AFTLE DAVIL:
DATA FILE
PROGRAMMING

A SELFTEACHING GUIDE

g

Save time and errors!

The programs in this book are available
on 54" disk—ready for'instant use.
Buy at your favorite computer store

or use the order card inside.

LeROY FINKEL

IEDAIN D DDA

APPLE® BASIC:
DATA FILE PROGRAMMING

LEROY FINKEL
San Carlos High School

and

JERALD R. BROWN

Educational Consultant

- NEAR .
1807 1982

€
YOBLISH\\A

John Wiley & Sons, Inc.

New York e Chichester e Brisbane ¢ Toronto e Singapore

Publisher: Judy V.Wilson
Editor: Dianne Littwin
Composition and Make-up: Trotta Composition

Copyright © 1982, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the 1976
United States Copyright Act without the permission of

the copyright owner is unlawful. Requests for permission
or further information should be addressed to the
Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data

Finkel, LeRoy.
Apple BASIC, data file programming.

(Wiley self-teaching guides)

Includes index.

1. Basic (Computer-program language) 2. Apple
computer—Programming. I. Brown, Jerald, 1940-
II. Title. III. Series: Self-teaching guide.
QA76.73.B3F52 001.6424 81-13100
ISBN 0-471-09157-X

Printed in the United States of America

82 83 10 9 8 7 6 5 4 3 2

APPLE® BASIC:
DATA FILE PROGRAMMING

More than a million people have learned to program, use, and enjoy microcomputers
with Wiley paperback guides. Look for them all at your favorite bookshop or
computer store:

BASIC, 2nd ed., Albrecht, Finkel, & Brown

BASIC for Home Computers, Albrecht, Finkel, & Brown

TRS-80 BASIC, Albrecht, Inman, & Zamora

More TRS-80 BASIC, Inman, Zamora, & Albrecht

ATARI BASIC, Albrecht, Finkel, & Brown

Data File Programming in BASIC, Finkel & Brown

Data File Programming for the Apple Computer, Finkel & Brown
ATARI Sound & Graphics, Moore, Lower, & Albrecht

Using CP/M, Fernandez & Ashley

Introduction to 8080/8085 Assembly Language Programming, Fernandez & Ashley
8080/Z80 Assembly Language, Miller

Personal Computing, McGlynn

Why Do You Need a Personal Computer? Leventhal & Stafford
Problem-Solving on the TRS-80 Pocket Computer, Inman & Conlan
Using Programmable Calculators for Business, Hohenstein

How to Buy the Right Small Business Computer System, Smolin
The TRS-80 Means Business, Lewis

ANS COBOL, 2nd ed., Ashley

Structured COBOL, Ashley

FORTRAN 1V, 2nd ed., Friedmann, Greenberg, & Hoffberg

Job Control Language, Ashley & Fernandez

Background Math for a Computer World, 2nd ed., Ashley
Flowcharting, Stern

Introduction to Data Professing, 2nd ed., Harris

How To Use This Book

When you use the self-instruction format in this book, you will be actively involved in
learning data file programming in APPLESOFT* BASIC. Most of the material is
presented in sections called frames, each of which teaches you something new or
provides practice. Each frame also gives you questions to answer or asks you to
write a program or program segment.

You will learn best if you actually write out the answers and try the programs
on your APPLE II computer (with at least one disk drive). The questions are carefully
designed to call your attention to important points in the examples and explanations
and to help apply what is being explained or demonstrated.

Each chapter begins with a list of objectives — what you will be able to do after
completing that chapter. At the end of each chapter is a self-test to provide valuable
practice.

The self-test can be used as a review of the material covered in the chapter. You
can test yourself immediately after reading the chapter. Or you can read a chapter,
take a break, and save the self-test as a review before you begin the next chapter. At
the end of the book is a final self-test to assess your overall understanding of data file
programming.

This book is designed to be used with an APPLE computer close at hand. What
you learn will be theoretical only until you actually sit down at a computer and apply
your knowledge “hands-on.” We strongly recommend that you and this book get
together with a computer! Learning data file programming in BASIC will be easier
and clearer if you have regular access to a computer so you can try the examples and
exercises, make your own modifications, and invent programs for your own purposes.
You are now ready to teach yourself to use data files in BASIC.

* APPLE and APPLESOFT are registered trademarks of Apple Computer, Inc.

Preface

This text will teach you to program data files in APPLESOFT BASIC. As a pre-
requisite to its use, you should have already completed an introductory course or
book in BASIC programming and be able to read program listings and write simple
programs: This is not a book for the absolute novice in BASIC. You should already
be comfortable writing your own programs that use statements including string vari-
ables, string functions, and arrays. We do start the book with a review of statements
that you already know, though we cover them in more depth and show you new ways
to use them.

The book is designed for use by readers who have little or no experience using
data files in BASIC (or elsewhere, for that matter). We take you slowly and carefully
through experiences that “teach by doing.” You will be asked to complete many
programs and program segments. By doing so, you will learn the essentials and a lot
more. If you already have data file experience, you can use this book to learn about
data files in more depth.

The particular data files explained in this text are for APPLESOFT BASIC. Data
files in other versions of BASIC will be similar, but not identical, to those taught in
this book.* You will find this book most useful when used in conjunction with the
reference manual for your computer system.

Data files are used to store quantities of information that you may want to use
now and later; for example, mailing addresses, numeric or statistical information, or
tax and bookkeeping data. The examples presented in this book will help you use
files for home applications, for home business applications, and for your small
business or profession. When you have completed this book, you will be able to
write your own programs, modify programs purchased from commercial sources, and
adapt programs using data files that you find in magazines and other sources.

*For programming data files in TRS-80 BASIC, MICROSOFT BASIC-80, and Northstar BASIC,
read our other book, Data File Programming in BASIC, Finkel, LeRoy and Brown, Jerald R.,
John Wiley & Sons, Inc., Self-Teaching Guide, N.Y., 1981.

vii

NOW AVAILABLE!*

All the powerful programs listed in this book will make your APPLE II™
more effective than ever. The programs and subroutines to set up, main-
tain, and modify data files can go to work for you today!

Save time and don’t risk introducing keyboarding errors into your pro-
grams. Buy the 5%" diskette from your favorite computer store, or order

from Wiley:

In the United States:
In the United Kingdom
and Europe:

In Canada:

In Australia:

John Wiley & Sons
1 Wiley Drive
Somerset, NJ 08873

John Wiley & Sons, Ltd.
Baffins Lane, Chichester
Sussex PO 19 1UD UNITED KINGDOM

John Wiley & Sons Canada, Ltd.
22 Worcester Road
Rexdale, Ontario M9W 1L1 CANADA

Jacaranda Wiley, Ltd.
GPO Box 859
Brisbane, Queensland AUSTRALIA

Finkel-APPLE™ BASIC DATA FILE PROGRAM DISK 0-471-86836-1

*Available April, 1982

Contents

Chapter 1

Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Appendix A
Appendix B

Index

Writing BASIC Programs for Clarity, Readability,
and Logic

An Important Review of BASIC Statements
Building Data Entry and Error Checking Routines
Creating and Reading Back Sequential Data Files
Sequential Data File Utility Programs

Random Access Data Files

Random Access File Applications

Final Self-Test

ASCII Chart Code

List of Programs

15

49

79
134
198
252
281
294
296
302

CHAPTER ONE

Writing BASIC Programs for
Clarity, Readability, and Logic

Objectives: When you have completed this chapter you will be able to:

1. describe how a program can be written using a top-to-bottom format.
2. write an introductory module using REMARK statements.
3. describe seven rules to write programs that save memory space.

INTRODUCTION

This text will teach you to use data files in APPLESOFT BASIC. You should have
already completed an introductory course or book in BASIC programming, and be able
to read program listings and write simple programs. This is not a book for the abso-
lute novice in BASIC, but is for those who have never used data files in BASIC (or
elsewhere, for that matter). The particular data files explained in this text are for the
APPLE II computer and the BASIC languages found on it.

Data files in other versions of BASIC and for other computers will be similar,
but not identical, to those in this book. (If you are using a computer other than the
APPLE II, you may want to read Data Files Programming in BASIC, available at your
local computer store or bookstore.) You will find this text most useful when used
in conjunction with the APPLE II reference manuals and the Disk Operating System
(DOS) Manual: It is not a substitute for your careful reading of the APPLE II DOS
Manual, though the workings of sequential and random access files are explained here
in far more depth and with more examples.

Since it is assumed you have some knowledge of programming in BASIC and have
practiced by writing small programs, the next step is for you to begin thinking about
program organization and clarity. Because data file programs can become fairly large
and complex, the inevitable debugging process — making the program actually work
— can be proportionately complex. Therefore, this chapter is important to you be-
cause it provides some program organization methods to help make your future
programming easier.

2 APPLE BASIC: DATA FILE PROGRAMMING

THE BASIC LANGUAGE

The computer language called BASIC was developed at Dartmouth College in the early
1960s. It was intended for use by people with little or no previous computer experi-
ence who were not necessarily adept at mathematics. The original language syntax
included only those functions that a beginner would need. As other colleges, computer
manufacturers, and institutions began to adopt BASIC, they added embellishments to
meet their own needs. Soon BASIC grew in syntax to what various sources called
Extended BASIC, Expanded BASIC, SUPERBASIC, XBASIC, BASIC PLUS, and so on.
Finally, in 1978 an industry standard was developed for BASIC, but that standard was
for only a “minimal BASIC,” as defined by the American National Standards Institute
(ANSI). Despite the ANSI standard, today we have a plethora of different BASIC
languages, most of which “look alike,” but each with its own special characteristics
and quirks.

In the microcomputer field, the most widely used versions of BASIC were
developed by the Microsoft Company and are generally referred to as MICROSOFT
BASICs. These BASICs are available on a variety of microcomputers but, unfortu-
nately, the language is implemented differently on each computer system. The
APPLE version of MICROSOFT BASIC is called APPLESOFT.

The programs and runs shown in this text were actually performed on an
APPLE II and an APPLE II PLUS computer using Disk Operating System (DOS) 3.3.
(They will work in DOS 3.2, as well.) We wrote all of our programs using APPLE-
SOFT BASIC. To use the programs in INTEGER BASIC, you will have to make the
usual APPLESOFT to INTEGER modifications described in your reference manual.
The file commands described in this text may be used in APPLESOFT or INTEGER
BASIC. For INTEGER BASIC you may have to modify the file input and output
statements, as described in your DOS Manual.

Where possible, we use BASIC language features that are common to all versions
of BASIC, regardless of manufacturer. We do not attempt to show off all of the
bells and whistles found in APPLESOFT BASIC, but rather to present easy-to-under-
stand programs that will be readily adaptable to a variety of computers.

THE BASIC LANGUAGE YOU SHOULD USE
Conservative Programming

Since you will now be writing longer and more complex programs, you should adopt
conservative programming techniques so that errors will be easier to isolate and locate.
(Yes, you will still make errors. We all do!) This means that you should NOT use
all the fanciest features available in APPLESOFT BASIC until you have tested the
features to be sure they work the way you think they work. Even then, you still
might decide against using the fancy features, many of which relate to printing or
graphic output and do not work the same on other computers. Some are special
functions that simply do not exist on other computers. Leave them out of your
programs unless you feel you must include them. The more conservative your pro-
gramming techniques, the less chance there is of running into a software ‘‘glitch.”

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 3

This chapter discusses a program format that, in itself, is a conservative programming
technique.

One reason for conservative programming is that your programs will be more
portable or transportable to other computers. “Why should I care about portability?”
you ask. Perhaps the most important reason is that you will want to trade programs
with friends. But do all of your friends have a computer IDENTICAL to yours?
Unless they do, they will probably be unable to use your programs without modifying
them. Conservative programming techniques will minimize the number of changes
required.

Portability is also important for your own convenience. The computer you use
or own today may not be the one you will use one year from now; you may replace
or enhance your system. In order to use today’s programs on tomorrow’s computer be
conservative in your programming.

Use conservative programming to:

e Isolate and locate errors more easily.
e Avoid software “glitch.”
e Enhance portability.

WRITING READABLE PROGRAMS

Look at the sample programs throughout this book and you will see that they are easy
to read and understand because the programs and the individual statements are written
in simple, straight-line BASIC code without fancy methodology or language syntax. It
is as if the statements are written with the READER rather than the computer in mind.

Writing readable BASIC programs requires thinking ahead, planning your program
in a logical flow, and using a few special formats that make the program listing easier
to the eye. If you plan to program for a living, you may find yourself bound by your
employer’s programming style. However, if you program for pleasure, adding readable
style to your programs will make them that much easier to debug or change later, not
to mention the pride inherent in trading a clean, readable program to someone else.

A readable programming style provides its own documentation. Such self-
documentation is not only pleasing to the eye, it provides the reader/user with suffi-
cient information to understand exactly how the program works. This style is not as
precise as “structured programming,” though we have borrowed features usually
promoted by structured programming enthusiasts. Qur format organizes programs in
MODULES, each module containing one major function or program activity. We also
include techniques long accepted as good programming, but for some reason forgotten
in recent years. Most of our suggestions do NOT save memory space or speed up the
program run. Rather, readability is our primary concern, at the expense of memory
space. Later in this chapter, we will present some procedures to shorten and speed
up your programs. Modular style programs will usually be better running programs
and will effectively communicate your thought processes to a reader.

4 APPLE BASIC: DATA FILE PROGRAMMING

THE TOP-TO-BOTTOM ORGANIZATION

When planning your program, think in terms of major program functions. These might
include some or all of the functions from this list:

DATA ENTRY

DATA ANALYSIS
COMPUTATION

FILE UPDATE
EDITING

REPORT GENERATION

Using our modular process, divide your program into modules, each containing
one of these functions. Your program should flow from module one to module two
and continue to the next higher numbered module. This “top-to-bottom organiza-
tion” makes your program easy to follow. Program modules might be broken up into
smaller “blocks,” each containing one procedure or computation. The size or scope of
a program block within a module is determined by the programmer and the task to be
accomplished. Block style will vary from person to person, and perhaps from program
to program.

USE A MODULAR FORMAT AND TOP-TO-BOTTOM APPROACH

REMARK Statements

Separate program modules and blocks from each other using REMARK statements or
nearly blank program lines. In general, programs designed for readability make liberal
use of REMARK statements, but don’t be overzealous. A nearly blank program line
can be created by typing a line number followed by a colon (150:). A line number
followed by REM (150 REM) can also be used.

100 REM DATA ENTRY MODULE

110 REM *xtx READ DATA FROM DATA STATEMENTS 9000-9090
120

130 REM

200 REM COMPUTATION MODULE

210 REM ARX

(Note: Your Apple computer will split the word REMARK into two words, as shown
in line 210. Because this looks awkward, we encourage use of the word REM in
place of the complete word.)

Begin each program module, block, or subroutine with an explanatory REM
statement (line 100 and 110) and end it with a nearly blank line (line 120) or blank
REM statement (line 130) indicating the end of the section.

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 5

Consistency in your use of REMs enhances readability. Use either REM or the
nearly blank line with a colon, but be consistent. Some writers use the asterisks
(*¥***) shown in line 110 to set off REM statements containing actual remarks from
blank REM statements; others use spaces four to six places after the REM before they
add a comment (line 200). Both formats effectively separate REM statements from
BASIC code.

You can place remarks on the same line as BASIC code using multiple statement
lines, but be sure your REM is the LAST statement on the line. Such “on-line”
remarks can be used to explain what a particular statement is doing. A common
practice is to leave considerable space between an on-line remark and the BASIC code,
as shown below.

220 LET C(X) = C(X) + U: REM **xCOUNT UNITS IN C ARRAY
240 LET T(X) = T(X) + C(X): REM *x*xINCREASE TOTALS ARRAY

Using REMs to explain what the program is doing is desirable, but don’t overuse
it. (LET C = A + B does not require a REM or explanation!) REM should add
information, not merely state an obvious step.

Like everything else said in these first chapters, there will be exceptions to
what we say here. Keep in mind that we are trying to get you to think through your
programming techniques and formats a little more than you are probably accustomed
to doing. Thus, our suggested “rules” are just that — suggestions to which there will
be exceptions.

GOTO STATEMENTS

Perhaps the most controversial statement in the BASIC language is the unconditional
GOTO statement. Its use and abuse causes more controversy than any other statement.
Purists say you would NEVER use an unconditional GOTO statement such as GOTO
100. A more realistic approach suggests that all GOTOs and GOSUBs go DOWN the
page to a line number larger than the line number where the GOTO or GOSUB appears.
This is consistent with the “top-to-bottom’ program organization. This same ap-
proach—down the page—also applies to using IF. . .THEN statements (there will be
obvious exceptions to this rule).

140 GOTO Z10
150 IF X ¢ Y THEN 800
160 GOSUB 8000

A final suggestion: A GOTO, GOSUB, or IF. . .THEN should not go to a state-
ment containing only a REM. If you or the next user of your program run short of
memory space you will delete extra REM statements. This, in turn, requires you to
change all of your GOTO line numbers, so plan ahead first. Some BASICs do not
even allow a program to branch to a statement starting with REM.

6 APPLE BASIC: DATA FILE PROGRAMMING

Bad Good
150 GOTO 300 150 CGOTO 300
300 REM DATA ENTRY 299 REM DATA ENTRY
310 INPUT "ENTER NAME:";Ns$ 300 INPUT "ENTER NAME:";Ns

A FORMAT FOR THE INTRODUCTORY MODULE

The first module of BASIC code (lines 100 through 199 or 1000 through 1999)
should contain a brief description of the program, user instructions when needed, a
list of all variables used, and the initialization of constants, variables, and arrays.

The very first program statement should be a REM statement containing
the program name. Carefully choose a name that tells the reader what the program
does, not just a randomly selected name. After the program’s name comes the author’s
or programmer’s name and the date. For the benefit of someone else who may like
to use your program, include a REM describing the computer system and/or
software system used when writing the program. Whenever the program is altered or
updated, the opening remarks should reflect the change.

100 REM PAYROLL SUBSYSTEM

110 REM COPYRIGHT CONSUMER PROGRAMMING CORP. 9/82
120 REM

130 REM HP 2000 BASIC

140 RENM MODIFIED FOR APPLESOFT BASIC BY J. BROWN
150 REM ON APPLE 11, 48K

Follow these remarks with a brief explanation of what the program does,
contained either in REM statements or in PRINT statements. Next add user
instructions. For some programs you might offer the user the choice of having
instructions printed or not. If instructions are long, place the request for instructions
in the introductory module and the actual printed instructions in a subroutine toward
the end of your program. That way, the long instructions will not be listed each time
you LIST your program.

170 REM THIS PROGRAM WILL COMPUTE PAY AND PRODUCE PRINTED PAYROLL

i:g gg: REGISTER USING DATA ENTERED BY OPERATOR
200 INPUT "DO YOU NEED INSTRUCTIONS?";Rs$

210 IF R$ = "YES" THEN GOSUB 800

220 REM

Follow the description/instructions with a series of statements to identify the
variables, string variables, arrays, constants, and files used in the program. Again,
these statements communicate information to a READER, making it that much easier
for you or someone else to modify the program later. We usually complete this
section AFTER we have completed the program so we don’t forget to include any-
thing.

Assign a variable name to all “constants” used. Even though a constant will not
change during the run of the program, a constant may change values between runs.
By assigning it a variable name, you make it that much easier to change the value;

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 7

that is, by merely changing one statement in the program. It is a good idea to jot
down notes while writing the program so important details do not slip your mind or
escape notice. When the program has been written and tested (debugged), go back
through it, bring your notes up-to-date, and polish the descriptions in the REMs.

220 REM VARIABLES USED

230 REM GC=GROSS PAY

240 REM N=NET PAY

250 REM T1=FEDERAL INCOME TAX

260 REM TZ=STATE INCOME TAX

270 REM F=50C. SEC.TAX

280 REM D=DISABILITY (SDI) TAX

290 REM X,.Y,Z=FOR-NEXT LOOP CONTROL VARIABLE
300 REM H(X)=HOURS ARRAY

310 REM N$=EMPLOYEE NAME (20 CHAR)
320 REM PN$=EMPLOYEE NO. (5 CHAR)
330 REM

340 REM CONSTANTS

350 LET FR = .0613: REM S0C.SEC. RATE
360 LET DR = .01: REM SDI RATE

370 REM

380 REM FILES USED

330 REM ITM=FEDL. TAX MASTER FILE
400 REM STM=STATE TAX MASTER FILE
410 REM

(Notice the method used to indicate string length in lines 310 and 320.)
(Notice the use of on-line remarks in lines 350 and 360.)

The final part of the introductory module is the initialization section. In this
section, dimension the size of all single and double arrays and all string arrays, even
though DIMENSION is not required by your computer. This is valuable information
for a reader. Any variables that need to be initialized to zero should be done here for
clear communication, even though your computer initializes all variables to zero auto-
matically. This section also includes any user-defined functions before they are used
in the program.

410 REM INITIALIZE

420

430 DIM H(7),R¢(10,13) ,N$(30)
440

450 REM

THE MODULES THAT FOLLOW THE INTRODUCTION

The remainder of your program consists of major function modules and subroutines
(and DATA statements, when they are used).. Remember to separate each module
from others by a blank line REM statement and a remark ‘identifying the module.
These modules can be further divided into user-defined program blocks, each separated
by a blank line REM statement.

A typical second module would be for data entry. Data can be operator-entered
from the keyboard or entered directly from DATA statements, a file, or some other device.
Chapter 3 discusses in detail how to write data entry routines with extensive error-
checking procedures to ensure the accuracy and integrity of each data item entering
the computer.

For now, we suggest that you write data entry routines so that even a completely

8 APPLE BASIC: DATA FILE PROGRAMMING

inexperienced operator would have no trouble entering data to your program. This
means the operator should ALWAYS be prompted as to what to enter and provided
with an example when necessary.

240 INPUT "ENTER TODAY'S DATE (MM/DD/YY)";D$

If data are entered from DATA statements, place the DATA statements near the
end of your program (some suggest even past the END statement) using REM state-
ments to clearly identify the type of data and the order of placement of items within
the DATA statements.

9400 REM DATA FOR CORRECT ANSWER ARRAY IN QUESTION NUMBER ORDER.

9410 REM 10 ANSWERS, MULT.CHOICE 1-5

9420 :

9430 DATA 4,5,1,3,2,1,1,4,4,5

89440

9450 REM RESPONDENTS ANSWERS TO QUIZ

8460 REM DATA STATEMENT FORMAT:

9470 REM RESP. ID # FOLLOWED BY 10 RESPONSES TO QUIZ QUESTIONS

9480

9490 DATA 17642, 4,5,

9500 DATA 98126, 3:5
9560

You can think of DATA statements as comprising a separate program module.
The “inbetween” program modules might do computations, data handling, file reading
and writing, and report writing. Modular programming style dictates that all printing
and report generation, except error messages, be done in one program module labeled
as such. This limits the use of PRINT statements to one easy-to-find location within
your program. (There might be more than one print module.) This makes it that
much easier for you to make subsequent changes on reports when paper forms change
or new reports are designed. In the print module your program should NOT perform
any computations except trivial ones. Make important computations BEFORE the
program executes the print module(s). This may require greater use of variables
and/or arrays to “hold” data pending report printing, but your programs will be
much cleaner and easier to debug, since everything will be easy to find in its own
“right” place.

SUBROUTINES

Program control flows smoothly from one module to the next. A well-designed
module has one entry point at its beginning and one exit point at its end. The
exception to this is a mid-module exit to a subroutine.

290

300 REM COMPUTATION MODULE

310

320 LET T = (V * X) / Q

330 LET T9 = T9 + T

340 COSUB 80D

350

360 REM REPORT PRINTING MODULE
370

