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Preface

In recent years the number of topics in mathematics required of engineers and scientists
has greatly increased. This is to be expected since mathematics plays a vital role as a
language in the formulation and solution of problems involving science and engineering and
as these problems become more complex it is natural that the mathematical methods needed
for their solution should increase in number and complexity.

It is the purpose of this book to provide important advanced mathematical concepts
and methods needed by engineers and scientists as well as mathematxcmns who are inter-
ested in the applications of their field. The book has been desxgned as a supplement to all
current standard textbooks or as a textbook for a formal course in the mathematical methods
of engineering and science.

Each chapter begins with a clear statement of pertlnent deﬁmtlons principles and
" theorems together with illustrative and other deScrlptlve material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground and provide the repetition of basic principles
so vital to effective learning. Numerous proofs of theorems and derivations of basic results
are included among the solved problems. The large number of supplementary problems
serve as a review and possible ex‘ggension of the material of each chapter.

Topics covered include ordinary differential equations, Laplace transforms, vector
analysis, Fourier series, Fourier integrals, gamma, beta and other special functions, Bessel
functions, Legendre and other orthogonal functions, partial differential equations, complex
variables and conformal mapping, matrices and calculus of variations. The first chapter
which provides a review of fundamental concepts of algebra, trigonometry, analytic
geometry and calculus may either be read at the beginning or referred to as needed depend-
ing on the background of the student.

Considerably more material has been included here than can be covered in most courses.
This has been done to make the book more flexible, to provide a more useful book of refer-
ence and to stimulate further interest in the topics.-

I wish to take this opportunity to thank Daniel Schaum, Nicola Monti and Hank Hayden
for their splendid cooperation.

M. R. SPIEGEL

Rensselear Polytechnic Institute
January, 1971
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Chapter 1

Review of
Fundamental Concepts

REAL NUMBERS

At the very foundations of mathematics is the concept of a set or collection of objects
and, in particular, sets of numbers on which we base our quantitative work in science and
engineering. The student is already familiar with the following important sets of numbers.

1. Natural Numbers 1,2,8,4, ... or positive integers used in counting.

2. Integers 0, =1, +2 +3,.... These numbers arose in order to provide meaning to
subtraction [inverse of addition] of any two natural numbers. Thus 2-6= -1
8—-8=0, etc. :

3. Rational Numbers such as 2/3, —10/7, etc. arose in order to provide meaning to division
[inverse of multiplication] or quotient of any two integers with the exception that
division by zero is not defined.

4. Irrational Numbers such as /2, =, etc. are numbers which cannot be expressed as the
quotient of two integers.

Note that the set of natural numbers is a subset, i.e. a part, of the set of integers which in
turn is a subset of the set of rational numbers.

The set of numbers which are either rational or irrational is called the set of real
numbers [to distinguish them from imaginary or complex numbers on page 11] and is com-
posed of positive and negative numbers and zero. The real numbers can be represented as
points on a line as indicated in Fig. 1-1. For this reason we often use point and number
interchangeably.

“—5/2 -10/T a2 /2 2/3 V2 x

R S S SN 1 S S |

T T IR ¥ L I o T -

-3 -2 -1 [ 1 2 3
Fig.1-1

The student is also familiar with the concept of inequality. Thus ‘we say that the real
number a is greater than or less than b [symbolized by ¢ > b or a < b} if a — b is a positive
or negative number respectively. For any real numbers a and b we must have a > b,

=b or a<b.

RULES OF ALGEBRA
If a, b, ¢ are any real numbers, the following rules of algebra hold.

1. a+b =>b+a Commutative law for addition
2. a+(b+e) = (a+b)+ec Associative law for addition

3. . ab = ba Commutative law for multiplication
4. a(be) = (ab)c Associative law for multiplication
5. ab+c¢) = ab + ac Distributive law
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It is from these rules [if we accept them as axioms or postulates) that we can prove the
usual rules of signs, as for example (—5)(3) = —~15, (—2)(—3) =6, etc.
The student is also familiar with the usual rules of exponents:
areq* = @™, am™/a" = a™ ", a#0, (a™) = am (1)

FUNCTIONS . '

Another important concept is that of function. The student will recall that a function
f 1s a rule which assigns to each object z, also called member or element, of a set 4 gn
element y of a set B. To indicate this correspondence we write y = f(x) where f(z) is
called the value of the function at zx. :

Example 1. If f(x) = 2% —3x + 2, then f(2) = 22—3(2)+2 = 0.

'%’vl"’he student is also familiar with the process of “graphing functions” by obtaining

number pairs (x, %) and considering these as points plotted on an xy coordinate system. In

general y = f(x) is represented graphically by a curve. Because ¥ is usually determined
from &, we sometimes call « the independent variable and y the dependent variable,

——
SPECIAL TYPES OF FUNCTIONS

1. Polynomials f(z) = apz" + q.z"~! T@rt 4 s da, If @540, n is called the degree
of the polynomial. The polynomial equation f(x) =.0 has exactly % roots provided we
count repetitions. For example 2z°—38x2+32—1=0 can be written (x—1¥=0 so
that the 3 roots are 1,1, 1. Note that here we have used the binomial theorem

(a+z)" = a + (?)a"“z + <;>a"‘2x2 S S (2)
where the binomial coefficients are given by
n _ n!
<k> = Em—R) )

and where factorial n, ie. n!, = nm—1)(n—2)---1 while 0!=1 by definition.

2. Exponential Functions f(x) = a*. These functions obey the rules (1).
An important special case occurs where a =e = 27182818 - - . .

3. Logarithmic Functions f(x) = logax. These functions are inverses of the exponential
functions, i.e. if a*=y then z= logey where a is called the base of the logarithm.
Interchanging r and y gives y=log.x. If a=e, which is often called the natural
base of logarithms, we denote logex by Inz, called the natural logarithm of z. The
.fundamental rules satisﬁed by natural logarithms [or Jogarithms to any base] are

. m |
In(mn) = Inm + Inn, In?{ =Inm—-Inn, Inmr=phm (4)
4. Trigonometric Functions sin z, cosx, tangx, cotx, secz, csca.

Some fundamental relationships among these functions are as follows,

. - . [ sinx
(@) sinx = cos(———w), cosT = s1n<-~x>, tanzy = —=
2 2 COS 2
cos 1 1
coty = -- = secr = esex = —l-

sinz ~ tanzx’ cosz’ sinz
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(b) sin?x +cos?zx = 1, sec’z -tan?xz = 1, csc’z—cot’?z =1

(¢) sin(—z) = —sinz, cos(—z) = cosz, tan(—x) = —tanx

(d) sin(r*xy) = sinx cos y\t cosx siny, cos(rxy) = cosxzcosy Fsinxsiny
tanz = tany

1 ¥ tanz tany

(¢) Acosz+ Bsinz = YA+ B?gin(x+«) where tana = A/B

The trigonometric functions are periodic. For example sinz and cosz, shown in
Fig. 1-2 and 1-3 respectively, have period 2.

tan(z ty) =

sinz cosx

N ] \ ‘ J z —7/2/0-\7/2 {/2\ e
AR

Fig.1-2 Fig.~ 3
5. Inverse Trigonometric Functions sin~ 'z, cos 'z, tan—!z, cot~1z, sec"."zc cse iz,
These are inverses of the trigonometric functions. - For example if sinz =y then
z =sin"'y, or on interchanging z and y, y =sin—!z.
6. Hyperbolic Functions. These are defined in terms of exponential functions as follows.
. _€eF—e’" _ e +e"
(a) sinhz = 5 coshx = 5
_ sinhz _ e —e* _coshe 1  e€&+e’®
tanhz = coshz ~ e*+e°* cothz = ginhz = tanhax =~ e —e®’
_ 1 _ 2 1 _ 2
sechz = coshz =~ ¢* +e7*’ CSChx‘ w ginhx = e*— e *
Some fundamental 1dent1t1es analogous to those for trigonometric functions are
(b) cosh?z —ginh?z = 1, sech?’z + tanh?z = 1, coth?x —csch’z =1
(¢) sinh(x+y) = sinhz coshy = coshx sinhy
cosh (z =) = coshx coshy + sinh 2 sinhy
_ ftanhxz = tanhy
tanh(zxy) = 1 = tanhz tanhy
The inverse hyperbolic functions, given by sinh~'z, cosh~!z, etc. can be expressed
in terms of logarithms [see Problem 1.9, for example].
LIMITS

The function f(x) is said to have the limit | as x approaches a, abbrev1ated hm flxy=1,

if given any number ¢ > 0 we can find a number & > 0 such that |f(x)—1 < “whenever
0<|z—a|<8.

p:

Note that |p|, i.e. the absolute value of p, is equal to p if p >0, —p if p<0 and 0 if
0.

2 .
Example 2. lim (x2—4x+8) = 5, lim z 4 4, lim snz o=
z=1 zws ¥ —2 z=0 &£
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If lim fi(x) =1, lim fa(x) = [z then we have the following theorems on limits.
(@ lim [fi(x) = fz(x)] = limfi(z) = lim fa@) = L=l

® lm @ h@) = [limAe]|[linee] = w

(C)' Ilmfl(x) = E_I’Y‘ll,fl(x) _ ll

=2 oW g
i@ T Imp@ k7

CONTINUITY
The function f(x) is said to be continuous at a if lim f(x) = f(a).

It

22— 4 x #*~2
Example 3. f(x) = %2—4x+8 is continuous at x = L. However, if f(x) z—2
6 x=2

then f(z) is not continuous [or is discontinuous] at x =2 and x = 2 is called a
digcontinuity of f(x).\:\\
If f(x) is continuous at each point of an interval such as z1 S x =2y or 2. <2 =z,
ete., it is said to be continuous in the interval.
If fi(x) and fi(x) are continuous in an interval then fi(z) = f2(x), fi(x)/f:(x) and
fi(x)/f2(x) where fa(x) 0 are also continuous in the interval.

"DERIVATIVES ‘
The derivative of y = f(x) at a point z is defined as
, _ u flx+h)—flx) _ ... ég:@_y
fle) = rltl-r.r(} h - z}iglo Aar ~ dz (%)

where h=az, Ay = f(x+h) — f(z) = flx +ax) — f(x) provided the limit exists.
The differential of y = f(x) is defined by
dy = f’(x)dx where dx = Az (6)
The process of finding derivatives is called differentiation. By taking derivatives of

¥’ =dy/dz = f’(x) we can find second, third and higher order derivatives, denoted by
y” — dzy/dx2 — f//(x)’ yn/ — day/dxa — f/u(m)’ ete.

Geometrically the derivative of a function f(x) at a point represents the slope of the
tangent line drawn to the curve y = f(z) at the point.

If a function has a derivative at a point, then it is continuous at the point. However,
the converse is not necessarily true,

DIFFERENTIATION FORMULAS

In the following u, v represent functions of z while @, ¢, p represent constants. We
assume of course that the derivatives of « and v exist, i.e. w and » are differentiable.

1 i(u“’v ;‘—i’—‘+@ d [uw\ _ v(dw/dz) — u(dv/dx)
A Tl = Cdz\v) poe

4w = o2 Doy
g N O

d d d d _
3. gg(uv) = ud_‘Z‘i"Ua’% 6. a;(a“) = aulnq
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d u u du _d.. y = d_u
7. iz et = e Tz 14. a7 cscu = —cscucotu iz
d 1ny . Lldu A, o 1 du
8. Inu == W dx 15. Tr sin~'u = T de
9 _@_ si = ugE 16 -‘—i— cos~ iy = =t du
© o dg DU Tocosugy T odx V-t dz
d _ . du d 1 1 du
10. gz Cosu = —sinus 17. az tan~'u = 1T dr
d _ .. du d ., _ ~-1 du
11. iz tanu = sec’u ix 18. iz cot~lu = 1T idz
d _ o, du a . _ du
12. ar cotu = —csc uﬂ 19. Iz ginh# = coshu dz
d o = du 4  sinhad
13. 4z Secu = secu tanu o 20. e coshu = sinhu I

In the special case where u = x, the above formulas are simplified since in such case
du/dx = 1.

INTEGRALS
If dy/dx = f(x), then we call y an indefinite integral or anti-derivative of f(x) and
denote it by
{ r@yax )

Since the derivative of a constant is zero, all indefinite integrals of f(x) can differ only by
a constant.
The definite integral of f(x) between x =a and x =b is defined as
b

f f@)de = limhlf(@) + fla+h) + fla+2k) + - + fla+ (n—1)h)] (8)

provided this limit exists. Geometrlcally if f(x) = 0, this represents the area under the
curve y = f(x) bounded by the z axis and the ordmates at x=a and x =0b. The integral
will exist if f(x) is continuous in a =x = b.

Definite and indefinite integrals are related by the following theorem.

Theorem 1-1 [Fundamental Theorem of Calculus]. If f(zx)= (—% g(x), then

b b d b
(iwdz = (" Loewmdr = 9@)| = 90 - 9(a)
2 - 2 d z3 _ 23 2 _ 23 13 _ 7
Example 4. J; x2dx = J: dx( >dx =73 LT 373 = 3

The process of finding integrals is called integration.

INTEGRATION FORMULAS

In the following u,v represent functions of x while a,b,¢,p represent constants. In
all cases we omit the constant of integration, which nevertheless is implied.

f(uiv)dx = fudx:tfvdx 2, fcudx = 'cfudx
3. fu(%—lbdx = uv—fv<%>‘dx or fudv = uv—fvdu

This is called integration by parts.
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fF[u(x) dr = flv"('w)é—ui where w = u(x) and w’ = dw/dx expressed as a
function of w. This is called integration by substitution or transformation.

Is - s .

5. fu”du = l”_li, p*—1 14. fcscudu = In(cscu — cotw)
au - —
6. fu*‘du = f du Inu 15. fe““sinbudu = £ (asmalzu+ bf cos bu)
e™(a cos bu + b sin bu
7. fa“dt = lna’ a+*0,1 16. fe"“cosbudu = ‘ ( g Ry )
U
u — u = in—!—
8. fedu-—e 17. f\/az_—u? sin™! >
, _ du _ 1 —i
9. fsmudu = —cosu 18. el atan 2
10. jcosudu = sinu 19. f‘/._z_; = In(u+ Vuz—a?)
ut—a
U
11. ftanudu = —Incosu 20. f—-—————— = In(u+vur+a®
VU +a? ( )
12, fcotudu = Insinu 21. fsinhudu = coshu

13. f secu du = In(secu + tanw) 22, f coshudu = sinhu

SEQUENCES AND SERIES

- A sequence, md1cated by u,, Uy, ... OF briefly by (u.), is a function defined on the set of
natural numbers. The sequence is said to have the limit | or to converge to I, if given any
¢> 0 there exists a number N > 0 such that |[u.—1] <e for all » > N, and in such case
we write lim u. = 1. If the sequence does not converge we say that it diverges.

n—+o0

Consider the sequence ui, %1+ %2, w1+ uz+us, ... or 8,8, Ss, ... where S. =
U+ uz + -+ - + u.. We call (S.) the sequence of partial sums of the sequence {u,). The
symbol - w :

U+ Uz +Us+ -+ OF D Us orbriefly I un 9)
n=1

is defined as syhohymous with (S.) and is called an infinite series. This series will converge
or diverge according as (S,) converges or diverges. If it converges to S we call S the sum
of the series.

The following are some important theorems concerning infinite series.
Theorem 1-2. The series 2 1715 converges if p > 1 and diverges if p=1.
n=1

Theorem 1-3. If S|ua| converges and |va| = |us|, then =|va| converges.
Theorem 1-4. If 3|u| converges, then Zu, converges.

In such case we say that Su. converges absolutelysor is absolutely convergent. A property
of such series is that the terms can be rearranged without affecting the sum.

Theorem 1-5. ~1f S|us| diverges and |v.| Z |us}, then 2|va| and 3v. both diverge.
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Theorem 1-6. The series Zju.|, where [uz| = f(n) Z 0, converges or diverges according as

f f(x)dx = hm f f(x)dx exists or does not exist.

This theorera is often called the integral test.
Theorem 1-7. The series 3Zju,| diverges if lim |u.| 0. However, if lim |u,/ =0 the
series may or may not converge [see Problem 1.31].

Theorem I-8. Suppose that lim Ynss =¢. Then the series Su, converges (absolutely)

ner o n

if <1 and diverges if > 1. If r=1, no conclusion can be drawn.

This theorem is often referred to as the ratio test.

The above ideas can be extended to the case where the u. are functions of x denoted
by u(z). In such case the sequences or series will converge or diverge according to the
particular values of x. The set of values of x for which a sequence or series converges is
called the region of convergence, denoted by R.

Example 5. The series 14+ 2+ x2+ 23+ -+ has a region of convergence ¥ [in this case an
interval] given by —1 < 2z <1 if we restrict ourselves to real values of x.

UNIFORM CONVERGENCE

We can say that the series ui(x) + u2(x) + - - - converges to the sum S(x) in a region R,
if given « > 0 there exists a number N, which in general depends on both ¢ and z, such
that |S(x) — Sa(x)| < ¢ whenever n >N where Si(x)=ui(z)+ --- +ua(x). If we can find
N depending only on ¢ and not on z, we say that the series converges uniformly to S(x) in
R. Uniformly convergent series have many important advantages as indicated in the
following theorems.

Theorem 1-9. 1f un(x), = =1,2,3,... are continuous in e =z =b and Su,(z) is uni-
formly convergent to S(x) in a=x=b, then S(x) is continuous in
e=xr=0h.

Theorem 1-10. If 3u.(x) converges uniformly to S(x) in e =x = b and ux(z), n=1,2,8, ...
are integrable in ¢ = x = b, then

J:bS(x) dz = j; {w(z) tug(x)+ - - -} da = fabul(x) dx + J;buz(x) dx + -

Theorem 1-11. Xf u.(z), n=1,2,8,... are continuous and have continuous derivatives in
a=x="b and if 2u.(z) converges to S(x) while Su:(x) is uniformly con-
vergent in ¢ = x = b, then

(@) = A& (wla) tua@) + ) = ullz) + ui@) + -

An important test for uniform convergence, often called the Wezerstrass M test,
given by the following.

Theorem 1-12. If there is a set of positive constants M,, n=1,2,8,... such that
[tn(x)| € M, in R and 2M, converges, then Eu,.(x) is umformly convergent
[and also absolutely convergent] in .
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TAYLOR SERIES
The Taylor series for f(x) about z = a is defined as

flo) = f@ + flae-a + OGP 4y LEWESI L g )

f (o) — a)”

where R, = ———, 1, %o between g and z (11)

is called the remainder and where it is supposed that f(x) has derivatives of order n at
least. The case where n =1 is often called the law of the mean or mean-value theorem
and can be written as

f(x) — f(a)

r—a

The infinite series corresponding to (10), also called the formal Taylor series for f(x),
will converge in some interval if lim R, =0 in this interval. Some important Taylor

e 0

= f'(xo) - 2o between a and (12)

geries together with their intervals of convergence are as follows.

x? 3 zt

L e‘=1+x+2, Ittt ~$o<x<co
2. sinx = x—gf!-+gi!~%+--- —0 < g < w
3. ecosx = 1-;—?+%——%—3+--- —o L < o
4. In(l+2z2) = x—%—z-+%a—§£+--~ -1<zx=1
5. tan7lz = x—§+%5—:—7+--~ —-ls=xz=1

A series of the form 2 ca(2 — a)" is often called a power series. Such power series are

uniformly convergent in any interval which lies entirely within the interval of convergence
[see Problem 1.120].

FUNCTIONS OF TWO OR MORE VARIABLES

The concept of function of one variable given on page 2 can be extended to functions of
two or more variables. Thus for example z = f(z,y) defines a function f which assigns
to the number pair (z,y) the number z.

Example 6. If f(x,y) = 22 + 3zy + 22, then f(—1,2) = (—1)2 + 3(—=1)(2) + 2(2)2 =

The student is familiar with graphing z = f(z,y) in a 8-dimensional xyz coordinate
system to obtain a surface. We sometimes call z and y independent variables and z a
dependent variable. chasxopal]y we write z=2(x,y) rather than z = f(z,y), using the
symbol z in two different senses’ However no confusmn should result.

The ideas of limits and continuity for functlons of two or more variables pattprn closely
those for one variable. ’

PARTIAL DERIVATIVES
The partial derivatives of f(x,y) with respect to z and y are defined by
o _ oy fEth y) — f(=,9) of flx,y + k) — f(z,9)
k

= lim

o he0 ! oy k=+0

(13)
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if these limits exist. We often write h = Az, k = Ay. Note that 3f/dx is simply the ordinary
derivative of f with respect to « keeping y constant, while df/3y is the ordinary derivative of
f with respect to y keeping x constant. Thus the usual differentiation formulas on pages
4 and 5 apply.

Example 7. If f(x,y) = 322 — 4ay + 2y? then % = 6z — 4y, g{; = —4x + 4y.

Higher derivatives are defined similarly. For example, we have the second order
derivatives

20t A -2 S A -G o

The derivatives in (13) are sometimes denoted by f- and f,. In such case f:(a,b), fy(a,d)
denote these partial derivatives evaluated at (a,b). Similarly the derivatives in (14) are
denoted by faz, fzy, fur, fuy respectively. The second and third results in (14) will be the same
if f has continuous partial derivatives of second order at least.

The differential of f(x,y) is defined as
_ o of
df = 'a_de + 3y dy (15)
where h = Az =dzx, k= ay=dy.

Generalizations of these results are easily made.

TAYLOR SERIES FOR FUNCTIONS OF TWO OR MORE VARIABLES

The ideas involved in Taylor series for functions of one variable can be generalized.
For example, the Taylor series for f(x,y) about £ =a, y =b can be written

flx,y) = f(a,b) + f:(a,b)(x—a) + fy(a,b)(y —b)
+ % [fzz(a, b)(z — a)? + 2fzy(a, b)(x.— a)(y — b) + fu(a,b)(y — b)) + - -+ (16)

LINEAR EQUATIONS AND DETERMINANTS
Consider the system of linear equations

axr+by = ¢

e 1Y 1 ( 17)
axx + by = ¢

These represent two lines in the xy plane, and in general will meet in a point whose coor-
dinates (z,y) are found by solving (17) simultaneously. We find

_ C1b2 - b102 s _ aiC2 — C102
T a1bs — biay’ ¥y = aibs — bias (28)
It is convenient to write these in determinant form as
a b a G
Ca b2 a2 C2
= 7 : (19
a, b1 a; . b1
a3 be az bs
where we define a determinant of the second order or order 2 to be
a b
c 4| = ad~—be (20)




