薛思佳 季萍 Larry Olson 主编 # Experimental Organic Chemistry Second Edition ## 有机化学实验 英 - 汉双语版 第二版 ## **Experimental Organic Chemistry** (Second Edition) (有机化学实验,英-汉双语版) (第二版) 薛思佳 季 萍 Larry Olson 科学出版社 北京 #### 内容简介 本书依据有机化学实验双语教学的实践经验,采用英汉两种语言,结合 国内外有机化学实验的教学实际情况编写而成。全书分六部分:有机化学 实验的一般知识;有机化学实验的基本原理及操作;有机化合物的制备;综 合性实验;文献实验;常用数据附录及思考题。 本书可使学生在掌握有机化学实验技能的同时,提高英语阅读能力和水平,适合化学及相关专业学生和教师使用及参考,也可作为有机化学及相关专业硕士研究生的实验参考书。 #### 图书在版编目(CIP)数据 有机化学实验:英-汉双语版/薛思佳,季萍等主编.一二版. 北京:科学出版社,2007 ISBN 978-7-03-019714-6 I. 有··· II. ①薛···②季··· II. 有机化学-化学实验-双语教学-教材 IV. 062-33 中国版本图书馆 CIP 数据核字(2007)第 129399 号 责任编辑:谭宏宇/责任校对:连秉亮责任印制:刘 学/封面设计:一 明 #### 斜 学 出 展 社出版 北京东黄城根北街 16 号 邮政编码:100717 http://www.sciencep.com 南京理工出版信息技术有限公司照排 常熟华通印刷有限公司印刷 科学出版社发行 各地新华书店经销 2007年8月第 一 版 开本:787×1092 1/16 2007年8月第一次印刷 印张:14 印数:1-4200 字数:317000 定价:27.00元 ### 第二版前言 Experimental Organic Chemistry(《有机化学实验》,英-汉双语版)自 2005 年 2 月出版以来,因为适应了当前普通高校实施双语教学的需要,受到了高校教师和学生们的欢迎与肯定。在广泛调研的基础上,根据两年多来使用中存在的不足和目前高校有机化学实验教学改革的需要,编者代表于 2007 年 3 月在上海针对本书的第一版内容进行了研讨,拟定了如下修改意见: - 1) 更正了第一版中出现的错误。 - 2)增加连续性和综合性实验内容,精选文献实验内容,适当增加基本操作部分和有机化合物光谱鉴定部分的内容。 - 3) 删除了一些内容较为陈旧,实验药品或产品毒性较大,环境污染较严重的实验。增加了一些新的或有一定操作难度的实验。对同一类型的实验增加了可供选择的内容,使教材更具普适性。 - 4)对每个实验的中、英文进行适当的调整,力求做到既有利于本书第二版内容的编排,又有利于有机化学实验的教学与实践,又尽量使内容不重复。 - 5) 为增加教学的信息量,附录中增加部分与有机化学有关的 INTERNET 网址。 本书由薛思佳、季萍、Larry Olson(Arizona State University, USA)主编。参加第二版修订工作的单位和教师为:上海师范大学:薛思佳,林静容,刘国华,肖海波;上海工程技术大学:宋小平,任新锋;石家庄学院:朱云云,贾会珍;山西忻州师范学院:赵明根,赵三虎;浙江台州师院:蒋华江;盐城师院:王庆东等同志。 第二版教材得到"上海市高校本科教育高地建设项目"的资助。赛默飞世尔科技(上海)有限公司分子光谱部(原美国热电尼高力仪器公司)为本书提供了红外光谱图。在此一并致谢。 限于编者水平,书中错误和不妥之处难以避免,敬请指正。 编 者 2007年6月于上海 #### 前言(第一版) 近年来,有机化学实验课程在教学内容、教学方法、教学手段上有了很大的变化。实验技术的更新、双语教学的实施不断地为这门传统的基础实验课程注入了新的活力。我们在"上海市教委重点教材建设"专项基金的支持下,在总结多年来有机化学实验的教学经验及近年来实施双语教学实践的基础上,参考了许多国内外出版的同类教材,并向国内外同行请教,注重有机实验的小量化、绿色化,以英文为主,中文相对应,编写完成了这本《有机化学实验》中英文双语教材。 本书对基本操作和实验方法用英文作了较为详细而精炼的描述。为了加强基本实验技能的训练,使学生加深对实验原理和实验操作的理解,本书在有关章节中均附有详细的注释、思考题、参考文献,以便于教学或学习。除了对薄层色谱、柱色谱、纸色谱、气相色谱、液相色谱、红外光谱、核磁共振谱等进行介绍外,绝大多数的有机合成实验中都附有红外光谱图。本书中涉及的合成实验是我们多年来教学研究与实践所形成的较成熟的实验,其中有些实验对以往毒性较大的实验进行了改革,有些更新了实验内容,还有些则完全创新,如微波萃取等。为拓宽教学内容、激发学习兴趣,本书还引入了具有微型化、特色化的文献实验。 本书在写作过程中得到了美国 Arizona State University 的 Larry Olson 教授的大力帮助。他以多年的教学经验,为本书提出了许多很好的建议,并主审了本书的英文部分,在此向他致以深深的谢意。 第一版由季萍,薛思佳,Larry Olson(Arizona State University, USA)主编。编委会成员:季萍(上海工程技术大学),薛思佳(上海师范大学),张爱东(华中师范大学),宋小平(上海工程技术大学),邹建平(苏州大学),张凤琴(东华大学),潘健民(上海工程技术大学),徐永芬(东华大学)。 本书得到"上海市教委重点教材建设基金"的资助,美国热电尼高力仪器公司为本书 提供了所有的红外谱图,部分高校的实验教师对本书的完成给予了大力支持,对此一并表示真诚的感谢。 由于作者水平有限,不当之处在所难免,敬请读者批评赐教。 编 者 2004年12月 ## **Contents** | Part 1 | Introduction | | |--------|--|----| | 1.1 | General Rules for the Organic Chemistry Lab | 1 | | 1.2 | General Lab Safety | | | 1.3 | Disposal of Lab Waste | | | 1.4 | Common Lab Equipment and Apparatus | 4 | | 1.5 | Drying and Drying Agent | 12 | | 1.6 | Heating and Cooling | | | 1.7 | Experimental Record and Laboratory Report | 14 | | 1.8 | Chemical Literature | 15 | | Part 2 | Basic Experimental Techniques | 18 | | 2.1 | Melting Point ····· | 18 | | 2.2 | Recrystallization | 22 | | 2.3 | Simple Distillation and Fractional Distillation | 27 | | 2.4 | Steam Distillation | 31 | | 2.5 | Vacuum Distillation | 34 | | 2.6 | Solvent Extraction and Solution Washing | 38 | | 2.7 | Sublimation | 43 | | 2.8 | Refractive Index of Liquids | | | 2.9 | Optical Rotation ····· | 48 | | 2.10 | Chromatographic Techniques ······ | 50 | | 2.11 | Spectroscopic Identification of Organic Compound | 63 | | Part 3 | Experiments | 73 | | 3.1 | Preparation of Cyclohexene | 73 | | 3.2 | Preparation of <i>n</i> -Butyl Bromide | 75 | | 3.3 | Preparation of Triphenylmethanol | 78 | | 3.4 | Preparation of Dibutyl Ether | 82 | | 3.5 | Preparation of Benzoic Acid and Benzyl Alcohol | | | 3.6 | Preparation of Cyclohexanone | 88 | | 3.7 | Preparation of Adipic Acid | 91 | | | 3.8 | Preparation and Characterization of Cinnamic Acid | 93 | |-----|------|--|-----| | | 3.9 | Preparation of Acetylsalicylic Acid (Aspirin) | 96 | | | 3.10 | Preparation of n-Butyl Acetate | 98 | | | 3.11 | Preparation of <i>n</i> -Dibutyl Phthalate | 101 | | | 3.12 | Preparation of Acetanilide | 103 | | | 3.13 | Isolation of Caffeine From Tea Leaves | 107 | | | 3.14 | Preparation of 2-Furanmethanol and 2-Furoic Acid | 110 | | | 3.15 | Preparation of 8-Quinolinol | 113 | | Par | t 4 | All-around Experiments | 115 | | | 4.1 | Synthesis and Characterization of Ethyl Acetate and Ethyl Acetoacetate | 115 | | | 4.2 | Synthesis of Sulfanilic Acid and Methyl Orange | 120 | | | 4.3 | Coenzyme Preparation and Characterization of Benzoin | 125 | | | 4.4 | Preparation and Characterization of Benzilic Acid | 128 | | | 4.5 | Microwave-Assisted Preparation and Characterization of 2-Substituted | | | | | phenylbenzoxazole ····· | 130 | | Par | t 5 | Experiments from Literature | 132 | | | 5.1 | A Microscale Synthesis of the Diastereomers of 2, 3-Dibromosuccinic Acid | | | | | | 132 | | | 5.2 | A Grignard-like Organic Reaction in Water | 134 | | | 5.3 | An Efficient Microscale Procedure for the Synthesis of Aspirin | 134 | | | 5.4 | A Solvent-Free Claisen Condensation Reaction | 135 | | | 5.5 | The Preparation of a Fluorescent Dye: A Microscale TLC Experiment | 135 | | | 5.6 | Microwave Microscale Experiment—2-Naphthyl Acetate from 2-Naphthol | | | | | | 136 | | Par | t 6 | Appendix | 137 | | | 6.1 | List of the Element with Their Symbols and Atomic Masses | 137 | | | 6.2 | Main Families of Organic Compounds | 140 | ## 目 录 | 第- | 一部分 | · 有机化学实验的一般知识 ···································· | 141 | |-----------|----------------|--|-----| | | 1.1 | 有机化学实验的基本规则 | 141 | | | 1.2 | 有机化学实验的一般安全知识 | 141 | | | 1.3 | 有机化学实验废物的处置 | 142 | | | 1.4 | 常用的玻璃仪器和实验装置 | 143 | | | 1.5 | 干燥与干燥剂 | 144 | | | 1.6 | 加热与冷却 | | | | 1.7 | 实验记录和实验报告 | 146 | | | 1.8 | 有机化学的文献资料 | 146 | | 44 | 二部分 | · 基本操作 ···································· | 148 | | Æ- | — FP ブノ
2.1 | 熔点的测定 | 148 | | | 2.1 | 重结晶 | | | | 2.2 | ^里 | 151 | | | 2.3 | 水蒸气蒸馏 | | | | 2.4 | 减压蒸馏 | 154 | | | 2.6 | 萃取与洗涤 | | | | 2.7 | 升华 | | | | 2.8 | 液体化合物折光率的测定 | | | | 2.9 | 旋光度的测定 | | | | 2.10 | 色谱技术 | | | | 2.10 | 有机化合物的光谱鉴定 | | | | 2.11 | 有机化口物的儿姐金足 | 100 | | 第 | 三部分 | 有机化合物的制备 ······· | 172 | | •• | 3.1 | 环己烯的制备 | | | | 3.2 | 1-溴丁烷的制备 | | | | 3.3 | 三苯甲醇的制备 | | | | 3.4 | 正丁醚的制备 | | | | 3.5 | 苯甲酸和苯甲醇的制备 | | | | 3.6 | 环己酮的制备 | | | | 3.7 | 己二酸的制备 | | | | | | | | | 3.8 | 肉桂酸的制备及结构表征 | 183 | |----|------|---------------------------|-----| | | 3.9 | 乙酰水杨酸(阿司匹林)的制备 | 185 | | | 3.10 | 乙酸正丁酯的制备 | | | | 3.11 | 邻苯二甲酸二正丁酯的制备 | 187 | | | 3.12 | 乙酰苯胺的制备 | | | | 3.13 | 从茶叶中提取咖啡因 | 190 | | | 3.14 | 呋喃甲醇和呋喃甲酸的制备 | 192 | | | 3.15 | 8-羟基喹啉的制备 ······ | 193 | | | | | | | 第四 | 四部分 | · 综合性实验 ······ | | | | 4.1 | 乙酸乙酯和乙酰乙酸乙酯的制备和结构表征 | | | | 4.2 | 对氨基苯磺酸和甲基橙的制备 | | | | 4.3 | 辅酶催化安息香的制备及结构表征 | | | | 4.4 | 二苯基乙醇酸的制备及结构表征 | | | | 4.5 | 2-取代苯基苯并噁唑的微波法合成 | 205 | | | | | | | 第3 | 丘部分 | · 文献实验 ······· | | | | 5.1 | 非对映体的 2,3-二溴琥珀酸的微量合成 | | | | 5.2 | 在水相中进行的类似格利雅反应 | | | | 5.3 | 微量法合成阿司匹林 | | | | 5.4 | 无溶剂的 Claisen 缩合反应 ······ | | | | 5.5 | 一种荧光染料的制备:微量 TLC 实验 | 208 | | | 5.6 | 微波法微量实验:2-萘酚制备乙酸-2-萘酯 | 209 | | | | | | | 第7 | や部分 | *** * | | | | 6.1 | 与化学有关的 INTERNET 网址 ······ | | | | 6.2 | 有机化学实验(上)操作考试复习题 | | | | 6.3 | 有机化学实验(下)操作考试复习题 | 213 | #### Part 1 Introduction Experimental organic chemistry is an integral and basic part of organic chemistry course. With the coming of new techniques, this course is being directed towards the development of small-scale experiment, high-efficient operation and the use of environment-friendly chemicals. The purpose of this course is to provide an opportunity to observe the reality of compounds and reactions, learn something of the operations and techniques that are used in experimental organic chemistry and in other areas, data-processing with computer, and further understand the basic principles of organic chemistry. Students should get into the habit of "preparation (pre-lab)—experiment and record (in-lab)—summary (post-lab)". #### 1.1 General Rules for the Organic Chemistry Lab In order to ensure all experiments go smoothly and laboratory safety is observed, all students must abide by the following rules when entering into an organic lab: - 1. Familiarize yourself with the safety rules for lab work and learn about how to correctly use water, power, gas, hood, fire extinguisher and so on. Get to know what to do in the event of experimental accidents. Everyone, before doing the experiment, should be well prepared, understand the hazardous nature and safe usage of chemicals and promote safety consciousness. The experimental instruments and equipment must be used with care, adhering to their operating procedures. Report all abnormal conditions to your instructor to minimize the operational hazards. - 2. Before doing an experiment, check all glass equipment. During experiment, use it carefully and skillfully; after experiment, clean it up and keep it in order. - 3. In the experiment, keep your experimental area and whole lab tidy, operate with care, and adhere to the experimental procedures as well as reagent specifications and dosage required in every experiment. If you want to make any change, ask your instructor to get authorization. Never leave an ongoing experiment unattended. - 4. Before using chemicals, read their labels carefully. Use them only as required in the experiment. Cover the stopper of the container immediately after use, and avoid the stoppers being confused as well as chemicals being contaminated. Don't leave a mess for someone else to clean up. Don't change the position at random of normal reagents and common instruments in the lab such as balance, desiccator, refractometer and so on. - 5. Your full attention must be given to what you are doing during the experimental peri- - od. Don't be careless or clown around in lab. You can hurt yourself or other people. Don't speak loudly and eat or drink in the lab. - 6. In-lab or post-lab, all kinds of solid or liquid waste should be placed in various authorized containers. - 7. Before leaving lab, check carefully whether water, power and the gas are switched off safely, and wash your hands thoroughly with soap and water. #### 1.2 General Lab Safety Generally speaking, organic experiment utilize mainly glassware, chemicals and electrical appliances, all of which can do harm for the human body and environment if used improperly. Chemicals are hazardous because of their flammable, explosive, volatile, corrosive and toxic properties. Also, there is the possibility of experimental accidents to glass equipment and electrical appliances if operated incorrectly. Therefore, organic lab is potentially one of the most dangerous locations for students. #### 1.2.1 Fire-proof The experimental operation must be normalized and the apparatus is assembled correctly. Flammable, explosive and volatile chemicals mustn't be discarded randomly and must be recovered specifically after the experiment. They should be kept away from an open flame. In case of a fire, first of all, cut power and the gas off, move the flammable and explosive reagents away, and then put the fire out in a proper way using a fire extinguisher, asbestos cloth, covering with sand, or rushing water and so on. #### 1.2.2 Explosion-proof The apparatus should be assembled correctly. The whole system should not be made tight in the process of normal distillation and reflux. Distillation to dryness is also a dangerous practice because of the possible presence of peroxides or other explosive materials in the dry residue in the flask. The glassware and apparatus should be checked first to determine whether it can withstand the system pressure before vacuum distillation. If you don't add any boiling chips when starting distillation, stop heating immediately and re-add them after cooling. Keep the cooling water moving smooth during distillation. A fierce explosion or combustion can be produced when some organic compounds come into contact with oxidizers. Beware of their handling and storage. #### 1.2.3 Poisoning-proof There are different ratings of toxicity among most organic reagents. The experiment with an irritative or toxic gas discharged must be always carried out in a hood or in a well-ventilated circumstance, or using a gas trap. The manipulation of toxic or corrosive chemicals should follow the designated procedures strictly. Don't touch or come into contact directly with them. Keep them away from your mouth or cuts or abrasions of the skin, and never pour them into the sewer. If you have some poisoning symptoms such as dizziness, headache, or other symptoms during the experiment you should leave the laboratory area and move to an area where you can breath fresh air and rest. In case of the poisoning is severe or symptoms persist, you should receive medical treatment. #### 1.2.4 Prevent Chemical Burns Chemicals such as strong acid, strong base, bromine, etc, should be used with great care in order to avoid contact with your skin which could cause chemical burns. In case of such an accident, wash the affected area immediately with copious amounts of running water, and then further treatments as follows: Acid-injury: use 1% NaHCO₃ solution for the eye-wash and 5% NaHCO₃ solution for skin-wash. Base-injury: use 1% boric acid for the eye-wash and $1\% \sim 2\%$ acetic acid for the skinwash. Bromine-injury: wash immediately with alcohol, and smear with glycerol or coat with a scald ointment. If the situation is severe, go to hospital after first aid. #### 1.2.5 Cuts and Scalds An accident involving cut or scald occurs in the use of glassware or manipulation of glassware if operated improperly. In case of such an accident, deal with it by the following methods. Cuts: Cuts from broken glass are a constant potential hazard during experiments. The cut should be rinsed thoroughly with running water or hydrogen peroxide for a while to ensure that all tiny pieces of glass are removed. After this, wipe the cut with merbromin, bind up with gauze; if the cut is severe, first bind up with gauze, and then send the patient to the hospital. Scalds: Smear some scald ointment on the affected area if the situation is just a bit superficial; coat scald ointment and go to the hospital for further treatment if the situation is severe. #### 1.3 Disposal of Lab Waste Experimental operations always generate different kinds of solid or liquid waste. Waste disposal has been one of the major environmental problems of modern society. Special measures should be taken to observe national regulations and local organic lab rules of waste disposal. The handling of such wastes in the lab can be done in the following way: - 1. All waste generated in the lab can be classified into solid or liquid waste, and hazardous or nonhazardous waste, and disposed of properly. Some hard-to-handle hazardous waste should be delivered to environmental department for special treatment. - 2. Small amounts of acids, such as hydrochloric, sulfuric, and nitric, or base such as sodium or potassium hydroxide, should be neutralized first and diluted with large amounts of water before flushing down the drain. - 3. Organic solvents should be poured into properly labeled waste containers and stored in a well-ventilated place. - 4. Nonhazardous solid waste such as paper, broken glass, corks, alumina, silica gel, magnesium sulfate, calcium chloride, and so on, should not be blended with other hazardous waste, and can probably go into the ordinary dustbin. Hazardous solid waste should be disposed of in a labeled container. The exact name of the contents should be written on the label. - 5. Chemicals that react violently with water should be decomposed in a suitable way in a hood before disposal. - 6. Some carcinogens and substances suspected of causing cancer must be handled with great care, avoiding contact with your body. #### 1.4 Common Lab Equipment and Apparatus #### 1.4.1 Lab Equipment A typical set of lab equipment including glassware with standard-taper ground glass joints and non-glass equipment is shown in Figure 1.1. Figure 1.1 Common Organic Apparatus #### Note 1 Round-bottom flask for distillation, reflux; Three-neck flask for more complicated reaction set-ups (two-neck flasks are also available); Erlenmeyer flasks for titration, crystallization, preparation; Beakers for heating, mixing; Addition funnel for adding liquids; Separatory funnel for extraction and reaction work-up; Condenser for distillation; Air condenser for distillation with high boiling liquids; Drying tube for drying gases; Still head for distillation; Various adapters for distillation, vacuum distillation; Suction flask (filter flask) for collecting the filtrate. #### Note 2 - 1. All should be used carefully, avoiding impact or breakage. - 2. Don't heat directly except the beaker, flask and tube. - 3. Erlenmeyer flask and flat-bottom flask cannot withstand reduced pressure and should not be used in such systems. - 4. After cleaning up glassware containing a stopper, a small piece of paper must be put between the stopper and ground joint to avoid adhesion. - 5. The glass of a mercury bulb is thin and ease-to-break, thus should be used with care. Never use it as a stirring rod. After use, cool it down, and rinse it afterwards to keep away from cracking. The measurement of thermometer doesn't go beyond its graduated range. #### 1.4.2 Common Apparatus Figure 1.2 Reflux Apparatus Figure 1.3 Distillation Apparatus Figure 1.4 A Rotatory Evaporator with Condenser and Receiving Flask