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Preface

This work treats a number of practical issues in software development. The
issues raised here are not new but fundamental to the day-to-day concerns of
the practicing professional.

In the discipline of computer science, there is a distinction to make. This
is between a fundamental approach, which is necessarily quantitative, and a
qualitative aspect that, while less easy to define, is equally important.

New tools, algorithms, design notations, structured editors, powerful
workstations, rapid prototyping—these are exciting developments. But we
must also keep sight of the more qualitative roots of our profession. These
roots include:

discipline
teamwork
craftsmanship
quality

My experience suggests that, in our desire to discover new technologies, we
are not always sharpening our understanding of concepts like the software
development process or program readability.
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Organization of This Work

The work is organized around a series of topics. Each topic relates, directly
or indirectly, to the quality of software. The topics are collected into two
broad categories in separate volumes.

Volume 1. Software Engineering. This volume treats several issues
that are mainly relevant to the writing of large programs. This is the area
generally called software engineering. This includes topics such as the need
to reaffirm the importance of the software lifecycle and the organization of
programming teams. This section also treats the difficulties users encounter
in software, an aspect of software engineering called ‘“‘software human
factors” or ““software human engineering.” Here, for example, the idea of
user testing is discussed. User testing is a remarkably simple and pragmatic
idea—before we ship completed systems we ought to have typical users try
the system so that we can learn from their difficulties.

Volume II. Programming Practice. The second volume deals exclu-
sively with programs themselves. It treats topics like the role of program
comments, the persistence of global variables, and the use of packages. The
underlying theme of these essays is to convey the need for careful
craftsmanship in programming.

Both Volumes I and II conclude with an extended example. In
developing this example, a good number of ideas mentioned in previous
essays are put to practice. In Volume I, the example is developed in stages,
with particular attention to the software engineering process. The final
program is given as an appendix. In Volume II, the final program itself is
examined. The program is presented again; this time with annotations on
programming practice.

This work certainly does not address all the issues in software
development. These include critical topics like planning, management
techniques, resource estimating, design notations, and testing.

This book has been typeset using a monospaced font (both bold and
nonbold) for programs. Monospaced typefaces, with or without bold, are
most appropriate for programs. They promote readability and, I believe, give
the best appearance for printing programs.
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To The Reader

This book is my considered opinion about professional practice. It is derived
from teaching students and professionals and from participating in numerous
software efforts. The thoughtful reader may, in places, have good reason to
hold other views. This should not confuse our common goal, the pursuit for
excellence.
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Programmers:
The Amateur versus
The Professional

At the outset, it should be understood that an endeavor to compare an
amateur and a professional does not describe the full hierarchy in
programming or any other vocation or avocation. The complete spectrum
might be: the ignorant, the novice, the aficionado, the amateur, the
professional, and the master.

Music, expressly classical music, comes to mind if all six rankings were
to be defined. The novice appreciates Tchaikovsky’s 1812 Overture every
Fourth of July when the cannons go off along the Charles River in Boston.
The novice learns the notes of the scale in order to play an instrument (the
guitar, usually). The aficionado can tell the difference between Mozart and
Mabhler, the amateur can play the first two movements of the ‘“Moonlight”
sonata, and the professional can play all 32 Beethoven sonatas. The master
writes the music that eventually finds its way into the repertoire.

The distinction between amateur and professional that we are making,
however, is not a simple matter. Consider an analogy with a golfer. Given
some basic talent, capable instruction, and a good deal of practice, a young
player can play close to par golf and decide to pursue a career as a
professional. After a perfunctory declaration or surviving the qualification
tournaments, he may end up as a club pro or be invited to the Master’s



