8
unionof §$ and T sSuUT
intersection of S and T SNT
Cartesian product of S and T SxT
relation R
function of x f(x). ete.
function f fromset Xoset Y f: X+ Y
inverse function !
inverse relation R}
alpha a A eta 1 H
beta B, B theta 6,8
gamma Y. T iota w1
delta 8, A kappa < K
epsilon ¢ E lambda A A
zcta &z mu oM

The special characters
shown in the table have been
used to express specific
logic, set theory, and
mathematical opera-tions; for

further information, see
relevant entry. Letters of
the Greek alphabet also
occur 1n some entries.
operation, etc. symbol
sum, with limits 2
integral. with limits [lax
elements of matrix A a;
transpose of matrix A AT
inverse of matrix A At
equivalence oo
biconditional - =
conditional - >
general binary operation
universal quantificr v
existential quantifier 3
greater than >
greater than or equal to =
less than <
Icss than or equal to <
approx. equal to a~
not equal to #*
infinity 3
nu N wm
xi €, = upsilon v, T
omikron 0. O phi 4 @
pi n, I chi X X
rho p. P psi [
sigma 6. 2 omega w, 0

HURTIBE coeverreeermerrnnneiiiiiieiiiiumuiine. 1
JE (BB ER) covoeeerreresesrsssnssnnesnssssnineerions 3
(G P (PEBE IR eeeeeerrereersrensonsruvnsenueneenes 4
B RFE U (FEBFUR) ooeeevrereerrossesssanenes 5
FRIBLIESL cevrevresennearintcetitiatiniceciacenans 1~1057
Bif %

1. BEAERBERARIPTE eevrrrrressersssisacssnninnen 1058

2. ILHEAREIFIIE oo 1062

386 See Intel.

486 See Intel.

80386, 80486 See Intel.
68000 See Motorola.

A* algorithm A* B 3: A member of the class of *best-first
*heuristic search techniques that attempt to find a “best” path
from a given start node to a designated goal node in a problem
*graph. An *evaluation function is used to estimate the cost of
the (unknown) distance from the current node being explored
to the goal and this is then added to the (known) cost of the
shortest path from the start node to the current node to give a
figure of merit for the current node. At each iteration the
node with the best cost figure is used to pursue the search. The
operation of the algorithm displays a behavior that is a mixture
of *depth-first and *breadth-first searching.

abduction [E #§: An *inference process widely used in
*artificial intelligence, particularly in *expert systems and
*rule-based systems. In diagnosis, for example, there may be a
rule like “if measles then red spots” so that, when the
symptom red spots occurs, we may use the rule in reverse to
conclude that measles is present. However, unlike *deduction,
abduction is not logically sound because of inherent uncertainty
that can lead to false conclusions - note that measles is not the
only cause of red spots. Abduction is an example of a
*plausible-reasoning technique.

abelian group (commutative group) 32 #:#¥, f Il /R ¥
See group.

ABI ;R —##l#E 1 Abbrev. for application binary
interface. Definition of the binary-level interface between
application programs and the operating system, including the
format of executable files. Compiled binary applications can
be ported between systems with the same ABI.

ablative i ¥: An optical recording technique in which
the heat generated by the recording beam melts or vaporizes a
small area of the recording medium, leaving the underlying

2 abnormal termination

layer (with a different reflectivity) exposed.

abnormal termination % # 457 A termination to a
*process brought about by the operating system when the
process reaches a point from which it cannot continue, e.g.
when the process attempts to obey an undefined instruction. In
contrast, a process that reaches a successful conclusion
terminates normally by issuing a suitable supervisor call to the
operating system. It is common practice to inform the initiator
of the process as to whether the termination was normal or
abnormal.

abort (of a process) 5 % & Ik To undergo or cause
*abnormal termination. Abortion may be a voluntary act by
the process, which realizes that it cannot reach a successful
conclusion, or may be brought about by the operating system,
which intervenes because the process has failed to observe
system constraints. Thus, computationally, the term has a
rather similar meaning to its medical meaning of spontaneous
or induced fetal death.

absolute address # Xf # it A unique number that
specifies a unique location within the *address space where an
operand is to be found/deposited, or where an instruction is
located. It generally specifies a memory location but in some
cases specifies a machine register or an I/0 device. In the case
of a binary machine, it is an n-bit number specifying one of 27
locations. The result of calculating an *effective address is
usually an absolute address.

absolute code #: i {04, H###/F Program code in a
form suitable for direct execution by the central processor,
i.e. code containing no symbolic references. See also machine
code.

absorption laws ML The two self-dual laws
xVx AW
x ANxVy =x

(see duality) that are satisfied by all elements x, y in a
*Boolean algebra possessing the two operations V and A.

abstract computability theory fi % 7]+ 8B The
theory of functions that can be computed by algorithms on any
*algebra. Its aim is to explore the scope and limits of
computation on any kind of data. It is a generalization to
arbitrary many sorted algebras of the theory of the effectively

X

abstract data type 3

calculable or recursive functions on the natural numbers.

Abstract computability theory starts with an analysis and
classification of many models of computation and specification
that apply to algebras. This reveals the essential features of
methods, and results in a generalized *Church-Turing thesis
("X rE-E RS that establishes which functions on an
*abstract data type are programmable by a *deterministic
programming language. Comparisons can be made between
computations on different algebras, modeling data types and
their implementations. The theory also provides a foundation
for new theories of computation for special data types, such as
algebras of real numbers, which can be used in applications.

The *while programming language is a simple example of a
method for computing functions on any many-sorted algebra A
(that possesses the Booleans). On the natural numbers it can
compute all *partial recursive functions. Computation is based
on the operations of the algebra - sequencing, branching, and
iteration - and has available a limited means of searching A.
However, a vital missing component is the capacity to compute
with finite sequences of data from A. On the natural numbers
finite sequences can be simulated using pairing functions, but it
is not possible to simulate finite sequences on an algebra A.
Finite sequences and operations for every data set in A are
therefore added to A to make a new algebra A*. It turns out
that while programs on A* (i. e. while programs equipped with
finite sequences) have all the essential properties of the
computable functions on A. This class of functions is the
subject of the generalized Church-Turing thesis.

Most of the main results in the theory of computability on
the natural numbers can aiso be proved for abstract
computability theory on any finite generated *minimal algebra.

abstract data type #i R $#E KA A *data type that is
defined solely in terms of the operations that apply to objects
of the type without commitment as to how the value of such an
object is to be represented (see data abstraction).

An abstract data type strictly is a triple (D, F, A) consisting
of a set of domains D, a set of functions F each with range
and domain in D, and a set of axioms A, which specify the
properties of the functions in F. By distinguishing one of the
domains d in D, a precise characterization is obtained of the
*data structure that the abstract data type imposes on d.

For example, the natural numbers comprise an abstract data
type, where the domain d is

4 abstract family of languages

{0’ 17 27 cen)
and there is an auxiliary domain
{TRUE, FALSE}

The functions or operations are ZERO, ISZERO, SUCC, and
ADD and the axioms are:

ISZERO(0) = TRUE
ISZERO(SUCC(x)) = FALSE
ADD(0, y) =y
ADD(SUCC(x), y) =
SUCC(ADD(x, y))

These axioms specify precisely the laws that must hold for any
implementation of the natural numbers. (Note that a practical
implementation could not fulfill the axioms because of word
length and overflow.) Such precise characterization is
invaluable both to the user and the implementer. Sometimes
the concept of function is extended to procedures with multiple
results.

The Ada programmer can obtain many of the benefits of
abstract data types by defining *packages.

abstract family of languages (aFL) #IRIEE & 7

There are many useful types of *formal language, and classes
often have similar properties. An AFL is a class of formal
languages that is closed under all the following operations:
*union, *concatenation, Kleene-plus (see Kleene star),
*intersection with *regular set, A-free homomorphic image,
and inverse homomorphic image (see homomorphism). An
AFL is full if it is also closed under Kleene star and
homomorphic image. The motivation for the concept of an
AFL is to investigate properties of classes of languages that
follow merely from the assumption of these *closure
properties. Each member of the *Chomsky hierarchy is an

AFL; all except for the class of context-free languages are
full.

abstraction #li% The principle of ignoring those aspects of
a subject that are not relevant to the current purpose in order
to concentrate solely on those that are. The application of this
principle is essential in the development and understanding of

all forms of computer system. See data abstraction, procedural
abstraction.

abstract machine #i%£#1 A machine can be thought of as

abstract reduction system 5

a collection of resources together with a definition of the ways
in which these resources can interact. For a real machine these
resources actually exist as tangible objects, each of the type
expected; for example, addressable storage on a real machine
will actually consist of the appropriate number of words of
storage, together with suitable address decoders and access
mechanisms. It is possible to define an abstract machine, by
listing the resources it contains and the interactions between
them, without building the machine. Such abstract machines
are often of use in attempting to prove the properties of
programs, since a suitably defined abstract machine may allow
the suppression of unneeded detail. See virtual machine.

abstract reduction system i £ ¥§ iy & 4 (abstract
rewrite (or replacement) system iR EE A 4.) A general
characterization of the process of deriving or transforming
data by means of rules. It is an abstraction based primarily on
examples of *term rewriting systems: it is simply a reflexive
and transitive binary relation g on a nonempty set A. For
a, b€ A, if a —grb then a is said to reduce (;RJF) or rewrite
(EH) to b.

Using this abstraction, it is easy to define a range of basic
notions that play a role in computing with rules.
(1) An element a € A is a normal form (FE=R) for —g if
there does not exist b, different from a, such that a —-grb.
(2) The reduction system —>g is Church-Rosser (L& -)
(or confluent (GLAH))) if for any a € A if there are by, b,
€ A such that a —gb;, and a —»rb, then there exists c € A
such that b; —rc and by —gc.
(3) The reduction system —~x is weakly terminating (5594 45)
(or weakly normalizing (SHIEMAL)) if for each a € A there is
some normal form b € A so that a —grb.
(4) The reduction system — is strongly terminating (R 45)
(or strongly normalizing GRIEFAL) or Noetherian GE¥FH)
if there does not exist an infinite chain

ay >*RGAy "R... »RA, >R...
of reductions in A wherein
a; #a;yy fori =0,1, 2, ...
(5) The reduction system —g is complete (5EHK)) if it is
Church-Rosser and strongly terminating.
(6) A reduction system is Church-Rosser and weakly

terminating if, and only if, every element reduces to a unique
(ME--) normal form. Let =p denote the smallest equivalence

6 abstract specification

relation on A containing —gr. If —r is a Church-Rosser
weakly terminating reduction system then .he set NF(—g) of
normal forms is a transversal for =g, i.e. a set that contains
one and only one representative of each equivalence class.

abstract specification #% Z {5 8§ A specification for
software expressed in a (mathematically) *formal language
such that the specification is completely independent of, and
does not imply, any design and implementation method and
languages. It does not normally express the constraints that the
final software must satisfy. See also formal specification.

A-buffer A-Em3% A buffer used with a *Z-buffer to hold
information concerning the visible transparent surfaces to be
considered at each *pixel of an image. The A-buffer originated
in an *anti-aliased *hidden-surface removal algorithm developed by
Loren Carpenter around 1984. It resolves visibility among an
arbitrary collection of opaque, transparent, and intersecting
objects. The algorithm was developed for the REYES system
at Lucasfilm Ltd. Road to Point Reyes was a famous image
produced by the system.

acceleration time i A7 (6] (start time f3 AT iE]) The
time taken for a device to reach its operating speed from a
quiescent state.

accept (recognize) #W a formal language. See automaton,
finite-state automaton.

acceptable use policy (AUP) 4 7] {fi Fi %K #% The set of
rules governing the use that can be made of a network. All
network users are expected to conform to any existing
legislation, and to any commercial conditions that form part of
any contract for the use of commercial networks. In the case
of academic or research networks there are also likely to be
constraints on using the network to carry commercial traffic,
and these will be embodied in the AUP.

acceptance testing Ml See testing. See also review.

access 1. {£H (F#E) The reading or writing of data, with
the connotation that the content of the reading or writing is
taken into account. The word is most commonly used in
connection with filed information and is often qualified by an
indication as to the types of access that are to be permitted.
For example, read-only access means that the contents of the
file may be read but not altered or erased.

access path 7

2. f#BUEL The right or opportunity to read or write data or
programs. The UK *Computer Misuse Act 1990 states that “a
person secures access to any program or data held in a
computer if by causing a computer to perform any function he
alters or erases the program or data, copies or moves it to any
storage medium other than that in which it is held or to a
different location in the storage medium in which it is held,
uses it or has it output from the computer in which it is held
(whether by having it displayed or in any other manner)”.

8. ¥i[al To gain entry to data, a computer system, etc. In
the US, to access strictly means to instruct, communicate
with, store data in, retrieve data from, or otherwise obtain
the ability to use the resources of a computer or any part thereof.

Access Access B E (B A B AEH) Trademark A

relational database management system for personal computers
from Microsoft.

access control i [7] ##] A *trusted process that limits
access to the resources and objects of a computer system in
accordance with a *security model. The process can be
implemented by reference to a stored table that lists the *access
rights of subjects to objects, e.g. users to records. Optionally
the process may record in an *audit trail any illegal access
attempts.

access method 7#§(%: Any algorithm used for the storage
and retrieval of records from a *data file or *database. Access
methods are of two kinds: those that determine the structural
characteristics of the file on which it is used (its *file
organization) and those that do not (as in secondary indexing
(see indexed file) and *data chaining). In the first case
essentially the same algorithm is used for the retrieval of a
record as was used for its original physical placement, whereas
in the second these algorithms are quite distinct. Hence in the
first case the same term may be used interchangeably (and
loosely) for both the access method and the file organization
(see random access (def. 2), sequential access) .

access path 77H(}%/2 The name given to the set of names
of devices, *directories, *subdirectories, and a specific *file,
by means of which the file-management system is able to reach
the specified file. Depending on the details of the file-
management system actually in use, the access path may start
with the name of a physical or logical device, which holds a
number of directories that associate the identity of an object

8 access rights

with its location on the device; these objects may in turn be
further directories (usually then known as subdirectories) or
they may be files containing end-user data. The complete set
of intermediate objects, in the order in which they are used, is
the access path.

access rights (access privileges) fZHUfL A classification of
the modes of access to an object granted to particular subjects,
or groups of users. Thus, the owner of a file will typically have
rights to read, write, or delete the file. Some or all these
rights may also be granted to other users on the system. See
access control.

access time 77 BU&F [&], i/ 8l B [8] The time taken to
retrieve an item of information from storage. The access time
may be counted in nanoseconds for a semiconductor device, in
milliseconds for a magnetic disk, or in minutes if the file
containing the required data is on magnetic tape.

In the case of disk storage, the access time is the average
time taken for a disk drive to provide the first byte of data,
measured from the time the host issues a read command. To a
good approximation, the average access time is the sum of the
average *seek time, the command overhead, and the average
*latency. See also memory hierarchy.

access vector £ H(1] B A vector that is used in the
representation of a *ragged array. For example, the elements
of a row-ragged array, A, would be stored row by row in a
vector B. The ith element of the access vector would then
point to the position in B where the first element of the ith
row of A was stored (see diagram). A column-ragged array

6

1 3 7
4 2

5 8 9

row-ragged array

LT
—5
anBRnaann

representation using an access vector

Access vector

