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Preface

All software development methods are based on the same basic idea: to
provide a way of producing good software from a set of system requirements.
A good software development method should provide a notation that can be
used during the analysis of the system requirements to produce an abstract
model (a specification) that captures the essence of the system and that can
be used as the basis of the development. A good development method should
try to encourage the specification of what the system does at the early stages
of design and provides a series of strategies and transformations (usually de-
scribed informally) on how to turn the specification into executable code.
What is frequently missing from many development methods is a formal (in
the mathematical sense) background and justification to both the notation
and the transformations. A formal approach can provide an insight into the
analysis, specification, design and development of computer systems.

An approach to software development is to focus on the separation of the
abstract and concrete views of a system. A good development method should
emphasize:

— abstract vs concrete;
— logical vs physical; and
— ‘what’ vs ‘how’.

The abstract view should be easily understood by the system architect and
should concentrate on describing what the system does. The concrete view
of the system is a program that describes how the system works at a level
of detail can be efficiently executed by a computer. Design can be seen as
the bridge between these two views of a system. This bridge should have
mathematical foundations.

The book provides a weakest pre-condition semantics for almost all of
VDM-SL and uses the semantics to derive a software development method
and to give the method a rigorous justification. The strategies and transform-
ations that are used are both justified and explained mathematically.

The language described in the book is based on VDM-SL (perhaps it is
closer to Meta-IV on which VDM-SL is based). It has been updated with a
more modern syntax: it is a subset of VDM-SL with the following restrictions:

— no loose functions;
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— restrictions on patterns (including no loose patterns); and
— parameters to functions and procedures must be read only.

Other changes are to the statement part of the language. The main change
is the introduction of Dijkstra’s guarded commands for the executable part
of the language. This has been one for the following reasons:

1. guarded commands are used as one of the basic constructs of the lan-
guage;

2. they are elegant; and

3. an excellent idea should be republicized!

Simple input and output statements have been introduced so that the ex-
ecutable language could be implemented and used. Some other minor changes
to the syntax have been made to make programs more readable. The most im-
portant change is the introduction of a specification command for refinement
purposes. The author should apologize for these changes, but the advantages
of Dijkstra’s guarded commands outweigh the need to conform to the ISO
Standard for VDM-SL.

The semantics are used to derive appropriate program and data refine-
ment rules. It is easier for a developer attempting a refinement, or proving
properties of a specification or a program to derive new, useful, rules using
weakest pre-conditions. In particular it has been found that proofs of proper-
ties of language constructs can be more easily discharged with this approach.

The book shows that it is now possible to derive both a specification
language and development method based on a few simple concepts, and to
give a formal explanation of all of the development steps used in producing
code from a specification. The book introduces the idea that the purpose of
analysis is to provide a specification that can easily be understood by the
human mind before the expensive process of developing a program starts.
Specifications are ‘programs’ that should be biased towards a style that al-
lows efficient execution by an intellectual computer, and that programs are
‘specifications’ that can be executed efficiently by an electronic computer.
Design is the process of transforming a specification into efficient code.

The approach provides the formal semantics of a simple, but power-
ful, wide-spectrum programming language (VDM-WSL) and gives a formal
definition of both algorithmic and data refinement. The following topics are
covered in detail using a formal approach:

— formal specification;

— proving properties of a specification;
— properties of programs;

— algorithmic refinement;

— data refinement; and

— the correctness of code.
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The theory of algorithm and data refinement also provides insight into
the design process and development strategies that can be used to produce
efficient code. Issues such as why reusable code is difficult to achieve have
also been addressed. A mathematical foundation and background to most,
if not all, of the ideas of software specification, design and development are
given.

A course developed at Leicester over a ten-year period now uses the ap-
proach put forward in this book. The course was initially based on the re-
finement style of C. B. Jones from [23]; it slowly evolved to the current style.
In a third-year course at Leicester that uses the ideas in the book, students
have carried out the specification and refinement of some small systems, for
example a system to manage a book library and a car-hire system. Other
examples that have been developed were an analysis of sorting algorithms
and the correct implementation of both AVL and 2-3 trees. With teaching
in mind, many of the easier lemmas, theorems, and corollaries have been left
for the reader to complete; these are terminated with a hollow box.

The book would is suitable for a third- or fourth-year undergraduate or a
post-graduate course in formal methods — with this in mind, a complete set
of teaching material is available. The material consists of:

1. a complete set of over-head projector slides together with a set of teaching
notes;

2. a student study guide consisting of weekly reading suggestions and exer-
cises;

3. a set of worked examples together with model answers, these would be
suitable to add to the study guide or for use as examination questions;
and

4. a technical report that describes the kernel language, the full language
and an executable subset.

This material is available in machine readable form (in XTEX source) on
the World-Wide-Web. — contact the author at derek@mcs.le.ac.uk.
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Chapter Summaries

Chapter 1 — Writing Correct Programs Why refinement, the same simple
example treated two different ways: starting with a specification, writing the
code and then showing it to be correct and secondly deriving the correct code
from the specification by a series of transformations — software development
as a strategy game.

Chapter 2 — A Small Programming Language A small language for writing
both specifications and programs. The semantics of the language are given
using both relations and the weakest pre-condition approach. The concept of
testing is discussed, leading to a meaning of program correctness.

Chapter 8 — Concepts and Properties The basic properties of the kernel lan-
guage: simple program transformations. Setting and testing variables. The
basic properties of a theory of refinement. A normal form and a framework
for proving properties.

Chapter 4 — Building New Commands from Old Extending the language,
principles and theory. Recursive definitions. (This is seen as a chapter for the
advanced reader, the remainder of the book does not depend on it.)

Chapter 5 — Program Refinement Stepwise refinement. The concept of re-
finement. Replacing specifications: the meaning of program correctness and
program refinement. Three different ways of looking at correctness and their
equivalence. What is testing. Other refinement models.

Chapter 6 — The Basic Commands Refining the basic statements. Imple-
mentation issues; the language and the compiler writer.

Chapter 7 — Declarations and Blocks Introducing local variables, the idea of
scope. Blocks and the refinement rules.
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Chapter 8 — Command Sequences Introducing semicolon into a program.
Concepts and properties. Refinement rules for semicolon.

Chapter 9 — The Alternative Command The if command and its properties.
Using the command in refinement. Refinement rules for alternatives.

Chapter 10 — The Iterative Command The do command and its properties.
Using the command in refinement. Refinement rules for iteration. The prob-
lem of termination and its proof. Loop parameters: initialization, guards,
invariants and termination. Establishing the invariant. Refining loop bodies.

Chapter 11 - Functions and Procedures The definition of procedures. In-
troducing function procedures and proper procedures. Refinement rules for
introducing and removing procedures and their calls. Refinement rules for
using recursion.

Chapter 12 - Ezamples of Refinement at Work From a simple specification
to executable code, the emphasis is on showing the ideas at work.

Chapter 13 — On Refinement and Loops How to refine a specification to use
iteration. Hints on finding the guard, invariant and variant terms.

Chapter 14 - Functions and Procedures in Refinement Refining to procedures
— introducing procedure declarations and procedure calls. Using recursion.

Chapter 15 - Refinement and Performance Using refinement to improve the
performance of a program — a fast multiply and a fast integer divide al-
gorithm.

Chapter 16 — Searching and Sorting Refining a search specification to ex-
ecutable code (linear and binary search). Refining a sort specification to ex-
ecutable code.

Chapter 17 — Data Refinement Replacing abstract data models with data
that can be implemented by an executable programming language. The idea
of data refinement. An informal explanation of the theory. A simple data
refinement.

Chapter 18 — A Theory of Data Refinement The theory behind the rules and
methods introduced in Chapter 17. Other approaches to data refinement.
Dealing with assignment. This chapter is optional, but it does completes the
theory of refinement and shows how everything fits together.

Chapter 19 — An Alternative Refinement of the security system Alternative
ways of solving the specification used in Chapter 17.

Chapter 20 - Stacks and Queues Refining stacks and queues to executable
code to illustrate data refinement in action. Different approaches to the same
problem.

Chapter 21 - Dynamic Data Structures How to deal with pointers. Proving
the correctness of a data representation that uses pointers.



Chapter 22 — Binary Trees A formal derivation of the standard algorithms
for working with ordered binary trees.

Chapter 23 — Epilogue What next.

This book was produced using the software package ‘Textures’ (Blue Sky
Research) and the XTEX2, and NPL VDM-SL macro packages on an Apple
Macintosh computer.
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