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Series Foreword

Methods in Stereochemical Analysis provides a forum for critical and timely reviews
that deal with the applications of physical methods for determining conformation,
configuration, and stereochemistry. The term ‘stereochemical analysis” is inter-
preted in its broadest sense, encompassing organic, inorganic, and organometallic
compounds, as well as molecules of biochemical and biological significance. The
methods include, but are not restricted to, spectroscopic techniques (e.g., NMR,
infrared, UV-visible, Raman, mass, and optical spectroscopy), physical techniques
(e.g., calorimetry, photochemical, kinetic, and ‘direct” methods such as X-ray
crystallography, neutron and electron diffraction), and applied theoretical ap-
proaches to stereochemical analysis.

In establishing the series, the editor and members of the advisory board seek to
attract contributions of the highest scientific caliber from outstanding investigators
who are actively pursuing research on stereochemical applications of these various
techniques and/or applied theoretical approaches. The editor and board members
envision contributions in the form either of a monograph or of a multiauthor treatise
with individual chapters contributed by a number of outstanding research scientists.
Regardless of format, the editor and board members prefer that the contribution
consists of critical and timely reviews that place the author’s own work in perspec-
tive with regard to other important literature in the field, while at the same time
retaining the highly personal character of his or her individual contribution. Indeed,
rather than necessarily comprehensive, reviews would be critical and timely.

Whatever merit the resulting volumes possess necessarily must derive from the
excellence of the individual contributions. Accordingly, the editor welcomes sug-
gestions from members of the scientific community of potential topics for inclusion
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in the series, and of names of potential contributors. The editor also welcomes
suggestions of a critical nature, which might assist him in better fulfilling the stated
objectives. It seems fitting, therefore, that the series be dedicated to its readership
among members of the scientific community, for ultimately rhey will gauge the
degree to which the series fulfills its objectives.
Alan P. Marchand, Editor
Denton, Texas



Preface

During the last two decades '3C NMR chemical shifts have become an extremely
important source of information for structural analysis. Moreover, instruments per-
mitting the performance of Fourier transforms make such data easily accessible.
Useful correlations, invented regularities, and applications to stereochemical analy-
sis, however, often are hidden even from experienced users of techniques behind the
vast amount of experimental findings. Thus a critical survey of the applications of
13C NMR chemical shifts to structure elucidation, stereochemistry, and conforma-
tional analysis will be very helpful. To maintain the maximum usefulness and to
organize the data to bring out regularities and interdependences and to facilitate
theoretical treatments, the discussion is confined mainly to alicyclic chemistry and
even there to heterocyclanes, although larger molecules are also surveyed to a
certain extent.

Not included in this volume are the principles of nuclear magnetic resonance and
Fourier transform techniques. A few practical matters inherent in the determination
of 13C chemical shifts, however, are dealt with in the Introduction. It is further
assumed that the reader has at least access to many earlier outstanding reviews; and
hence this material is not repeated unless necessary from the present point of view.

The main emphasis throughout this book is on the utilization and applicability of
experimental results in the everyday practical problems met by ordinary chemists.
The second goal is naturally to demonstrate the strength of 13C chemical shifts as
sensitive detectors in structure determination. At least an empirical background and
justification will also be given for the different shift effects, with special attention to
the y-effects.

When planning this book, we soon realized that the number of relevant publica-
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tions was far too large to permit complete coverage. Hence the literature citations
are selective; many papers had to be omitted, especially those that are comprehen-
sively referred to in other recent texts or reviews. Thus the absence of any given
reference from this book should not be taken as negation of the significance of the
material described in it.

Thanks are due to Dr. Timo Nurmi, a former student of Professor Pihlaja, who
wrote the first draft of Chapter 3. We still regard this work as valid and competent,
and it frees us to deal with some more recent, complementary observations (e.g.,
Chapters 4A and 4B). We also owe thanks to several other former students of
Professor Pihlaja, especially Ph.Lic. Maija-Liisa Kettunen (tetrahydro-1,3-
oxazines) and Dr. Kyllikki Rossi, since in many places unpublished materials based
on their research are mentioned.

Kalevi Pihlaja
Turku, Finland

Erich Kleinpeter
Potsdam, Germany

May 1994
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CHAPTER

1

Introduction

Despite the existence of several texts'~> that discuss the application of NMR tech-
niques, including the two-dimensional (2-D) methods? to the determination of '3C
chemical shifts, it was felt necessary to briefly summarize some important factors
influencing one’s choice of approaches.

1.1 Practical Considerations

1.1.1 Sample Preparation

The sample, which should not be overly concentrated, must be dissolved in a
deuterated solvent with some tetramethylsilane (TMS) as an internal reference. Very
clean sample tubes of 5 or 10 mm o.d. are to be used (the height of the solution in
the tube can be verified in the manual accompanying the instrument; should be only
slightly higher than the receiver coil). A deuterated solvent is needed for field
frequency stabilization by means of a special lock system: any detected drift in the
deuterium resonance is automatically compensated by a correcting voltage to the
magnet power supply, to stabilize the correct field value.

The solution must be carefully filtered to remove any solid particles. Degassing
from paramagnetic oxygen is also necessary, by

* bubbling completely dry nitrogen gas (or any dry rare gas) through the solution
for approximately 10 minutes, or
* by several freeze—pump—thaw cycles.
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For routine spectra the latter method is not strictly recommended, but it is highly
commendable for relaxation time measurements.

1.1.2 Careful Tuning of the Spectrometer Equipment

After the sample has been prepared, the tube is carefully lifted into the probe head,
the field is locked on the deuterium signal of the NMR solvent used, and the
resolution of the spectrometer is optimized by shimming the deuterium signal to its
maximum intensity.

In general, all functions of the spectrometer should be optimized, including
tuning of the probe head and that of the decoupler power with a standard sample,
and running the '*C NMR spectrum of the latter under standard conditions. One
should start with a real sample only when the signal-to-noise ratio (S/N) and the line
width after a given number of scans (n) are good enough.

Finally the receiver gain (now under computer control) must be set to prevent
saturation and overload of the analog—digital converter (ADC).

1.1.3 Recording the Free Induction Decay (FID)

Before the FID can be recorded, the pulse width and the tip angle (w/4 is sufficient
for routine runs) must be set; the w-pulse, which should be of minimum intensity,
needs to be checked regularly. Then, the delay between the scans must be set (being
sure that the signal intensity is independent of relaxational effects); 5 seconds is
enough for low molecular weight compounds. If the carbon atoms (especially the
quaternaries) relax too slowly, and therefore do not appear in the spectrum, it is
necessary to use longer delays or reduce the pulse width and tip angle. The spin
system then recovers in shorter time, although more scans will be needed.

The next step is to select the spectral width (SW) and the number of data points
to detect the signal (see digital resolution, Section 1.1.5). In '3C NMR spectrosco-
py, the chemical shift range is 250 ppm or less; thus at 50 MHz we expect all
resonances to lie within 12,500 Hz (this is the spectral width, sometimes called also
the spectral window). Signals lying outside SW are detected inside too but folded
(consequently at incorrect frequency, often with incorrect phase and therefore easily
assignable). Also the noise outside SW is folded into the spectral area studied and
reduces the S/N ratio. Hence computer-controlled filters were designed which sup-
press the noise and signals outside SW. Quadrature detection, where the excitation
frequency is centered in SW, further reduces the noise and improves S/N by the
square root of n, the number of scans.

Phase cycling is usually recommended by the spectrometer manufacturers, espe-
cially for 2D runs, to (1) suppress ghost and phantom peaks, (2) suppress the main
signals in special pulse sequences as in INADEQUATE (see Section 1.2.6), (3)
destroy residual magnetizations, and (4) be able to repeat the experiments fast. In
running special 2D pulse sequences, it is strongly advisable to take into account the
experience of an NMR specialist.

Often phase cycling greatly lengthens multidimensional NMR experiments.
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Thus, if enough sample is available, the new gradient pulses,** which make phase
cycling unnecessary, promise substantial reductions in the spectrometer time
needed. This property is of special importance for 3D experiments, which still have
excessively long run times.

The next step is to accumulate the number of scans n necessary for a sufficient
S/N: one must check from time to time by Fourier transformation (FT). The spec-
trum is obtained in the time domain as free induction decay (FID) and must be
transformed into the more familiar frequency domain by FT; the S/N improves as a
function of V. Two facts should be kept in mind:

1. Long-term accumulations will lower the resolution, because even smallest dis-
turbances change the field homogeneity even though the system is under
computer shimming.

2. As aresult of the improvement in S/N through Vn, there is a point after which
further improvement of this ratio becomes very inefficient and time-consuming.

It should be mentioned that other methods (i.e., other than the common FT) can be
used to calculate the regular frequency NMR spectra,®® including the following.

1. The maximum entropy method (MEM): any incidental test spectrum is Fourier-
transformed into the FID and the FID so obtained is compared with the experi-
mental FID; iteratively the test spectrum approaches the experimental spectrum,
and finally, the correct spectrum of maximum entropy will be obtained.

2. Linear prediction (LP): since the front part of the FID already contains all
necessary information about the spectrum, only this part is considered; the
corresponding decay is then calculated, and both the resolution and the S/N-
enhanced frequency spectrum are obtained.

To successfully apply these two methods, dramatically larger amounts of computer
time often are necessary.

1.1.4 Precision and Accuracy of Data

To select the digital resolution (DR) for obtaining the data with sufficient accuracy,
the number of data points (S/) must be 2" (from the FT algorithm); for 13C NMR
spectra, 16K or 32K spectra are recommended. The number of data points is
divided (also from the FT algorithm) into DP/2 real and DP/2 imaginary data
points; only DP/2 points therefore are useful for detecting the '*C NMR spectrum.

. 2SW
g
Thus for a 32K spectrum at 50 MHz:

2 X 12,500

DR = 552255 = 0.76 Hz (ca. 0.015 ppm)

a result that has the following consequences:



