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FOREWORD

This Handbook has been compiled to serve as a modern source of
technical information for those directly connected with the compound-
ing and processing of rubber and synthetic elastomers in their dry
forms. It does not contain information on latex compounds and their
uses. That subject is covered comprehensively in a separate publica-
tion, the Vanderbilt 1954 Latex Handbook.

In scope, this tenth edition covers essential points that a new-comer
in the field of rubber technology will find most helpful to his ad-
vancement. It should also serve as a handy and up to date reference
for the experienced man who may already have acquired the habit of
using earlier Vanderbilt Handbooks as his compounding guide. Many
features of previous editions have been retained or revised, as re-
quired, to keep pace with changing times. New information on
synthetic elastomers and their uses has been added.

Some of the material contained in earlier Handbooks has been
deleted, with reluctance, from this current edition. While reflecting
in no way on the value of former features, the displacement of his-
torical information, statistics available from trade publications, and
test procedures adequately described in ASTM and other publications
has been necessary to permit the incorporation of current essentials
while holding size to reasonable proportions.

Articles on elastomers have been contributed by well qualified in-
dividuals. Much of the information on their compounding and cur-
rent uses is also of industry-wide origin, supplied direct or worked
into its presented form with assistance from members of the Vander-
bilt technical service organization.

Our thanks to all whose efforts are reflected in the contents. It is
hoped that the overall presentation will be a lasting testimony to their
kind co-operation.

George G. Winspear
Editor
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Tntroduction to WAY:I:31: 3 COMPOUNDING

RuBBER COMPOUNDING is a broad term used to describe the art of
developing useful products from elastomeric materials of natural or syn-
thetic origin. For over a century, the tree-derived rubbers were the center
of all compounding activities in the field which gives our industry its
name.

Then the tree grew many branches. Man-made synthetic rubbers were
discovered and became available in commercial quantities. Some of these
have proved to be capable of substituting for, or replacing natural rubber
in many of its established applications. Others serve as base materials
for compounding to obtain unique properties as judged by natural rub-
ber standards.

To be a successful and competent “rubber compounder,” capable of
using all these materials to best advantage requires a thorough under-
standing of the following points:

1. The rubbers as raw materials

2. Chemicals (compounding materials) used to modify them
and develop the desired properties

3. Handling and processing methods and problems

4. How to compare and evaluate compounded rubbers

5. The design and fabrication of rubber products for various
end uses.

These subjects and related information covered in the following text
can serve in a number of ways...as an introduction to rubber com-
pounding, as a refresher for the memory that tries to retain many things,
but frequently forgets; or as a source of information on subjects relating
to the specialized fields that make up the rubber industry.



1.

Commercial Rubbers

Types Available °* Properties °* Uses

* Natural Rubber

* Butadiene-Styrene Rubbers
* Neoprene

* Nitrile Rubber

* Butyl Rubber

* Reclaimed Rubber

® Polysulfide Polymers

* Silicone Elastomers

® Fluorocarbon Elastomers
* Hypalon Synthetic Rubber
* High Styrene Resins
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NATURAL RUBBER
by Otis D. Cole

The Firestone Tire & Rubber Co.
Akron 17, Ohio

Although rubber is found in over 200 different plant species distributed
over various countries of the world, the majority of the natural rubber
of commerce comes from well under a dozen of these. In normal times,
only one of these few has any great significance in the natural rubber
picture. This is Hevea brasiliensis, a tree which is indigenous to Brazil
and is now cultivated in the tropical rain forest regions of all continents.
It does not thrive well outside a belt including 15 degrees of latitude on
each side of the equator. Since Hevea rubber comprises such a large
portion of the natural rubber of commerce, the material in this chapter,
unless specifically stated otherwise, will concern it only.

Historical

When the first European explorers came to the New World, they
found the natives of Central and South America playing a lively game
in which the object was to hit or knock a solid rubber ball through a
stone ring(1).

They found that the ball was made from dried "milk” which could be
obtained by cutting the bark of certain trees. These trees were called
“Ulli” or “Ule” in Mexico and Central America, and in South America
were called “hhévé,” or “Cau-uchu” which meant “weeping wood.”
The natives also made shoes, syringes, bottles and other useful objects
from the material.

The Spaniards and Portuguese made a few desultory experiments in
coating capes with the sticky liquid latex to make them waterproof, but
the hot sun melted the rubber and ruined the garments. Pieces of rubber
and articles such as shoes, bottles, etc. were taken home as souvenirs.
However, the Spaniards missed the real value of rubber.

A Frenchman, Charles Marie de la Condamine, first pointed out the
possibilities of using rubber, providing it could be transported as a
liquid latex, or if the solid rubber could be dissolved to obtain a liquid
form for processing. The rubber industry, as such, started with inven-
tion in 1820, of the “masticator” or “pickle” by an Englishman, Thomas
Hancock. This machine made it possible to put the tough rubber gum in
a softened condition so that it could be dissolved easily in a solvent
such as turpentine and spread on fabrics.

The English name for the gum was given to it by Joseph Priestley,
the discoverer of oxygen, who found that it served much better to rub
out or erase pencil marks than the moistened bread crumbs which people
were accustomed to using for this purpose. He mentioned this in his
writings and suggested the name “rubber” for the gum.
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The rubber coated fabrics which were waterproofed, or simply
“proofed,” by coating with a solution of rubber were sticky when hot,
stiff when cold, and became resinous and very brittle after aging for a
short time. The discovery of sulfur vulcanization by Charles Goodyear
in 1839 solved these problems and is considered to be the turning point
in the rubber industry. There are numerous stories about the “‘accidental”
aspect of Goodyear’s discovery, but it must be remembered that he was
attempting to find a way of doing what he finally did by heating rubber
with sulfur, so that like a number of more recent inventions it was
a more or less “planned accident.”

At about the same time, Thomas Hancock, in England, also “dis-
covered” the secret of vulcanization with sulfur. For a long time there
was considerable controversy as to who was the original discoverer, but
it now is agreed that the honor belongs to Goodyear. However, Good-
year died without having obtained any great financial benefits from his
discovery.

The discovery of vulcanization along with the industrial revolution
and its increased demands for rubber products caused a greatly in-
creased demand for raw, or crude, rubber. For a time, increased produc-
tion of known wild rubber areas in South America and Africa and
discovery of new areas both of vine and tree type were sufficient to keep
up with the increased demand. However, the demand both for quantity
and quality grew to such an extent that the plantings of Hevea rubber
established in the Far East by the British began to pay off. After 1910,
the amount of wild rubber being used fell off rapidly to the point where
only in emergencies were any sizable amounts produced.

An Englishman, Henry Wickham, has been credited with the intro-
duction of Hevea rubber to the Far East. In fact, he was knighted for
it. However, it has been rather definitely established and authenticated
that Wickham actually acted only as the collector of the seeds for the
British India Office. He arrived in England in June, 1876 with 70,000
seeds from Brazil which were planted at the Kew Gardens in London.
Only 2397 of these germinated. About 2,000 plants were taken to
Ceylon. In June, 1877, 22 plants were received in Singapore. However,
it is not definite whether these came from Ceylon or Kew Gardens,
where another shipment of seeds from Brazil had been germinated.
From these 22 plants has sprung about 75 per cent of the cultivated
rubber of the world. By 1888 over 1,000 trees were ready for tapping
in Singapore and others were scattered in various parts of the Malay
peninsula.

In retrospect, it is amazing to note how difficult it was for anyone
to become interested in growing rubber. It is reported that until 1898
the idea of plantation rubber was laughed at by the very people who
later became its champions. The man who actually has been credited
with the practical establishment of the rubber plantation industry in
the Far East is Henry N. Ridley (2).
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While he was Director of the Botanic Gardens in Singapore, he was
reprimanded by one governor for “wasting his time” and was called
“Mad Ridley” or “Rubber Ridley” by his friends. Nevertheless, he per-
severed with his idea, and not only distributed seeds to all who would
plant them, but also devised a satisfactory tapping system which did
not kill the trees, and developed methods for control of various diseases
which afflicted the trees. Ridley’s contributions to the plantation industry
were recognized recently when, on June 2, 1955, at the age of over 99
years, he received the Colwyn Medal from the Institution of the Rubber
Industry, 43 years after he retired from active work in Singapore. He
had also been honored previously with the Gold Medal of the Rubber
Growers’ Association in 1914, and the Frank Meyer Medal in 1928, in
addition to Civil and financial honors at the time of his retirement.

After the establishment of the plantation industry the production
and consumption of rubber increased rapidly. The development of the
plantation industry coincided closely with that of the automobile indus-
try. Each was dependent on the other for its growth. The growth of
natural rubber production since 1900 is shown graphically in Fig. 1.
In 1954, approximately 93 per cent of the total was produced in South-
eastern Asia (chiefly Malaya, Indonesia, Ceylon, and Indo-China).
Africa produced about 5 per cent and the remaining 2 per cent was
produced in Latin America and the South Sea Islands.
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Plantation Rubber—Selection of Planting Material

The early plantations were all of the seedling type, that is, all of
the trees were raised from seeds which may or may not have been taken
from selected trees. On these plantations, occasionally, some of the
trees yielded considerably more rubber than others. By grafting buds
from these “high yielders” onto the lower stems of ordinary seedlings,
it was possible to obtain a large number of high yielding trees. All the
descendants of a single tree are called a “clone.” Today most of the
plantations have been, or are being, replanted with high yielding clonal
rubber. It is of interest that probably not over two dozen clones make
up the majority of the clonal rubber plantations.

By cross breeding high yielding clones with others having other
desired characteristics, new clones having characteristics of both parents
are developed. The best of these are selected for further cross breeding.
Since it takes several years for a seed to develop into a tree which will
bear more seeds, the improvement of Hevea by cross breeding is neces-
sarily slow. It generally takes from 15 to 20 years to develop and
thoroughly establish a new clone. From a production standpoint it pays,
because the average seedling stand produces 250-500 lbs. per acre per
year, while some of the first clonal stands produced twice that amount.
There are new clones which are reported to produce upward of 1500
lbs. per acre per year under average plantation conditions while under
carefully controlled conditions some of them have been reported to yield
up to 3000 lbs. per acre per year.

ud-grufﬁng Hevea Rubber

Pluning Bud-grafted Sumn



