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Preface

Starting approximately twenty years ago, members of the-physics, teaching com-
munity began conducting systematic observations and research on student learn-
ing and understanding of physical concepts, models, and lines of reasoning. Some
of these investigations began with, or subsequently spilled over into, research
on more general aspects of the development of the capacity for abstract logical
reasoning. In this book, I have tried to bring together as many as possible of
the relevant insights into the teaching of the most basic aspects of introductory
physics—covering high school through first year college level, including basic
aspects of the course aimed at physics and engineering majors, without penetrat-
ing the full depth of the latter. ' %

Very little that I present is based on conjecture. I have invoked and referred
to most of the systematic research of which I am aware, and I have drawn on
my own observations; which have been under way for more than forty years
and have been extensively replicated over that time. One of my sources has been
the direct interview in which one asks questions and listens to the individual
student response; the other has been the analysis of students’ written response to
questions on tests and examinations. It is impossible to give all of the protocols of
student interviews and all of thé detailed supporting evidence without producing
a book of impossible length. Although I give specific examples of student response
from time to time, some of the insights are asserted without the full support they
deserve. I can only ask the careful and critical reader to bear with these gaps,
test them as opportunity arises, or turn to the more detailed literature for deeper
penetration. i

It is also impossible to mclude, in a book of reasonable length, all
of the insights emerging from research on teaching, learning, and cognitive
development. The literature is rich, varied, and rapidly increasing. I have been
selective and have tried to include observations having the most direct bearing on
classroom practice at the most basic levels of subject matter; the list of references
will open the door to those wishing to pursue greater detail and explore primary
evidence. Where a significant reference at this level is missing, the fault is in my
judgment or in my not having fully encompassed the extensive literature.

Both the Ainerican Journal of Physics and The Physics Teacher are rich in articles
discussing the logic and epistemology of various laws and concepts, outlining
improved modes of presentation, suggesting demonstrations and other ways of
making abstractions clearer and more concrete, describing ways of erigaging stu-

v
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dents in direct activities, criticizing loose and faulty approaches, introducing new
derivations, new laboratory experiments, and so forth. Every one of these func-
tions is valuable and important to our community, and 1 wish, someone, more
competent than I, would undertake to bring together the heritage that has accu-
mulated over the years in these areas into another book on physics teaching.

It is necessary for me to make clear, however, that my own purpose is
different. I have undertaken to discuss some of the elements that I believe underlie
and precede a great many of the ideas and presentations appearing in the journals.
In fact, many of the excellent suggestions appearing in the journals turn out to
be ineffective with large numbers of students, not because of anything wrong
with the suggestions, but because the students have not had a chance to master
the necessary prior concepts and lines of abstract logical reasoning. It is to this
end that I have elected to concentrate on some of these prior aspects of cognitive
development and on underlying problems of learning and understanding that have
been commanuing increasing attention in recent years. In doing this, I ih no way
disparage the valuable materials and modes of presentation that are described in
‘the journals and that enter in full force at the points where I leave off.

It must further be emphasized that I am not formulating prescriptions as to
how items of subject matter should be presented to the students or how they
should be taught, nor am I suggesting that there is one single way of getting any
particular item “across to the student.” There is tremendous diversity in style

and methatd of approach among teachers, and such diversity should flourish.
My objective is to bring out as clearly and explicitly as possible the conceptual
and reasoning difficulties many students encounter and to point up aspects of
logical structure and development that may not be handled clearly or well in
substantial segments of textbook literature. With respect to modes of attack on
these instructienal problems (avenues of explanation and presentation, balance
of laboratory versus classroom experience, use of computers and of audiovisual
aids), I defer to the style.and predilections of the individual teacher.

I have endeavored to cover the range from high school physics through col-
lege and university calculus-based courses. Some of the material, therefore, goes
well beyond high school level, and high school teachers should draw appropriate
lines, limiting the more sophisticated material to their front running students if
invoking it at all. At the other end of the spectrum, teachers in elite colleges,
dealing with highly selected students, or teachers with a highly selected student
body in calculus-based engineering-physics courses will find less relevance in the
discussions of some of the more mundane underpinnings. However, it is neces-
sary to issue a warning: there is much more overlap between the disparate popu-
lations than most teachers realize, and it is frequently startling to find how many
students, at a presumably fairly high level, have the same difficulties, preconcep-
tions, and misconceptions as do much less sophisticated students. It is only the
percentage of students having a certain difficulty that changes as one goes up or
down the scale; there is not an abrupt drop to zero at some intermediate level.
Also, students at higher levels of scholastic ability, especially verbal skills, can
usually remediate or overcome such initial difficulties at a morr *apid pace than
do other students, and a teacher needs to calibrate each of the classes with which
he or she must deal.

Some of the chapters contain appendixes giving illustrations of possible test
questions or homework problems. To keep down discursive length, I have not
included detailed discussions of these questions, but they are all designed to
implement some of the knowledge gained in the research protocols. They illus-
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trate the kinds of questions that might be added to the normal regimen of quanti-
tative end-of-chapter problems to confront the mind of the learner with aspects
otherwise not being made explicit. The examples being given are an invitation
more than an end point. The pool of such questions must be greatly expanded
to enhance variety and flexibility. Such expansion will take place not through the
output of one individual, whose imagination gives out at some finite point, but
through the superposition of effort on the part of numerous interested individuals,
each of whom brings a new imagination to the effort. I long to see my limited set
of examples greatly expanded. -

Finally I point to the following unwelcome truth: much as we might dislike
the implications, research is showing that didactic exposition of abstract ideas and
lines of reasoning (however engaging and lucid we might try to make them) to
passive listeners yields pathetically thin results in learning and understanding—
except in the very small percentage of students who are specially gifted in the
field. Even in the calculus-based course, many students have the difficulties, and
need all of the help, outlined in these pages. In expressing this caveat, I am,
of course, not advocating unclear exposition. I am pointing to the necessity of
supplementing lucid exposition with exercises that engage the mind of the learner
and extract explanation and interpretation in his or her own words.

It is obvious that ideas and information such as I have summarized here
cannot be developed in seclusion. I am deeply indebted to the hundreds of stu-
dents who have submitted to my questioning, accepting the tension that goes
with my shutting up and waiting for their answers. I am indebted also to the
many colleagues and associates with whom I have discussed physics, prepared
test questions, and worried about the meaning of learning and understanding.
Amor.g these are my former colleagues at Amherst College: Bruce Benson, Colby
Dempesy, Joel Gordon, Robert Romer, Theodore Soller, and Dudley Towne; at
the University of Washington: David Bodansky, Kenneth Clark, Ronald Geballe,
James Gerhart, Patricia Heller, Lillian McDermott, James Minstrell, and Philip
Peters. Robert Romer, Kenneth Clark, and Phillip Peters have read extensive sec-
tions of this book and have supplied me with valued criticism, corrections, and
suggestions.

ARNOLD B. ARONS
Seattie, Washington
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CHAPTER 1

Underpinnings

1.1 INTRODUCTION

Several fundamental gaps in the background of students may seriously impede their
grasp of the concepts and lines of reasoning that we seek to cultivate from the begin-
ning of an introductory physics course. These gaps, having to do with understand-
ing the concepts of “area” and “volume” and with reasoning involving ratios and
division, are often encountered, even among students at the engineering-physics
level.

In princfple, these gaps should not exist because the ideas are dealt with, and
should have been mastered, at eatlier levels in the schools. It is an empirical fact,
however, that such mastery has not been achieved, and ignoring the impediment
is counterproductive.

Unfortunately, it is illusory to expect to remediate these difficulties with a
few quick exercises, in artificial context, at the start of a course. Most students
can be helped to close the gaps, but this requires repeated exercises that are spread
out over time and are integrated with the subject matter of the course itself. This
statement is not a matter of conjecture; it reflects empirical experience our physics
education research group at the University of Washington has encountered repeat-
edly [Arons (1976), (1983b), (1984¢)].

This chapter describes some of the learning difficulties that are involved in
the development of a number of underpinnings, including arithmetical reasoning,
and suggests exeicises that can be made part of the course work.

1.2 AREA

The concept of area is the foundation of many of the other basic physical con-
cepts, such as pressure, stress, energy flux, and coefficients of diffusion and
heat conduction. It underpins all the ratio reasoning associated with geometri-
cal scaling. Furthermore, it is essential to the interpretation of velocity change as
area under the graph of acceleration versus clock reading, to the interpretation of
position change as area under the graph of velocity versus clock reading, to the
definitions of work and impulse, and to the interpretation of integrals in general.

If you ask students how one arrives at numerical values for “area” or “extent
of surface,” many —if they have any response at all—will say “length times width.”
If you then sketch some very irregular figure without definable length or width

1



2 UNDERPINNINGS

and ask about assigning a numerical value to the area of the figure, very little
response of any kind is forthcoming. Students who respond in this way have not
formed a clear operational definition of “area.”

The reason for this is fairly simple: Although the grade school arithmetic
books, when they introduce the area concept, do have a paragraph about selecting
a unit square, imposing a grid on the figure in question, and counting the squares
within the figure, virtually none of the students have ever gone through such
a procedure themselves in homework exercises. They have never been asked to
define “area.” All they have ever done is calculate areas of regular figures such
4$ squares, rectangles, parallelograms, or triangles, using memorized formulas
that they no longer connect with the operation of counting the unit squares, even
though this connection may have been originally asserted.

Furthermore, virtually none of the students have had any significant expo-
sure to the notion of operational definition. They have had little or no practice
in defining a term by reference to shared experience or by describing, in simple
words of prior definition, the actions through which one goes to develop the
numerical value being referred to in the name of a technical concept.

1.3 EXERCISES WITH “AREA”

Ingintroductory physics teaching, it is desirable to invoke the area concept at the
earliest possible opportunity. Students should be led to articulate the operational
definition in their own words—and to do so on tests. (This is an excellent oppor-
tunity to introduce the concept of operational definition in a context that is famil-
iar and relatively unthreatening.) The fact that they had been using the technical
term “area” without adequate mastery of the concept behind it makes a salutory
impression on many students.

Homework and test problems should give students opportunity to execute
the operations they describe in the definition, right through the selection of the
unit square, superposition of the grid on the figure in question, and actually count-
ing the squages. The operation of counting must involve the estimation of squares
contained around the periphery of the figure. To many students the necessity of
estimating the fractions appears in some sense “sinful,” since it involves “error”
and is not “exact,” as-seems to be the value obtained from a formula. The actual
experience of counting and estimating should begin with “pure” areas, that is,
surface extent of arbitrarily and irregularly shaped geometrical figures. Then, as
soon as it becomes appropriate, the exercises should be extended to measurement
and interpretation of areas under v versus ¢ and under a versus ¢ graphs. (This, of
course, adds the arithmetical reasoning associated with the dimensionality of the
coordinates.)

In calculus-physics courses, the latter exercises should be explicitly linked
with the mathematical concept of “integral.” Although this might seem so obvious
as to be not worthy of mention, many students have not actually established this
connection even though they may be taking, or-may have completed, a calculus
course. Although they have been told, perhaps many times, that the integral can
be interpreted as an area, the idea has not registered because it has not been made
part of the individual student’s concrete experience; and they have never had the
opportunity to articulate the idea in their own words.

" . Such exercises should be repeated still later when the context begins to
involve “work” and “impulse.” It is only such recycling of ideas over fairly
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extended periods of +: e, reencountered in increasingly rich context, that leads to
a firm assimilation in inany students.

In noncalculus-physics courses, the concept of “integral” is not at hand
and is not necessary. Dealing with the aicas, however, breaks the shackles to
eternally constant quantities and shows the students how physics can easily and
legitimately deal with continuous change. “Capturing the fleeting instant” was one
of the great intellectual triumphs of the seventeenth century, and students can be
given some sense of this part of their intelléctual heritage through calculations that
they can easily make without the necessity of a formal course in the calculus.

1.4 VOLUME

Initially, most students have the same difficulty with “volume” as with “area.”
They grasp for formulas without having registered an operational definition of the
concept. As a result, quite a few students do not, in fact, discriminate between
area and volume; they use the words carelessly and interchangeably as metaphors
for size. .

Once the operational definition of “area” has been carefully developed and
anchored in the concrete experience of counting squares, however, the operational
definition of “volume” can be elicited relatively easily. The analogy to “area” is
readily perceived, and the counting of unit cubes is quickly accepted.

1.5 MASTERY OF CONCEPTS

It should be emphasized at this point that mastery of the operational definitions of
“area” and “volume” up to the point of recognizing the counting of unit squarcs
or cubes is only a beginning; it is still far short of the ability to use the concepts
in more extended context. At this stage, for 2xample, some studenssTparticularty
those who have had little or no prior work in science) do not discfirdnate bétween
mass and volume.! Many students, including those in engineeding+physics cours=
es, are, at this stage, still unable to compare final with initial afeas or volumes,
when the linear dimensions of an object have been scaled up dr Jown. 4

The problem of scaling is a particularly important one. It nvolves ratio rea
soning and will be discussed in more detail in Section 1.12.

1.6 RATIOS AND DIVISION

One of the most severe and widely prevalent gaps in cognitive development of
students at secondary and early college levels is the failure to have mastered rea-
soning involving ratios. The poor performance reproducibly observed on Piagetian
tasks of ratio reasoning has become well known during the past 15 years [McKin-
non and Renner (1971); Karplus, et al. (1979); Arons and Karplus (1976); Chiap-
petta (1976)]. This disability, among the very large number of students who suffer
from it, is one of the most serious impediments to their study of science.

For convenience, I separate reasoning with ratios and division into two levels
or stages: (1) verbally interpreting the result obtained when one number is divided
by another; (2) using tlie preceding intgrpretétion to calculate some other quantity.

IFor evidence concerning this assertion and for strategies that help students achieve such discrimi-
nation see McDermott, Piternick, and Rosenquist (1980); McDermott (1980); McDermott, Rosenquist,
and van Zee (1983).
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1.7 VERBAL INTERPRETATION OF RATIOS

Reasoning with ratios and division requires, as a first step, the capacitv to interpret
verbally the meaning of a number obtained from a particular ratio. The verbal
interpretations are somewhat different in different contexts. Many students are
deficient in this capacity and need practice in interpreting ratios in their own
words. .

In the primitive case in which the numbers have not been given specific
physical meaning, we interpret the result of, say 465/23, as the number of times
23 is contained in 465. This may sound like a trivial statement, but it is not. Most
students have memorized (successfully or uncuccessfully, as the case may be) the
algorithm of division but have never been given the opportunity to recognize it as
a shorthand procedure for counting successive subtractions of 23 from 465. Thus
they do not see the operation of division in perspective or translate it into simpler
prior experience. The phrase “goes into” is memorized without relation to other
contexts. Those who have not developed this perspective shouid be given the
opportunity to count the successive subtractions and to begin to see what they
are doing in the memorized algorithm. They should finally have to tell the whole
story in their own words.

At a next higher level of sophistication, we may be dealing with a ratio of
dimensionally identical quantities, for example, Ly/L;, the ratio, say, of the heights
of two buildings, or of distances from a fulcrum in balancing, or the linear scaling
of a geometrical figure. Here the numerical value of the ratio serves as a comparison:
it tells us how many times larger (or smaller) one length is compared to the other.

Next we encounter division of dimensionally inhomogeneous quantities: mass
in grams divided by volume in cubic centimeters; position change in meters
divided by a time interval in seconds; dollars paid divided by number of pounds
purchased. Here the result of division tells us how much of the numerator is
asscciated with one unit of whatever is represented in the denominator.

Finally, if we have 500 g of a material that has 3.0 g in each cubic centimeter,
the numerical value of 500/3.0 tells us how many “packages” of size 3.0 g are
contained inthe 500 g sample. Since each such “package” corresponds to 6ne cubic
centimeter, we have obtained the number of cubic centimeters in the sample.

1.8 EXERCISES IN VERBAL INTERPRETATION

Many students have great difficulty giving verbal interpretations like those illus-
trated in the preceding section, since they have almost never been asked to do so.
Without such practice in at least several different contexts, students do not think
about the meaning of the calculations they are expected to carry out, and they
take refuge in memorizing patterns and procedures of calculation, manipulating
formulas, rather than penetrating to an understanding of the reasoning. As a con-
sequence, when they find themselves outside the memorized situations, they are
unable to solve problems that involve successive steps of arithmetical reasoning.

Explaining or telling students who are in such difficulty the meaning of par-
ticular ratiog, however frequently or lucidly this may be done, has very little effect.
It is necessary to ask questions that lead the students to articulate the interpreta-
tions and explanations in their own words. Here are some typical excerpts from
such conversations: &

Suppose students having difficulty with a problem involving the use of the
density concept are asked: “We tock the measured mass (340.g) of an object and
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divided it by the volume (120 cm®). How do you interpret the number 340/120?
Tell what it means, using the simplest possible words.” Some will answer “That
is the density.” These students have not separated the technical term, the name of
the resulting number, from the verbal interpretation of its meaning. (This involves
an important cogrutlve process that will be discussed in another chapter.)

When it is pointed out that the name is not an interpretation, some students
will say “mass per volume”; others might say “the number of grams in 120 cubic
centimeters.” (Exactly parallel statements are likely to be given if the ratio is
position change divided by time interval.) Very few students having trouble
with the original problem will give a simple statement to the effect that we have
obtained the number of grams in one cubic centimeter of the material.

One can now adop: the strategy of going back to some more familiar context:
“Suppose we go to a store and find a box costing $5.00 and containing 3 kg of
material. What is the meaning of the number 5.00/3?” Some students will still say
“That is how much you pay for 3 kg” but, in this more familiar context, many
will recognize that we have calculated how many dollars we pay for one kilogram.
(The former group is in need of further dialog, using more concrete examples,
before a correct response is found.) One can now try to get the students to the
generalization that in such situations the resulting number tells us “how many of
these (in the numerator) are associated with one of those (in the denominator).”

If one then asks: “In the case of the box costing $5.00 arld containing 3 kg,
suppose we now consider the number 3/5.00. In light of what we concluded in
the previous example, does this number have an interpretation?” Many students,
including some who gave the correct interpretation of 5.00/3, now encounter
difficulty. Some revert to earlier locutions such as “how many kilograms you get
for 5.00”; many consider the number meaningless or uninterpretable.

In such instances there seem to be two difficulties superposed: (1) although
the students may have previously been given some opportunity to think about or
calculate “unit cost” (how much we pay for one kilogram), they rarely, if ever,

have been asked about the inverse (how much one gets for one dollar). (2)-5.00/3

involved the division of a larger number by a smaller one. To many students this
is more intelligible and less frightening than the fraction 3/5.00.

After students have been led through the parallel mterpreta'aon of both ratios,
one can usually go back to a case such as mass divided by volume or change of
velocity divided by time interval and elicit a correct interpretation of the new ratio
and its inverse. Then one can elicit the generalization being sought, namely, that
such a ratio tells us how much of the numerator is associated’ with one unit of
whatever is represented in the denominator. It is essential, however, to elicit the
word “one”; use of the word “per” by the student is no assurance that he or she
understands the concept (see the discussion in the next section).

1.9 COMMENT ON THE VERBAL EXERCISES

Note the strategy being employed in the dialogs suggested in the preceding sec-
tion: although some students have responded previously to problems such as
“calculate the cost of one kilogram if 3 kg cost $5.00,” very few students have
ever been confronted with the ratio and asked to interpret it in words, that is, they
have never reversed the line of thought, traversing it in the direction opposite to
that previously experienced.

In Piagetian terminology, the term “operations” denotes reasoning processes
that can be reversed by the user. Thus students who can calculate the unit cost



