Derek Andrews

A Theory and
Praclice ol
Program
Development

@) Springer

- FACIT

Tp3! i el ot ae)
Ao 3850572

Derek Andrews

A Theory and Practice of
Program Development

MEMGmD M

99999999

Derek Andrews, BSc, MSc
Department of Mathematics and Computer Science,
Leicester University, University Road, Leicester LE1 7RH, UK

Series Editor

S.A. Schuman, BSc, DEA, CEng
Department of Mathematical and Computing Sciences
University of Surrey, Guildford, Surrey GU2 5XH, UK

ISBN 3-540-76162-4 Springer-Verlag Berlin Heidelberg New York

British Library Cataloguing in Publication Data

Andrews, Derek
A theory and practice of program development. - (Formal
approaches to computing and information technology)
1.Computer software - Development
LTitle
005.1

ISBN 3540761624

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

© Springer-Verlag London Limited 1997
Printed in Great Britain

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Typesetting: Camera ready by editors
Printed and bound at the Athenaeum Press Ltd., Gateshead, Tyne and Wear
34/3830-543210 Printed on acid-free paper

Springer
London
Berlin
Heidelberg
New York
Barcelona
Budapest
Hong Kong
Milan

Paris

Santa Clara
Singapore
Tokyo

Formal Approaches to Computing and
Information Technology

Also in this series:

Proof in VDM: a Practitioner’s Guide

J.C. Bicarregui, J.S. Fitzgerald, P.A. Lindsay, R. Moore
and B. Ritchie

ISBN 3-540-19813-X

Systems, Models and Measures
A. Kaposi and M. Myers
ISBN 3-540-19753-2

Notations for Software Design
L.M.G. Feijs, H.B.M. Jonkers and C.A. Middelburg
ISBN 3-540-19902-0

Formal Object-Oriented Development
K.Lano
ISBN 3-540-19978-0

The B Language and Method
K. Lano
ISBN 3-540-76033-4

Formal Methods and Object Technology
S.J. Goldsack and S.J.H. Kent
ISBN 3-540-19977-2

Preface

All software development methods are based on the same basic idea: to
provide a way of producing good software from a set of system requirements.
A good software development method should provide a notation that can be
used during the analysis of the system requirements to produce an abstract
model (a specification) that captures the essence of the system and that can
be used as the basis of the development. A good development method should
try to encourage the specification of what the system does at the early stages
of design and provides a series of strategies and transformations (usually de-
scribed informally) on how to turn the specification into executable code.
What is frequently missing from many development methods is a formal (in
the mathematical sense) background and justification to both the notation
and the transformations. A formal approach can provide an insight into the
analysis, specification, design and development of computer systems.

An approach to software development is to focus on the separation of the
abstract and concrete views of a system. A good development method should
emphasize:

— abstract vs concrete;
— logical vs physical; and
— ‘what’ vs ‘how’.

The abstract view should be easily understood by the system architect and
should concentrate on describing what the system does. The concrete view
of the system is a program that describes how the system works at a level
of detail can be efficiently executed by a computer. Design can be seen as
the bridge between these two views of a system. This bridge should have
mathematical foundations.

The book provides a weakest pre-condition semantics for almost all of
VDM-SL and uses the semantics to derive a software development method
and to give the method a rigorous justification. The strategies and transform-
ations that are used are both justified and explained mathematically.

The language described in the book is based on VDM-SL (perhaps it is
closer to Meta-IV on which VDM-SL is based). It has been updated with a
more modern syntax: it is a subset of VDM-SL with the following restrictions:

— no loose functions;

vi

— restrictions on patterns (including no loose patterns); and
— parameters to functions and procedures must be read only.

Other changes are to the statement part of the language. The main change
is the introduction of Dijkstra’s guarded commands for the executable part
of the language. This has been one for the following reasons:

1. guarded commands are used as one of the basic constructs of the lan-
guage;

2. they are elegant; and

3. an excellent idea should be republicized!

Simple input and output statements have been introduced so that the ex-
ecutable language could be implemented and used. Some other minor changes
to the syntax have been made to make programs more readable. The most im-
portant change is the introduction of a specification command for refinement
purposes. The author should apologize for these changes, but the advantages
of Dijkstra’s guarded commands outweigh the need to conform to the ISO
Standard for VDM-SL.

The semantics are used to derive appropriate program and data refine-
ment rules. It is easier for a developer attempting a refinement, or proving
properties of a specification or a program to derive new, useful, rules using
weakest pre-conditions. In particular it has been found that proofs of proper-
ties of language constructs can be more easily discharged with this approach.

The book shows that it is now possible to derive both a specification
language and development method based on a few simple concepts, and to
give a formal explanation of all of the development steps used in producing
code from a specification. The book introduces the idea that the purpose of
analysis is to provide a specification that can easily be understood by the
human mind before the expensive process of developing a program starts.
Specifications are ‘programs’ that should be biased towards a style that al-
lows efficient execution by an intellectual computer, and that programs are
‘specifications’ that can be executed efficiently by an electronic computer.
Design is the process of transforming a specification into efficient code.

The approach provides the formal semantics of a simple, but power-
ful, wide-spectrum programming language (VDM-WSL) and gives a formal
definition of both algorithmic and data refinement. The following topics are
covered in detail using a formal approach:

— formal specification;

— proving properties of a specification;
— properties of programs;

— algorithmic refinement;

— data refinement; and

— the correctness of code.

vii

The theory of algorithm and data refinement also provides insight into
the design process and development strategies that can be used to produce
efficient code. Issues such as why reusable code is difficult to achieve have
also been addressed. A mathematical foundation and background to most,
if not all, of the ideas of software specification, design and development are
given.

A course developed at Leicester over a ten-year period now uses the ap-
proach put forward in this book. The course was initially based on the re-
finement style of C. B. Jones from [23]; it slowly evolved to the current style.
In a third-year course at Leicester that uses the ideas in the book, students
have carried out the specification and refinement of some small systems, for
example a system to manage a book library and a car-hire system. Other
examples that have been developed were an analysis of sorting algorithms
and the correct implementation of both AVL and 2-3 trees. With teaching
in mind, many of the easier lemmas, theorems, and corollaries have been left
for the reader to complete; these are terminated with a hollow box.

The book would is suitable for a third- or fourth-year undergraduate or a
post-graduate course in formal methods — with this in mind, a complete set
of teaching material is available. The material consists of:

1. a complete set of over-head projector slides together with a set of teaching
notes;

2. a student study guide consisting of weekly reading suggestions and exer-
cises;

3. a set of worked examples together with model answers, these would be
suitable to add to the study guide or for use as examination questions;
and

4. a technical report that describes the kernel language, the full language
and an executable subset.

This material is available in machine readable form (in XTEX source) on
the World-Wide-Web. — contact the author at derek@mcs.le.ac.uk.

Acknowledgements

Weakest pre-conditions were used by Hehner and others to give the semantics
of a (subset) of Pascal and by Dijkstra to give the semantics of his guarded
command language [20]. The idea of giving the semantics of VDM-SL with
relations and a termination condition was used by Cliff Jones in his Ph.D.
thesis [24]. This approach extends naturally when using the weakest pre-
conditions to give the semantics of the kernel language used in this book. In
a paper by Nelson [30] that gave a slightly different semantics to Dijkstra’s
guarded command language: undefined (L) was added as a possible outcome
of a command. In [3] Abrial defined the semantics of B in terms of a set of

viii

basic commands. The formal semantics of VDM-SL have been given using
relations ([18]) and based on this work, proof rules for VDM-SL have been
given by Peter Gorm Larsen in his Ph.D. thesis [25]. Work at Oxford ([27, 26])
and work by Morris [28, 29] introduced the ideas of a programming calculus
that dealt with both program and data refinement. Based on the Oxford
work, in a series of examples, Andrews and Ince mixed program and data
refinement to develop executable code from a specification [11, 10, 9]. This
book pulls these ideas together to give a weakest pre-condition semantics
for a close relative of VDM-SL, and uses these semantics to derive a set of
refinement rules.

The author would also like to thank Professors Dr. H Klaeren and S.
Schuman and an anonymous referee for their comments on an earlier draft and
Rosie Kemp and the staff at Springer-Verlag for their patience and support.

Chapter Summaries

Chapter 1 — Writing Correct Programs Why refinement, the same simple
example treated two different ways: starting with a specification, writing the
code and then showing it to be correct and secondly deriving the correct code
from the specification by a series of transformations — software development
as a strategy game.

Chapter 2 — A Small Programming Language A small language for writing
both specifications and programs. The semantics of the language are given
using both relations and the weakest pre-condition approach. The concept of
testing is discussed, leading to a meaning of program correctness.

Chapter 8 — Concepts and Properties The basic properties of the kernel lan-
guage: simple program transformations. Setting and testing variables. The
basic properties of a theory of refinement. A normal form and a framework
for proving properties.

Chapter 4 — Building New Commands from Old Extending the language,
principles and theory. Recursive definitions. (This is seen as a chapter for the
advanced reader, the remainder of the book does not depend on it.)

Chapter 5 — Program Refinement Stepwise refinement. The concept of re-
finement. Replacing specifications: the meaning of program correctness and
program refinement. Three different ways of looking at correctness and their
equivalence. What is testing. Other refinement models.

Chapter 6 — The Basic Commands Refining the basic statements. Imple-
mentation issues; the language and the compiler writer.

Chapter 7 — Declarations and Blocks Introducing local variables, the idea of
scope. Blocks and the refinement rules.

ix

Chapter 8 — Command Sequences Introducing semicolon into a program.
Concepts and properties. Refinement rules for semicolon.

Chapter 9 — The Alternative Command The if command and its properties.
Using the command in refinement. Refinement rules for alternatives.

Chapter 10 — The Iterative Command The do command and its properties.
Using the command in refinement. Refinement rules for iteration. The prob-
lem of termination and its proof. Loop parameters: initialization, guards,
invariants and termination. Establishing the invariant. Refining loop bodies.

Chapter 11 - Functions and Procedures The definition of procedures. In-
troducing function procedures and proper procedures. Refinement rules for
introducing and removing procedures and their calls. Refinement rules for
using recursion.

Chapter 12 - Ezamples of Refinement at Work From a simple specification
to executable code, the emphasis is on showing the ideas at work.

Chapter 13 — On Refinement and Loops How to refine a specification to use
iteration. Hints on finding the guard, invariant and variant terms.

Chapter 14 - Functions and Procedures in Refinement Refining to procedures
— introducing procedure declarations and procedure calls. Using recursion.

Chapter 15 - Refinement and Performance Using refinement to improve the
performance of a program — a fast multiply and a fast integer divide al-
gorithm.

Chapter 16 — Searching and Sorting Refining a search specification to ex-
ecutable code (linear and binary search). Refining a sort specification to ex-
ecutable code.

Chapter 17 — Data Refinement Replacing abstract data models with data
that can be implemented by an executable programming language. The idea
of data refinement. An informal explanation of the theory. A simple data
refinement.

Chapter 18 — A Theory of Data Refinement The theory behind the rules and
methods introduced in Chapter 17. Other approaches to data refinement.
Dealing with assignment. This chapter is optional, but it does completes the
theory of refinement and shows how everything fits together.

Chapter 19 — An Alternative Refinement of the security system Alternative
ways of solving the specification used in Chapter 17.

Chapter 20 - Stacks and Queues Refining stacks and queues to executable
code to illustrate data refinement in action. Different approaches to the same
problem.

Chapter 21 - Dynamic Data Structures How to deal with pointers. Proving
the correctness of a data representation that uses pointers.

Chapter 22 — Binary Trees A formal derivation of the standard algorithms
for working with ordered binary trees.

Chapter 23 — Epilogue What next.

This book was produced using the software package ‘Textures’ (Blue Sky
Research) and the XTEX2, and NPL VDM-SL macro packages on an Apple
Macintosh computer.

Contents

1. Writing Correct Programs 1
1.1 Satisfying Specifications 1
1.2 An Alternative Approach 4
13 SUMMATY ...ttt e 6
2. A Small Programming Language.......................... 7
2.1 Satisfying Specifications 7
2.2 Specifications and Programs 11
2.3 The Semantics of Commands............................ 12
2.3.1 Some Primitive Commands 15
232 ABasicCommand............................... 16
2.3.3 New Commands from Old ~ Operators 17
2.4 Non-determinism and Partial Commands 21
2.5 The Concepts of Predicate Transformers.................. 24
2.6 Substitution 26
2.6.1 Rules for Substitution............................ 28
2.7 The Formal Semantics of the Kernel Language 28
2.7.1 The Bounded Commands......................... 28
2.7.2 The Unbounded Commands 31

2.8 The Weakest Liberal Pre-conditions, Termination, and Re-
lations 32
2.9 Executable Programs...................o . 36
210 SUMMATY ..ottt 36
3. Concepts and Properties................................ .. 37
3.1 More Commandso.uuuninnniin 37
3.2 The Domainof a Command..............coouuuvnunonnoo. .. 40
3.3 Some Properties of Commands 45
3.3 1 Sequenceiiiiii 45
3.3.2 Bounded Non-deterministic Choice 46
3.3.3 Guarded Commands 47

xii

Contents
3.3.5 ASSEItIONS ... tvi ittt e 50
3.4 ANormal FOrm. ...:isncassainsnssgismisianims spims o 50
3.5 Some Further Properties.............., 54
3.5.1 Setting and Testing Variables 56
3.6 The Primitive Commands Revisited 61
3.7 Initial Values. 63
3.8 A Compiler for the Small Language 65
3I0 SUDMMINIATY s 6 a5 s cmams smems sosme oo imnsmaioe s o aswsm s 65
Building New Commands from Old 66
4.1 Defining Commandscooiiiiiiiiiiiiiiiii... 66
4.2 An Approach to Recursion.............. ... 68
4.3 Sequences of Predicates and their Limit 70
4.3.1 A Skeptical Result...........ot 72
4.3.2 ACredulousResultt 74
4.4 Limits of Predicate Transformers 75
4.4.1 The Two Approachescovviiiiniin.. 77
4.5 Limitsof Commandsc.vviririniiniennnenenenenns 78
4.6 TidyingtheLoose Endso, 81
4.7 Epilogue.ttt e 82
Program Refinement oo 84
5.1 Stepwise Refinement it 84
5.2 Replacing Specifications i 85
B3 CONVENLIONS. .« « v vivs ivsinimems s amsssmasms sasmsgainmsn 96
5.4 Refinement Classesuuiineeeninenenenannennn 96
5.5 Alternative Views of Refinement 99
5.6 Other Refinement Relationso it 101
56.1 Weak Refinement............cccviiiiiiiienn. 101
5.6.2 Partial Refinement........... i 102
5.6.3 Full Refinementcciiuiiiiniinnan. 102
5.6.4 Strong Refinement 102
5.6.5 Refinement by Simulation 103
5.7 SUMIMNATY « o o e vttt ettt ettt ia e e 104
The Basic Commandscouvuiriiininiinnnenn. 105
6.1 The Constant Commands...........coitiniiiriiiennnn 105
612 Acserfions: sm: smzms smsms 00 EEEE PEEEEE EEE D w8 mo s 109
6.3 Assignmentocciinieeinienisianiseraies e smnna 112
6.3.1 Implementation Issues............................ 115
B.4 SUMIMATY . ottt vtee ettt tiiie et iiiiie ey 116

10.

Contents xiii

Declarations and Blocksoovuun.. 117
7.1 The Declaration Command 117
7.2 Some Interactions Between Commands 118
7.3 The Definitional Commands 121

7.3.1 Declarationscoiiiiiiiiii, 122

7.3.2 TheLet Commandccu.o.... 122

7.3.3 TheDef Command 123

7.3.4 The Def and Let Commands Compared 123
7.4 Refining Definitional Commands......................... 125
7.5 Defining Constant Valuescoviuiiiiinnnnnn.. 127

7.5.1 Refining Functions and Constants 128
7.6 Logical Constants.vuiuuniiinniinninnnnnn.. 129
T7 SUMIMATY .o oottt ettt e e 134
Command Sequencesc.uuuuunuuiuinnnnnn. 135
8.1 Solve a Part and then the Whole 135

8.1.1 Choosing the First Step 137

8.1.2 Choosing the Second Step 140

8.1.3 Choosing Both Steps............................. 142
8.2 Summaryiiiii 144
The Alternative Command 145
9.1 Divideand Conquer...............oooiiiiiiiininennn... 145
9.2 ThePartitionccooiiiiii i, 147
93 Reassembly 150
9.4 Alternatives —- The If Command 152
9.5 Refining Specifications 157
9.6 SUMMATY ..ottt e 158
The Iterative Command 159
10.1 Another Approach, 164
10.2 The Generalized Loop and Refinement 166
10.3 The General Variant Theorem........................... 168
10.4 An Application.......... ... i, 170
10,5 LOODS .« vttt et e 172
10.6 Iteration — The Do Command 176
10.7 Practical Do Commands................ ..., 179
10.8 The Refinement of Loop Bodies 180

10.8.1 Decreasing Variants.....................covv. ..., 180

10.8.2 Increasing Variants 182
109 Summaryoooiii i 183

Xiv

11.

12.

13.

14.

15.

16.

Contents

Functions and Procedures i 184
11.1 Proper Procedures and their Calls 184
11.2 Function Procedures and their Calls 190
11.3 Function Calls in Expressionsoooiiinn 193
11.4 An Alternative Approach to Parameters and Arguments 195
11.5 POSESCIIPE vt vve it 195
11.6 SUDIMATY .+« v oo et et teiiaa e et e eina e 196
An Example of Refinement at Work 197
12.1 The Problem — Integer Multiplication 197

12.1.1 Getting Startedt 197

12.1.2 The Refinement Strategy Continued 198

12.1.3 The Next Step .. .cvvvviiiiiiiiiiie e 199
12.2 Logical Constants Revisitedt 203
12.3 SUMMATY « . o e e e eeetoe ettt ieiaan e 204
On Refinement and Loops ... 205
13.1 The Factorial Problem, 205

13.1.1 The First Solutionot e 205

13.1.2 A Second Solutionc.coiuiiiiiiiiiia 207
13.2 Finding Guards and Invariantsoooe, 210
13.3 Identifying the Loop Type Incorrectly 215
Functions and Procedures in Refinement 216
14.1 Factorialovvin i i e 216
14.2 Multiplyvvo i 218
14.3 SUIMIMATY o oo e vvee e eeeeteeaaaeaaaan e 221
Refinement and Performance, 222
15.1 A Second Approach to Multiplication 222
15.2 Fast Divisiono o ittt it et 224
15.3 SUIMIMATY < oo e vve et eeeittteeeeeaa e e e 229
Searching and Sortingo o il 230
16.1 A Diversion — the Array Data Type 230
16.2 Linear Searchovuenieiiinieniiiia 231
16.3 Binary Search il 234
16.4 A Simple Sort Algorithm 239

16.4.1 The First Attempt, 240

16.4.2 The Other Approacht 243

16.5 SUMIMATY . oo v v vve e eeeetteeeenaaan e e e 246

17.

18.

19.

20.

Contents xv

Datarefinement, 247
17.1 The Refinement Strategy 247
17.1.1 TheProblem................... . i, 248
17.2 The Refinement to Executable Code 251
17.3 The Next Stepovviiniiiii i, 255
17.4 The Refinement of the Operations 260
17.5 The First Refinement Step.............................. 266
17.6 The Next Refinement Step 268
17.6.1 The check Operation................ccouuurnnnn.. 277
17.6.2 Putting it all Together 277
17.6.3 Further Development 278
17.6.4 TheFinal Step 278
17.7 A Summary of the Approach 278
17.8 SUMMATYttt i e 281
A Theory of Data Refinement 282
18.1 An Approach to Data Refinement........................ 282
18.1.1 The Data Refinement of Declarations 296
18.1.2 Refinement and Specifications 296
18.2 Data Refinement in Practice 299
18.3 Another View of Data Refinement 300
18.4 Functional Refinement 303
18.5 An Alternative Data Refinement of Assignments........... 304
18.6 SUMMATY . ..ttt e e e e e e e e e 307
An Alternative Refinement of the Security System 308
19.1 A DataRefinementcoooiiiiiiii i .. 308
19.2 Another Approach to the Refinement 313
193 Summary ... 317
Stacks and Queues...................... 318
20.1 AFinite Stack 318
20.1.1 The Refinement oo ... 319
20.1.2 Reorganizing the Operations 321
20.2 A stack of Boolean Values 327
20.2.1 Some Lemmas about the Representation. 329
20.2.2 The empty-stack Operation 330
20.2.3 The push Operation0oou... 330
20.2.4 The pop Operationcccuieuinnn. .. 330
20.2.5 The read Operation..............oouuuuunnnnnn.. 331
20.2.6 The is-empty Operation 331
20.2.7 The ds-full Operation 332
2028 The Codeoovviiineiinn i, 333
20.2.9 Some LeSSONSuuiiuuiei 333

xvi

21.

22.

23.

Contents

20.3.1 A Refinement of the Queue 336

20.3.2 Some Theoremsc.c.vuiiiiniiiaranenanns 338

20.3.3 The Operations Transformed 339

20.3.4 An Extension to the System 343
20.4 AnEfficient Queue............ooiiiiiiiiiiii 345

20.4.1 Some Properties..........c.coviiiiiiiiiiiiiia.. 347

20.4.2 LESSONS v tv ittt et e 351
Dynamic Data Structures.................. 352
21.1 Simulating a Linked List........... oo, 352

21.1.1 Some Theoremsc.coiiiiiiiirinienann. 353

21.1.2 The Operations Transformed 354
21.2 Explicit Pointers.cooviiiiiiiiiniiiiinenn 355
21.3 The Stack Using Explicit Pointers 358

21.3.1 Standard Stack Specification to Pointers............ 360
D14 SUIMNINALY 155 55050650562 E G PS5 S oo imiass s ase dorieioint e 1w o 368
Binary TreesS: .« msms coims cmems fa6meanimnsse snsmssmswens 370
22.1 The Specification i 370
222 The Refinementiiniiiiniiiiiiiiinnnn. 370
22.3 The Refinement of the in Operation 371
22.4 The Refinement of the insert Operation 374
22.5 The Refinement of the delete Operation 377
22.6 AnIn-order Traversalc.coouuiiuiiiiiniiiiinnn.. 382
227 SUMMIMATY « 555 5@s swemssmsssimsTsins s@r@s sissmamseesa 387
EpilOgUE ... cocuimssnimssaims saimss@mpmamsmenmems swsns swsmss 388
23.1 An Approach to Loose Patterns and Functions 389
Program Refinement Rulescooaat 393
A.1 Replace Specification............. ..ol 393
A.2 Assume Pre-condition in Post-condition 393
A.3 Introduce Assignment i 393
A.4 Introduce Command-semicolon 394
A.5 Introduce Semicolon-command 394
A.6 Introduce Leading Assignment 394
A.7 Introduce Following Assignment 395
A.8 Introduce Alternatives............. ... 395
A9 Introducelteration.............coouiiuienninnennennon.. 395
A.10 Introduce Proper Procedure Body 396
A.11 Introduce Proper Procedure Call 396
A.12 Introduce Function Procedure Body...................... 397
A.13 Introduce Function Procedure Call 397
A14 Add Variable........ ..ot 397
A.15 Realize Quantifier i 398

