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Preface

The use of electronics has become intimately intertwined with human
lives. From laptops and mobile phones to medical instruments and aircraft
control units, electronic devices are used in most products today and in
increasingly varying environments. The dominant trend is toward smaller,
lighter, and faster electronic devices. Electronic packaging and plastic
encapsulation play a significant role in this trend. With advances in elec-
tronic packaging including three-dimensional packaging (or die-stacking),
wafer-level packaging, environmentally friendly or “green” encapsulant
materials, and extreme high- and low-temperature electronics, a book on
encapsulation technologies used in electronic applications has become
essential.

This book describes the fundamentals of plastic encapsulation, discusses
advances in encapsulation materials and technologies, and explores the
intersection of emerging technologies such as nanotechnology and bio-
technology with encapsulant materials. The main emphasis of this book is
on the encapsulation of microelectronics; however, the encapsulation of
connectors and transformers is also addressed.

The book is organized into eight chapters. Chapter 1 presents an overview
of electronic packaging and encapsulation. Various types of plastic-
encapsulated microelectronics including 2D and 3D packages are
discussed. Chapter 2 is devoted to plastic encapsulant materials, which
are categorized according to encapsulation technology. A separate sec-
tion is devoted to environmentally friendly or “green” encapsulant
materials. Chapter 3 is focused on encapsulation process technologies
including molding, glob-topping, potting, underfilling, and printing
encapsulation. In this chapter, the encapsulation of wafer-level and 3D
packages is also discussed. Chapter 4 discusses the characterization
of encapsulant properties including manufacturing, hygro-thermo-
mechanical, electrical, and thermal properties. Chapter 5 describes
encapsulation defects and failures, while Chapter 6 presents defect and
failure analysis techniques including both non-destructive and destructive
tests. Chapter 7 is focused on qualification and quality assurance of
encapsulated microelectronics. Both virtual and product qualification
processes are discussed and accelerated tests and industry practices are
presented.

XV
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The final chapter, Chapter 8, explores trends in and challenges for
electronics, packaging, and plastic encapsulation. Moore’s law and “More
than Moore” are presented. Evolution from integrated circuits to system-
in-package and system-on-package is discussed. Extreme high- and low-
temperature electronics are described. Furthermore, plastic encapsulation
associated with microelectromechanical systems, nano-electronics and
nanotechnology, bioelectronics and biosensors, and organic light emitting
diodes and photovoltaics is discussed.

This book is most suitable for the professional engineer and material
scientist interested in electronic packaging and plastic encapsulation.
Entrepreneurs in the electronics industry can also benefit from this book.
Additionally, this book can be used as a textbook in an elective course for
senior undergraduates or first-year graduate students with a background in
material science or electronics.
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1 Introduction

Electronics are used in a wide range of applications including computing,
communications, biomedical, automotive, military, and aerospace. They
must operate in varying temperature and humidity environments ranging
from indoor controlled conditions to outdoor climate changes. Exposure to
moisture, ionic contaminants, heat, radiation, and mechanical stresses can
be highly detrimental to electronic devices and may lead to device failures.
Therefore, it is essential that the electronic devices be packaged for protec-
tion from their intended environment, as well as to provide handling,
assembly, and electrical and thermal considerations.

Electronic packaging may involve either hermetic (ceramic or metallic)
packaging or non-hermetic (plastic) encapsulation. Currently, more than
99% of microelectronic devices are plastic encapsulated. Improvements in
encapsulant materials and cost incentives have stretched the application
boundaries for plastic electronic packages. Many electronic applications
that traditionally used hermetic packages such as military are now using
commercial off-the-shelf (COTS) plastic packages. Plastic encapsulation
has the advantages of low cost, availability, and manufacturability.

Much of the focus is aimed at the research and development of new and
improved encapsulants. With recent trends in environmental awareness,
new environmentally friendly or “green” encapsulant materials (i.e., with-
out brominated additives) have emerged. Plastic packages are also being
considered for use in extreme high and low temperature electronics. 3D
packaging and wafer-level packaging require unique encapsulation tech-
niques. Encapsulants also play a role in emerging technologies. Modified
existing or newly developed encapsulant materials are being developed
for microelectromechanical systems (MEMS), bio-MEMS, bioelectronics,
nanoelectronics, solar modules, and organic light-emitting diodes. Nano-
composite encapsulants with improved material properties are also being
explored.

In this chapter, a historical overview of encapsulation is provided. Elec-
tronic packaging including package levels, encapsulated microelectronic
devices, hermetic packages, and encapsulation methods and materials are
discussed. Microelectronic packages including both 2D and 3D packages
are described. Finally, a comparison of hermetic versus plastic packages is
presented.



2 ENCAPSULATION TECHNOLOGIES FOR ELECTRONIC APPLICATIONS

1.1 Historical Overview

Electronic devices have been packaged in a variety of ways. Among the
first package types was a preformed package made of Kovar (an alloy of
nickel, cobalt, manganese, and iron). Kovar, a trade name of Westinghouse
Electric and Manufacturing Company, and invented by Howard Scott in
1936 [1], has the advantage of a coefficient of thermal expansion (CTE)
similar to that of glass. It is a suitable choice for sealing to glass because
of lower CTE mismatch stresses.

One of the early transistor packages is shown in Fig. 1.1 [2]. In this
package, the emitter, collector, and base connector leads were inserted

Kovar Ring

~
Collector
Lead \
]

Die

Base Lead

Emitter Lead

Kovar Disc Wire Die

Cover
Collector Kovar Ring
Lead
x )
Base Lead

Glass
Bushing

Welding
Wire (to Emitter Lead) Kovar Disc Cover

(b)

Figure 1.1 Kovar transistor package: (a) top view; (b) side view [2].
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through a glass bushing positioned in a Kovar ring or cylindrical housing.
The bushing was made of a suitable electrical insulating and moisture
impervious (hermetic) glass material. The transistor device was then
bonded to the base lead and interconnected to the emitter and collector
leads using wires. The Kovar disc covers were later hermetically sealed by
welding. Ceramic packages, similar in construction to the Kovar casing,
appeared later as less expensive alternatives.

The first plastic-encapsulated packages appeared on the market in the
early 1950s. By the early 1960s, plastic encapsulation emerged as an
inexpensive, simple alternative to both ceramic and metal encasings, and
during the 1970s, virtually all high-volume integrated circuits (ICs) were
encapsulated in plastic. By 1993, plastic-encapsulated microelectronics
accounted for over 97% of the worldwide microcircuit production.

Most early microelectronic devices were compression molded where
the molding compound is heated and compressed inside the mold. Potting
soon emerged as a suitable alternative. Potting involved positioning the
electrical circuit in a container and pouring the liquid encapsulant into the
cavity. Figure 1.2 shows a typical transistor encapsulated using the “can
and header” method [3]. The transistor chip was soldered to a carrier which
was then attached to the header assembly. The header assembly consisted
of three parallel conductive lead-posts sealed into a button-like header
made of pre-molded plastic encapsulant material such as a phenolic. The
header served as a support for maintaining the relative positioning of the

Plastic Carrier
Encapsulant

Wire
N / | Chip (Die)
Lead-post

|~

Plastic
Header

Figure 1.2 “Can and header” transistor package [3].



