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PREFACE

DirrusioN and thermal conduction are of great interest in the technically
important fields of material and heat transfer in liquids, and this has provided
one major reason for the attention which has been devoted, over a very long
period of time, to these two phenomena. More fundamental studies on the
size and shape of large molecules have relied heavily on the measurement of
diffusion coefficients, and the necessity for improving the accuracy of such
measurements has led to advances in instrumentation, which have been of
great value in investigating diffusion in other liquid systems. Thermal
diffusipn, or the scparation (usually partial) of the components of a liquid
mixture which may occur under the influence of a thermal gradient, has, by
comparison, received little attention, though similar separations in gaseous
systems are now of considerable technical importance, All three phenomena
can be fitted.into the same descriptive framework, and all three have some-
thing in common in so far as their experimental study is concerned. These
factors have determined the form of the book, though, because of the current
lack of a satisfactory general kinetic or statistical theory of the liquid state,
theories which can be applied to the general body of experimental data lack
general applicability, and a unified discussion of all three subjects from such a
standpoint has not been attempted.

The close formal connection between diffusion and heat conduction was
first recognized by Adolf Fick, an anatomist who might justly be regarded as
a pioneer in biophysics. He took Fourier’s law of heat conduction as a
model for his law of diffusion, and defined a coefficient of diffusion for
a binary system which bore a close resemblance to the coefiicient of thermal
conduction defined by Fourier. Both laws assume a linear relationship
between a flow of heat or of matter, and the force causing the flow, assumed
to be a gradient of temperature, and a gradient of concentration respectively.
This idea has been extended in the thermodynamic treatment of transport
processes which has been developed from scme suggestions made, nearly
thirty years ago, by Onsager. This provides a unified description, not only of
diffusion and of thermal conduction, but of the migration of matter under a
temperature gradient (Soret effect), and of the temperature gradient which,
in principle, should be associated with any concentration gradient in a system
of more than one component (Dufour effect). The discussion of the funda-
mentals of the theory, and of its application to these phenomena, which
occupies the first four chapters, provides the foundation for the book as a
whole. The account of the fundamentals owes much to Haase’s excellent
article in Ergebnisse der Exacten Naturwissenschaften which appeared in
1952, and it is intended to be complete enough for the applications of the
theory to the subjects of the book to be understood by those who are not
initially well acquainted with this form of thermodynamics. The second
section, formed by Chapters 5 to 7, is devoted to diffusion, the main emphases
being laid upon experimental methods, partly because of their interest in
connection with studies on thermal diffusion, and on the interpretation of
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diffusion coefficients in terms of different theoretical pictures of the diffusion
process. The problem of the integration of the diffusion equation with
respect to particular sets of boundary conditions has not been discussed in
detail because, in the case of liquid systems, only a small number of integral
solutions are of practical importance, and these are well known already. The
solution of the diffusion equation when both temperature and concentration
gradients exist in the system is more difficult, and a rather full discussion of
the. problem, both for experimental arrangements where convection is
eliminated, and for the Clusius-Dickel type of thermogravitational cell which
has been widely used in the study of separation techniques using thermal
diffusion, has been attempted in the course of the discussion of diffusion
and related phenomena in non-isothermal liquid mixtures (Chapters 8 to 10).
The final chapter covers those aspects of thermal conduction which seem
relevant to the rest of the book; if the space devoted to it is relatively small
in comparison with its practical importance, this is precisely because engineer-
ing rather than pure science has hitherto tended to dominate this field. It
has not been my intention to attempt to write a book on heat transfer.

That performance falls short of intention is a common experience, and this
book is no exception, I would like to acknowledge the help and advice of
Professor D. H. Everett, who read and criticized a draft of the earlier
chapters, and that of my colleague Dr. A. S. C. Lawrence who performed a
similar service for the final typescript of the whole book. I am indebted to
Dr. J. N. Agar for information on the conductimetric method of measuring
Soret coefficients before a full description was published, to Drs. R. Haase
and Toshio Ikeda for providing unpublished experimental data and calcu-
lations on non-isothermal liquid systems, and to Dr. L. P. Filippov of
Moscow University who supplied reprints. of a number of his papers on
thermal conduction which would otherwise have been difficult to obtain.
In covering such a wide field it is impossible to expect that errors of fact and
emphasis have been entirely avoided, but one hopes that they are not too
numerous or important.

As always, I have been greatly helped by my wife, both in general matters
and in the particular tasks of checking the manuscript, preparing diagrams,
compiling the index, and in proof-reading. - Miss Elisabeth Gillett typed the
difficult manuscript with great skill and patience.

Sheffield and Stockholm
July 1960



LIST OF PRINCIPAL SYMBOLS

Thermodynamic capacity factors have been represented by capital letters, and the
corresponding intensity factors by lower case letters, without underline for partial
molal or molal quantities, and with underline for specific quantities. Vector
quantities have been distinguished by the use of bold type; when equations in-
volving these are reduced to the one-dimensional case the vector notation is drop-
ped, except in the case of velocities which are throughout indicated by v to avoid
confusion with the italic symbol used principally to represent volume. Bold type
has been used for quantities which are not vectors, as in the symbols for the
Faraday and for Planck’s constant, but this should not cause confusion. The
symbol D is generally used to denote an experimental differential diffusion co-
efficient, as in Chapter 5. For binary systems of the kind considered, it can be
closely identified with the single mutual diffusion coefficient required to define
the diffusion process in such a system, and this identification has been assumed to
be correct in the discussion of the experimental data. The distinction between a
self-diffusion coefficient and a tracer diffusion coefficient has been explained on
p. 38. There is an element of pedantry in distinguishing between them in any
discussion of experimental values (see, for example, page 152), but, foliowing
much recent practice, the term °tracer diffusion coefficient’ has been used in
connection with experimental data on the diffusion of ions. Otherwise, in such
discussiornis, the name ° self-diffusion coefficient * has been used. Both have been
symbolized by D*.

A Area (esp. Chaps. 1 and 5). Atomic weight. A4,, affinity of reaction r
B By=[l+ (8Infif0In N)r,p ;] in multicomponent system
B, =[1 + (01n/,/d In Nyr,p] for component 1 in a two-component system
B, B, are defined similarly on the molar and molal scales respectively
Heat capacity
Experimental diffusion coefficient
D,,, mutual diffusion coefficient
D, integral diffusion coefficient, D! intrinsic diffusion coefficient
D*, self-diffusion, tracer diffusion coefficient
9y, diffusion coefficient in multi-component system
D’, coefficient of thermal diffusion
E Total energy of system
Ef, E3, Arthenius energies of activation for viscous flow and for diffusion
respectively
E9, standard e.m.f, of isothermal reversible cell
F Faraday (F)
F, F# partition functions per unit volume in initial and transition states
G Gibbs free energy '
AG%;, AG% Gibbs free energy of activation per mole for viscous flow and for
ditfusion respectively
Gradient of magnetic field in ‘ spin-echo * method of determining self-diffusion
coefficients
H Enthalpy .
AHE;, AH%, enthalpy of activation for viscous fiow and for diffusion repectively
Function used in theory of thermogravitational column

T Q
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LIST OF PRINCIPAL SYMBOLS

Ionic strength

I, electric current

J (with appropriate subscript), flow per unit area per unit time. (J in one-
dimensional system)

Total fringe shift in integral fringe pattern

Thermometric conductivity

K(T), temperature-dependent equilibrium constant

K,K,* functions used in theory of thermogravitational columns

L;; etc., phenomenological coefficients

Py etc., phenomenological coefficients defined with respect to solvent-fixed
frame of reference

Li,p, Latent heat of vaporization

2, negative of latent heat of vaporization of component i from the solution

_ to the gaseous state i

L;, relative partial molar heat content of component i

M M;, molecular weight of substance i

M+, rth semi-moment about refractive index gradient curve

N N;, mole fraction of cu.nponent i

T

N Avogadro number
Ng,, Np,, Grashof and Prandtl numbers
Pressure '
Optical path length
P, thermoelectric power of thermocell corrected for concentration and activity
‘coeﬂicient changes
Q;, total molar transported heat of component i
¥, molar Eastman heat of transfer of component i
Gas constant
Refractive index increment = (dn/dc). -z
¢ Enrichment factor’
Ry, frictional coefficient
Entropy
ASE;, AS%, entropy of activation for viscous flow and for diffusion respectively

total molar transported entropy
S*, molar Eastman entropy of transfer
Absolute temperature

U Internal energy

4

Volume
Vomax» maximum induced voltage in ‘ spin-echo * method for self-diffusion

W Work done by systemn

X
Y
zZ

Q

Function defined by equation (8-81)

X (with appropriate suffix), general symbol for a force
General symbol for a capacity factor. Y, per unit volume
Reduced height in theory of optical diffusion methods

a,,, phenomenological coefficient (Chapter 2)

Activity

Distance of closest approach in Debye-Hiickel theory

Plate separation (* slit width °) in thermogravitational column
Optical distance

Width of plates in thermogravitational column

Molar density

¢i, molar concentration of component i

Specific heat
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LIST OF PRINCIPAL SYMBOLS

d,, ccllisional diameter (eqn. 6-11)

&, uait electrical charge in e.s.u.

ey, electrical charge per unit mass of component k&
e, charge density around ion j

Activity coefficient on mole fraction scale

f, shearing force per unit area

Optical distance (eqn. 5-10)

Gravitational acceleration

Molar enthalpy of system

h;, partial molar enthalpy of component ;

A, molar enthalpy of pure component i

height of diffusion cell

h, Planck’s constant

Frequency of molecular transition (Chap. 9)
Thermal conductivity coefficient

kap, k*, velocity constants

k, Boltzmann’s constant

Length

Molality

Mass

n,, rth moment about refractive index gradient curve
m*, mg, m,, matter fluxes in thermogravitational column
Refractive index

n;, number of molecules of component i

ng, hydration number

Pg, Dartial pressure of gas over electrode-

Heat

dn 4R, 91, €nergy quantities used in Wirtz theory of transport processes
Radius of molecule

ry Frictional coefficient (Klemm)

$, entropy per unit mass

si, partial molar entropy of component i

Time

t;, Hittorf transference number of ith ion

Molar internal energy of system

u, specific internal energy of system

u;, mobility of ith ion

Molar volume

v;, partial molar volume of component i, eic.

vy, free volume per molecule

v,, velocity of rth reaction - _

v}, velocity of reaction r in local volume element

v, velocity

Wy, mass fraction of component &

Abscissa in experimental refractive index gradient curve
Ordinate in experimental refractive index gradient curve
¥, activity coefficient of component i on molar scale
Valency

Vertical coordinate in diffusion cell

Optical constant, fractional part of frings displacement (Chap. 5)
Thermal diffusion factor

oy * Sclute fraction’ (eq. 5-105)



LIST OF PRINCIPAL SYMBOLS

B Optical magnification factor, cell constant for diaphragm diffusion cell (Chap. 5).
Coefficient of sliding friction in Stokes’ hydrodynamic theory of diffusion
(Chap. 6)
Coefficient of thermal expansion
7 Ratio of specific heats
Parameter used in theory of thermogravitational column
Gyromagnetic ratio (Chap. 5)
¥ Activity coefficient on molal scale of component i
A?* Mean square displacement of diffusing molecule
035 Solubility parameter at 25°C :
84(5-) Increments of velocity of positive (negatwe) ion due to electrophoretic
effect

Thermoelectric power
Interaction energy of molecular pair i, j
Normalized coordinate in Gaussian curve
Viscous resistance per mole
Viscosity (17;, of binary solution, 7;, 75, of pure components)
Coordinate of normalized Gaussian curve
Entropy source (Chap. 2)
Characteristic time (== D/h3%)
Coefficient of electrical conductivity
“Transmission coefficient (Chap. 6)
Characteristic length (Chap. 6) in Debye-Hlickel theory of electrolytes
A Wavelength of light
A; Equivalent conductance of ion species i
i Molar chemical potential of component i
jfii Molar electrochemical potential of ion species i
v Stoichiometric coefficient
Number of ions produced per mole of salt (=v, + v.)
¢ Degree of advancement
Reduced height in diffusion cell
IT Peltier coefficient
p Density
pi Local density of component of component / (mass per unit volume)
o Soret coefficient
o7 Thomson coefficient
T Time interval (Chaps. 2 and 5)
Temperature interval (Chaps. 8, 9, and 10)
® Dissipation function (Chap. 2)
¢ Volume fraction (Chap. 7)
¢. * Apparent molar thermal conductivity coefficient * of component i
x Packing factor (Chap. 6)
Y Electrical potential
Q Relative fringe displacement of Gouy fringe pattern of polydisperse system
(Chap. 5)
w;, wy, Molecular velocities derived from °platzwechsel’ theory (Chap. 9
3, dielectric constant
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eqn. (2.8). For y; , read g,

line 5. For P'd'V, read P'd'V
ref. 30. Journal is Z. phys. Chem.
eqn. (4.85) should read:

*

. S
Wy —¥p) +Ws—¥p) =~ — —;i.AT

linel. For*..,5%p)see..’,read*.., S, 5 (see..’
line 2, For * (s 3+ Sqp. (The..’, read
‘(%5 +Sks). The..’
ASR) AS9
R ) read { —F

eqn. (4.104). For -T) ) in the second term,
z

and close brackets at end of last term

line above egn. (4.107). Fors, ,read §,. For5_,read §_
line 22. For Dg,h , read Dy

eqn. (6.3). For V, ,read v,

line 17. For J§ = D}dc,/dx , read J§ = — D dc,/dx
para. 2. For p, , read v} throughout

eqn. (6.31). For l.c;_"’ read E_hT

line above eqn. (6.38). For D , read D

eqn. (6.41). For D'4¥ | read D¢

line 7. For D'4N  read D¢

para. 2, line 11. For ¢ assumption ’ read * assumptions ’
line 10. For * product D'2B¢’, read * quotient D*%/B*°
line 7. For D}, n,,v} , read D*,5,1°

Table heading. For ‘ D¥,, D¥,’, read * D,,,D'%,’

line 29. For ¢shall’, read ¢ small”

Table heading. For ‘IN’, read ‘ IM’

eqn. (9.6). For (2, v, + L{v)), read (£, v, — L))
3 lines below eqn. (10.10). For s% , read S%

Figure 10.8. For 0-1M , read 0-01m

line 8. For Di’'/Di , read D;/D,

para. 2, line 10. Fory = Iv,,/3 , read n = piv,,(3

line 14. Forv,,read V,

8\1/2 g\~ 12
eqn. (11.27). For (—) v, , read (—) Vo
ny Y
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INTRODUCTORY SURVEY

THE diffusion of one liquid into anocther or that of a solid into a liquid, the
transfer of heat or electricity from one point in space to another, are all
examples of ¢ flows’ taking place under the influence of ‘forces’; in these
examples the forces are the gradients of concentration, temperature, and
electrical potential respectively. The analogy between heat flow and diffusion
appears to have been pointed out for the first time by Berthollet!, in his
discussion of the mechanism of the dissolution of a salt crystal in water. The
crystal dissolves, and removal of the dissolved solute from the surface may
involve pure diffusion, occurring without visible movement of the solution
as a whole, and, in addition, a macroscopic flow of the denser parts of the
solution relative to the lighter parts. Similarly, heat flow by conduction may
be accompanied by convection. There is no analogue in material transport
processes to the process of radiation in heat transfer. Again, the flow of
electricity in an electrical conductor is analogous to heat flow and to the
process of pure diffusion. The first quantitative studies of these transport
processes were directed towards the discovery of the relationships between
the ‘ flows * and the ‘ forces’ causing the ‘ flow ’. ‘In the case of heat con-
duction, the flow of heat was found by Fourier? to be a linear function of the
temperature gradient causing the flow. Five years later-Ohm showed that the
electric current flowing in a conductor was a linear function of the potential
difference between the ends of the conductor.. Thus the relationship between
the flow and the force causing the flow was found to have a simple linear form
for the transport of both heat and electricity. Berthollet’s analogy between
heat conduction and diffusion was rediscovered by Fick® who assumed that
the force responsible for diffusion flow in a binary mixture was the gradient
of concentration, and formulated the relationships now known as Fick’s
first and second laws of diffusion in a manner exactly analogous to that used
by Fourier in the heat conduction problem, replacing the temperature
gradient in Fourier’s equation by. the concentration gradient.

The general form of these linear relationships for a one-dimensional
system is,

= — (copstant)df/dx

where J represents a flow of heat matter or electricity across a suitably
chosen reference plane per unit time in a one-dimensional system, and fis
the corresponding potential, namely temperature (7’), concentration in gram
molecules of component i per unit volume (c,), or electrical potential ().
The so-called phenomenological relationships for heat flow, matter flow,
and electricity flow, are then written as,

Jo=—k dT/dx (Fourier’s Law) (1.1)
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Ji = - D dc‘/dx (Fick,s LaW) (1-2)

I = —xA.dyfdx ~(Ohm’s Law) (1.3)

J, and I are respectively the heat flow per unit area per unit time, and the
electricity flow across a defined reference plane perpendicular to the direction
of flow, and %, x are the coefficients of thermal and of electrical conductivity.
J, is the flow of component i in mass units per unit area per unit time across
a reference plane perpendicular to the direction of flow and D is the diffusion
coefficient. While the choice of a reference plane is usually simple for heat
and electricity flow, and for matter flow in a solid mixture, this is not the
case for diffusion in liquid mixtures, as Fick was himself aware. This problem
is discussed in Chapter 3.

Usually Ohm’s law is used for a uniform conductor across which a constant
potential (—Ay) is applied. Then, if the conductor is a uniform bar of -
length /:

I1=xA/l.AY = AY/R (1.4)

where R is called the electrical resistance of the bar, obtained by measuring
the time-invariant or steady state value of the current I produced by a given
Ay. This steady state is established almost instantaneously, and the rate at
which it is established is not therefore of interest for most purposes. However, .
the time invariant state is established much less rapidly in the case of heat or
matter flow, and the rate of establishment is of considerable interest. When
systems not in a steady state are being studied it is convenient to eliminate
the dependent variable J from equations (1.1) and (1.2). If, at a plane x the
flows of heat and matter are given by J, and J, respectively, the fluxes at
plane x 4 6x will be given by J, + (an/ax) ox for heat flow, and by
J; + (0J4/0x) . 6x for the flow of component i. For heat flow,

8|oK(J,) = — /x(J,). 6%

or p.C.ox 8T(ot = d[ox(k .0T|dx).o6x
and hence 0Tjot = 1/pC . d/ox(k .0T[ox)
= k/pC. 3> Tjox? (1.5)

if k is independent of x. Here p is the density, ¢ the time, and C the heat
capacity of the conducting material. The quantity k/pC is known as the |
diffusivity (Kelvin), or thermometric conductivity (Maxwell) and written K.
For diffusion, a similar argument leads to the equation,

0c,/0t = 8/ox(D . 0¢,/0x) = D. &% fox? 1.6

if D is independent of x. This is now termed Fick’s second law of diffusion,

though Fick himself considered this to be the diffusion law, and equation (1.2)
to be simply a necessary mathematical step in the derivation of (1.6).
Equations (1.5) and (1.6) are of considerable importance in the interpretation
of experimental work on systems not in a steady state. In order to obtain
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values of D or K from such measurements it is necessary to solve (1.5) or
(1.6) subject to boundary conditions appropriate to the particular experi-
mental arrangement used. An equation relating measurable quantities and
the constants D or K is then obtained. For example, if a semi-infinite solid,
initial temperature zero, is placed in contact with a source of heat maintained
at a temperature T, in such a way that the boundary is at x = 0, then the
temperature T at time ¢ after contact is made, at a point in the solid distance x
from the boundary, is given by,

T= To(l —erf__"_)

2/(K1)

provided that K is constant throughout the system. The function erf
{x/2,/(Kt)} is defined as

f: exp[ — x/2\/(K9)].dx

Hence K can be calculated from measurements of T, T;,, x and . Much
attention has been paid to the solution of equations (1.5) and (1.6) for a
variety of boundary conditions*-%, and the nature of the particular experi-
mental method used for the determination of K or D determines the particular
.solution which must be used in order to obtain the constants from experi-
mental measurements. In many cases, the coefficients K and D cannot be
considered as constant over a wide range of experimental conditions, and,
unless these are carefully chosen, the integral forms of (1.5) and (1.6) ob-
tained assuming K or D to be constant will no longer be appropriate. In some
instances it is possible to obtain solutions for cases in which D or K are
variable; these are limited in application, and more difficult to handle than
the simpler ones. It is usually easier to choose experimental conditions such
that the variation of the coefficients is sufficiently small to be ignored; the
standard solutions of the differential equations (1.5) and (1.6) can then be
used without noticeable error. Alternatively, steady state methods may be
devised for which equations (1.1) and (1.2) can be used directly.

The above discussion has been concerned with the magnitude of the flow
produced by a force which is obviously directly related to it, for example, the
flow of heat under a temperature gradient. There are, however, a number of
phenomena in which a force of one kind produces a flow of another. The
classic example of this is the flow of electric current induced by a temperature
gradient across a junction between two dissimilar metals (Seebeck effect), and
the inverse effect, the liberation of heat at the junction when a current of
electricity passes across it (Peltier effect). The presence of a concentration
gradient in the solution of an electrolyte is associated with a gradient of
electrical potential, the diffusion potential. If a temperature gradient is
applied to a liquid system of more than one component, concentration
gradients will be slowly built up in the solution until a steady state is reached
in which a time invariant concentration gradient remains unchanged as long
as the temperature gradient exists. When this is removed, the concentration
gradient will gradually disappear.

This was first observed by Ludwig?. He enclosed a concentrated solution
of sodium sulphate in an inverted U-tube, cooled one limb in ice, and
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heated the other. The solute migrated into the cooled limb under the
influence of the temperature gradient, and, after a short time, crystals of the
salt appeared in the cold limb. Solutions of electrolytes were first studied in
detail by Soret® who found that small but definite increases in concentration
occurred in the cooler portion of the solution after a long period of time
had elapsed. A general explanation of the effect was proposed by Van't
Hoff® who suggested that the solute distributed itself over the unequally
heated column in such a way that the osmotic pressure. of the solution was
constant at all points along the column. This theory requires that for salts of
similar valence type in dilute solution, the observed change in concentration
should be the same under the same experimental conditions. Both Arrhenius!®
and Scarpa'! obtained results which suggest that this was probably not the
case. The phenomenon attracted no more than occasional interest for
many years. It was suggested as an explanation for the observed separation
of the components of rock magmas, and is probably valid in certain cases of
such separations!?,

In the field of metallurgy, it was at one time used to account for inverse
segregation in solidifying metal ingots!®, In certain alloys the component
with the lower melting point concentrates at points where the higher melting
component would be expected in excess, and some notable experimental
work was done on the magnitude of the effect in molten metal mixtures'4, In
fact the effect seems too small to account for the experimental observations
on ‘inverse segregation’. From time to time experimental studies which
were principally, though not entirely, concerned with electrolyte solutions,
were reported’®. In most of these the liquid column was enclosed between
two horizontal metal plates one or two centimetres apart and separated by
insulating walls. The upper plate was heated with respect to the lower one to
minimize the disturbing effect of convection currents. The temperature
equilibrium is established within a few minutes in such cells but the thermal
migration process or ¢ pure Soret effect * takes place over a period of many
hours. Finally a steady state is attained in which a stable and characteristic
concentration gradient is present in the liquid column. The measurement of
this has been the object of the majority of researches with this form of
apparatus, though it is possible to obtain an estimate of the ordinary diffusion
goefficient of the system by measuring the rate at which the equilibrium is
attained.

The separations found in such experiments are small, but the phenomenon
can be used to obtain rapid, and in some cases complete, separation of the
components of a mixture. The method was first suggested and used for the
separation of isotopes in the gas phase'®, but was rapidly extended to the
separation of liquid ‘mixtures'”!8, The temperature gradient is established
between two vertical surfaces less than 1 mm apart. A steady state equilibrium
is rapidly set up over this short distance in the horizontal plane, the solute
being enriched at either the hot or the cold wall. In addition to this horizontal
separation, there is a convective flow of the liquid upwards in the region of
the hot wall and downwards in that of the cold wall. If the solute migrates to
the hot wall under the influence of the temperature gradient, it is carried
upward and becomes enriched at the top of the column. If it migrates
initially to the cold wall, it concentrates at the bottom. There are some
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analogies with the process of separation in a distillation column and very
considerable separations can be achieved rapidly in favourable cases. These
columns have also been used in fundamental studies of the separation process
and it will be shown that, in principle, the same information can be obtained
from experiments with them as can be obtained from the pure Soret effect
cells. The inverse effect, the heat flow associated with a concentration
gradient, is known as the Dufour effect. It has not been observed for liquids,
probably because of their high thermal conductivities, but it has been found
in gaseous mixtures and studied, under the name ‘diffusion thermo-effect’,
principally by Waldman?®.

A phenomenological description of the Soret effect can be given in terms
of an extension of Fick’s law and Fourier’s law; other, similar, phenomena
could be treated in the same general way. As in the simpler cases, these
extended equations, and suitable integral solutions of them, are essential to
the interpretation of the experimental measurements but contribute nothing
to an understanding of the fundamental nature of the phenomena being
studied. A classical thermodynamic treatment of these transport processes is
not strictly possible because the systems are not in thermodynamic equilib-
rium. Certain ad hoc applications of these methods to transport phenomena
have given the correct results, the earliest and best known example being
Thomson’s treatment?? of the problem of metallic thermocouples. He divided
the phenomena occurring in a thermocouple into two classes, reversible and
irreversible, calculated the entropy changes in the reversible class, and
equated the sum of these to zero. Entropy changes in the irreversible
processes were neglected. The equations obtained by this method were
found to be applicable to the experimental data, and this provided a necessary
confirmation of the classification into reversible and irreversible phenomena.
A quasi-thermostatic theory of this kind lacks generality since it depends for
its truth upon a correct assignment of the observed effects ir. the system into
reversible and irreversible. Neither can it give a complete description of all the
possible effects which can appear in systems in which more than one kind of
force is in operation, and of the relationships which must exist between them.

A general thermodynamic theory of systems which are not in equilibrium
has been developed in recent years which is free from these objections
(Chapter 2). It is possible to give a coherent account of diffusion, thermal
diffusion, thermal conductivity, as well as of other transport processes,
without introducing any special hypotheses. The general statements derived
in this way are valid as long as the system does not depart too far from a state
of true thermodynamic equilibrium. The theory is of particular use when
applied to those states of pseudo-equilibrium which are characteristic of
systems in which more than one irreversible process is occurring. In these,
the properties of the sysiem become independent of time, though it is
certainly not in thermodynarmic equilibrium. An example is a thermocouple
from which no current is being drawn. As long as the temperature gradient is
maintained constant, the thermal e.m.f. remains so, and the system is said
to be in a steady state. In this instance the steady state is reached almost
instantaneously, but in other cases it may take many hours or days to
establish, e.g. the Soret equilibrium in liquid mixtures. It is for systems iz
such states that the thermodynamic theory is most effective.
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However, with all its power to provide general relationships between
different observables, at least within a range of experimental conditions, the
thermodynamic theory cannot give any information about the magnitude of
coefficients such as k, D or x in equations (1.1), (1.2) and (1.3). To do
this, kinetic theories must be formulated for each phenomenon. This is a
difficult task for liquid mixtures. For dilute elecirolyte solutions it i3 possible
to predict the variation of elecirical conductivity and of the diffusion co-
efficient with concentration, and to relate the limiting value of the latter to the
limiting ionic conductivities. If there is a great disparity in the size of the two
species of molecules forming a binary mixture, the velocity under an applied
force of the larger one, if spherical, can be calculated from Stokes law since
the medium in which the motion takes place can be regarded as continuous
in these circumstances. Since 1946 considerable advances have been made in
the statistical-mechanical treatment of transport processes in liquids, a
treatment which in principle is applicable to any class of liquid or liquid
mixture. In fact, because of mathematical difficulties the discussion is
usually confined to the special case where the force between two molecules is
derivable from a potential which is a function of intermolecular distance
alone, i.e. to monatomic liquids. The most successful development of these
theories is perhaps that due to Kirkwood®, who assumed that the force on
any sub-set of p particles due to the remaining (N'— p) is analogous to the
average frictional force exerted on a particle of colloid dimensions under-
going Brownian motion. Other starting points are,possible, but have so far
proved rather less useful?*-%4, The first step in Kirkwood’s theory (and in
others) is the calculation of the time-average distribution, when the system
is perturbed by the steady state transport process, of single and pair molecular
densities in a hyperspace in which the 3N positional and 3N mdOmentum
coordinates of the system can be represented, and to express the transport
coeflicients in terms of these densities. This last problem has been solved?%:26
and the calculation of the time-average distribution of densities has been
carried out for viscous flow® 2 and thermal conductivity®®3!, Fair success
has been obtained in calculating the shear viscosity and thermal conductivity
of liquid argon but the major unsolved problem in this field is the calculation
of a frictional coefficient { which appears in all the final equations. This is
introduced because of the analogy drawn between the force on the sub-set to
the force F(7) on a colloid particle, mass m, undergoing Brownian motion,
for which,

F(®)/m = A(t) — {(v = vo)

where v is the instantaneous velocity of the particle, v, the local mass velocity
of the liquid, and,

A(t) = v + {(v — vp)

Some of the difficulties can be avoided by assuming that the fluid acts as a
collection of rigid spheres®®®, but calculations of the viscosity and of the
temperature coefficient of the viscosity of a number of liquids agreed only
moderately well with experimental data., An excellent review of these
statistical theories has recently been published®. ’
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