Professional Software
Software
Engineering
Concepts

HENRY LEDGARD with JOHN TAUER

Volume |



56ée 3Ly
Professional Software

Volume I

Software
Engineering
Concepts

HENRY LEDGARD with JOHN TAUER

-
[

(»
3

A
V'V Addison-Wesley Publishing Company
Reading, Massachusetts ® Menlo Park, California ¢ Don Mills, Ontario
Wokingham, England ¢ Amsterdam e Sydney e Singapore ® Tokyo
Madrid ¢ Bogota e Santiago ¢ San Juan



Library of Congress Cataloging-in-Publication Data

Ledgard, Henry F., 1943—
Professional software.

Contents: Software engineering — Programming
practice.
Includes bibliographies and indexes.

1. Computer software—Development. 2. Electronic
digital computers—Programming. 1. Title.
QA76.76.D47L43 1987 005 87-1760
ISBN 0-201-12231-6 (v. 1)

ISBN 0-201-12232-4 (v. 2)

Copyright © 1987 by Henry Ledgard. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America. Published simultaneously in Canada.

ABCDEFGHIJ-AL-8987



8860964

Professional Software

Volume |

Software
Engineering
Concepts

\!\l\ﬂ\\\\\\\\l\\|\\|\\\\\II\\\\l\\ll\\\\\\l\\ll\

88888888







Preface

This work treats a number of practical issues in software development. The
issues raised here are not new but fundamental to the day-to-day concerns of
the practicing professional.

In the discipline of computer science, there is a distinction to make. This
is between a fundamental approach, which is necessarily quantitative, and a
qualitative aspect that, while less easy to define, is equally important.

New tools, algorithms, design notations, structured editors, powerful
workstations, rapid prototyping—these are exciting developments. But we
must also keep sight of the more qualitative roots of our profession. These
roots include:

discipline
teamwork
craftsmanship
quality

My experience suggests that, in our desire to discover new technologies, we
are not always sharpening our understanding of concepts like the software
development process or program readability.



vi Preface

Organization of This Work

The work is organized around a series of topics. Each topic relates, directly
or indirectly, to the quality of software. The topics are collected into two
broad categories in separate volumes.

Volume 1. Software Engineering. This volume treats several issues
that are mainly relevant to the writing of large programs. This is the area
generally called software engineering. This includes topics such as the need
to reaffirm the importance of the software lifecycle and the organization of
programming teams. This section also treats the difficulties users encounter
in software, an aspect of software engineering called ‘“‘software human
factors” or ““software human engineering.” Here, for example, the idea of
user testing is discussed. User testing is a remarkably simple and pragmatic
idea—before we ship completed systems we ought to have typical users try
the system so that we can learn from their difficulties.

Volume II. Programming Practice. The second volume deals exclu-
sively with programs themselves. It treats topics like the role of program
comments, the persistence of global variables, and the use of packages. The
underlying theme of these essays is to convey the need for careful
craftsmanship in programming.

Both Volumes I and II conclude with an extended example. In
developing this example, a good number of ideas mentioned in previous
essays are put to practice. In Volume I, the example is developed in stages,
with particular attention to the software engineering process. The final
program is given as an appendix. In Volume II, the final program itself is
examined. The program is presented again; this time with annotations on
programming practice.

This work certainly does not address all the issues in software
development. These include critical topics like planning, management
techniques, resource estimating, design notations, and testing.

This book has been typeset using a monospaced font (both bold and
nonbold) for programs. Monospaced typefaces, with or without bold, are
most appropriate for programs. They promote readability and, I believe, give
the best appearance for printing programs.

Acknowledgments

A number of people have personally influenced this work, either through my
thinking about the issues or by motivating my desire to take on this effort.
These include William Cave, David Gries, Jean Ichbiah, Michael Marcotty,
Harlan Mills, and Andrew Singer.



Preface vii

Jon Hueras, over many years, has in his quiet ways continued to
demonstrate the finest in software engineering.

Richard Rasala (Northeastern University), Jerry Waxman (Queens
College, New York), Richard Rinewalt (University of Texas at Arlington),
Charles Engelke (University of Florida in Gainesville) provided helpful
review comments on an earlier version of this work. Bernhard Weinberg
(Michigan State University, East Lansing), Steven Wartik (University of
Virginia, Charlottesville), Richard Vidale (Boston University), and Daniel
McCracken (City University of New York) thoughtfully reviewed this
particular work.

The Philips courses, where I gained a clearer understanding of software
quality, were under the brilliant and inspired direction of Allen Macro,
assisted by John Buxton. Their book, The Craft of Software Engineering, is
a fundamental work in the field and is based on years of experience and
thinking. Nat Macon, my colleague, as well as the participants in the Philips
courses, strengthened my commitment to excellence and teaching.

Howard Karger provided the photographs of the light blub and the spider
web. Christine Lee provided the computer-generated piece of art depicting
the cats and the graphic for program layout.

John Tauer, a professional from another discipline, assisted me on this
work with his gifted pen and mind. He turned a table at Daisy’s into a forum
for discussing the very heart of professional practice.



To The Reader

This book is my considered opinion about professional practice. It is derived
from teaching students and professionals and from participating in numerous
software efforts. The thoughtful reader may, in places, have good reason to
hold other views. This should not confuse our common goal, the pursuit for
excellence.









Contents

Programmers: The Amateur versus the Professional
The Amateur
The Professional

SOFTWARE ENGINEERING CONCEPTS

Defending the Software Lifecycle
A Miniature Lifecycle

Some Important Details

What Can Go Wrong

The Prototype Alternative
Prototypes

What Can Go Wrong

Revisiting the Software Lifecycle

Programming Teams

Teams— A Collective Goal
Teams— An Organizational Unit
Teams— Specific Tasks

The Team as One’s Major Activity
Choosing a Team

Why Teams?

xi

13

15
16
19
22

31
32
33
34

41
42
44
47
48
50
52



xii

10.

11.

12.

Contents

The Personality Thicket
Some Problems

Personality

Egoless Programming

Can Programmers Get Better?

Work Reading and Walkthroughs
Work Reading
Team Walkthroughs

Misconceptions in Human Factors

The Primary Goal Is to Help Novices

Ease of Learning Implies Ease of Use

Users Should Help Design Systems

Menus Are Easier to Use Than Commands

Human Engineering Centers on a Few Key Design Issues
Users Will Be Comfortable with Subsets

Human Engineering Is Not Particularly a Technical Matter
Human Factors Are Chiefly a Matter of Taste

Conclusion

Three Design Tactics from Human Factors
Writing the User Manual First

User Testing

A Familiar Notation for Users

On Packages and Software Decomposition
The Concept of a Package

Packages as a Design Notation

Problem Basis

Empirical Methods

A Program Layout Experiment

A Naming Experiment

An Experiment on the Use of Procedures
A Design Notation Experiment

Scaling Up

What Is Successful Software?
A University Project

Contract Software

A Commercial Product
Summary

SOFTWARE ENGINEERING IN MINIATURE

A Small Demonstration
The Example: Text Formatting
User Interface Issues

S5
56
58
61
62

65
65
67

71
73
75
75
76
79
80
81
83
84

87
88
90
93

101
103
104
106

111
112
116
117
120
121

129
130
131
132
133

137

139
140
140



Contents xiii

A Developmental User Manual 146
Specification Issues 160
Program Design 167
Program Decomposition 171
Lessons 173
Appendix: The Example Program 179
References 211
Index 215

About the Author



xiv

Contents

Contents for Volume 11
Programming Practice

Something is Wrong, Hear

PROFESSIONAL PROGRAMMING PRACTICE

One Procedure, One Purpose

Initialization
Gray Areas

A Clear-cut Example

Developing Packages

An Example

Ada, Modula-2, and C

Global Variables
On Mental Abstraction

The Issues

Own Variables and Information Hiding
Pascal, Ada, Modula-2, and C

Summary

A Note on Visibility Issues
Name Protection

Nested Procedures

Nested Blocks

Comments: The Reader’s Bridge
Some Broad Principles
Annotating the Obvious

Marker Comments

Comments with Content
Comment Format

Summary of Recommendations
Pascal, Ada, Modula-2, and C



10.

11.

12.

Contents

The Naming Thicket

The Goal

Accuracy

Context

Abbreviation

Magic Constants

Declaring Names

Pascal, Ada, Modula-2, and C
Escaping the Thicket

Program Layout

Rationale

A Lurking Principle

Reflecting Everyday Presentation
Comb Structures

Layout Rules

Summary

C

Defining Types

Type Name versus Variable Name
Unnamed Types

Enumerated Types

C

A View of Structured Programming

What Is It?

The Two Guarantees of Structured Programming
The Remaining Debate

It Worked Right the Third Time
A Fairy Tale

What Is a Correct Program?

Can It Be Done?

Why Attempt It?

PUTTING IT TOGETHER

Conclusion
The Text Formatting Example
What’s Next

Appendix: The Annotated Program
References

About the Author

Index

XV



Programmers:
The Amateur versus
The Professional

At the outset, it should be understood that an endeavor to compare an
amateur and a professional does not describe the full hierarchy in
programming or any other vocation or avocation. The complete spectrum
might be: the ignorant, the novice, the aficionado, the amateur, the
professional, and the master.

Music, expressly classical music, comes to mind if all six rankings were
to be defined. The novice appreciates Tchaikovsky’s 1812 Overture every
Fourth of July when the cannons go off along the Charles River in Boston.
The novice learns the notes of the scale in order to play an instrument (the
guitar, usually). The aficionado can tell the difference between Mozart and
Mabhler, the amateur can play the first two movements of the ‘“Moonlight”
sonata, and the professional can play all 32 Beethoven sonatas. The master
writes the music that eventually finds its way into the repertoire.

The distinction between amateur and professional that we are making,
however, is not a simple matter. Consider an analogy with a golfer. Given
some basic talent, capable instruction, and a good deal of practice, a young
player can play close to par golf and decide to pursue a career as a
professional. After a perfunctory declaration or surviving the qualification
tournaments, he may end up as a club pro or be invited to the Master’s



