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Preface

In these notes we give an account of the developments in research in Projective
Modules and Complete Intersections since the proof of Serre’s Conjecture due to
Quillen and Suslin and the subsequent publication of T-Y Lam’s book, Serre’s
Conjecture.

I expect these notes to be accessible to a wide range of readers, with or
without a serious background in commutative algebra. These notes evolved out
of class notes for a course on this topic that I taught several years ago at the
University of Kansas to a group of students who had no prior serious exposure
to commutative algebra. My students enjoyed the course. 1 would hope that the
readers will find these notes enjoyable as well.

I need to thank a long list of people who helped me, directly or indirectly,
to accomplish this goal. I thank Professor Amit Roy of the Tata Institute of
Fundamental Research, Bombay, for the excellent training he gave me in my
early career. I would also like to thank my friends Daniel Katz and Jeffrey Lang
for their encouragement and for many helpful discussions. Thanks are also due
to D. S. Nagaraj of the Institute of Mathematical Sciences, Madras, and to Ravi
Rao and Raja Sridharan of the Tata Institute of Fundamental Research, Bombay,
for many helpful discussions. I would like to thank my brothers, sister and our
parents for their support. Thanks to my wife, Elsit, for her encouragement and
patience and also to our little daughter Nila for being here with us on time for
the occasion.

Last but not the least I thank Tim Buller and Aaron Johnson for helping me
with the computer system.

This project was partially supported by grants (FY 94 and FY98) from the
General Research Fund of the University of Kansas.
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Chapter 0

Introduction

In these notes on Projective Modules and Complete Intersections we present an
account of the developments in research on this subject since the proof of the
Conjecture of Serre due to Quillen and Suslin.

After two preliminary chapters, we start with the proof of Serre’s Conjecture
and some associated results of Quillen and Suslin in Chapter 3.

Chapter 4 includes the Basic Element Theory of Eisenbud and Evans and
the proofs of the Eisenbud-Evans Conjectures. Our treatment of the Basic el-
ement theory incorporates the idea of generalized dimension functions due to
Plumstead.

In Chapter 5, we discuss the theory of matrices that we need in the later
chapters. We tried to avoid the theory of elementary matrices in these notes.
Instead, we talk about the Isotopy Subgroup of the General Linear Group in this
chapter.

The theory of Complete Intersections is discussed in Chapter 6. Among the
theorems in this chapter are

1. the theorem of Eisenbud and Evans on the number of set theoretic gener-
ators of ideals in polynomial rings,

2. the theorem of Ferrand-Szpiro,

3. the theorem of Boratynski on the number of set theoretic generators of
ideals in polynomial rings over fields,

4. the theorem of Ferrand-Szpiro-Mohan Kumar on the local complete inter-
section curves in affine spaces,

5. the theorem of Cowsik-Nori on curves in affine spaces.

To prove the theorem of Cowsik-Nori, we also give a complete proof of the fact
that a curve in an affine space over a perfect field is integral and birational to
its projection to an affine two subspace, after a change of variables.
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In Chapter 7, we discuss the theory of Projective modules over polynomial
rings in several variables over noetherian commutative rings. The techniques
used in this chapter are almost entirely due to Lindel. Among the theorems in

this chapter are
1. Lindel’s Theorem on Bass-Quillen Conjecture,

2. the theorem of Bhatwadekar-Roy on the existence of Unimodular elements
in projective modules,

3. Lindel’s Theorem on the transitivity of the action of the group of transvec-
tions on the set of unimodular elements of a projective module.

A large portion of these notes evolved out of class notes for a course on this
topic that I taught some years ago at the University of Kansas. The students in
this class did not have any previous serious exposure to commutative algebra.
My approach while conducting this course was to

a) state and explain results and proofs that have a potential to excite the
students;

b) skip those proofs that may become technical;

c) state, explain and use results from commutative algebra as and when
needed.

With this approach, I was able to cover the materials in Chapter 1-6. Among
the theorems that I stated in this course without proof were the theorems of
Eisenbud-Evans (Theorem 4.1.1), Plumstead (Theorem 4.3.1 and 4.3.2) and
Sathaye-Mohan Kumar(Theorem 4.3.3). On the other hand, I proved the theo-
rem of Ferrand-Szpiro (Theorem 6.1.3). I finished the course with the proof of
the theorem of Ferrand-Szpiro-Mohan Kumar(Theorem 6.2.5) that

a locally complete intersection ideal of height n — 1 in a polynomial ring
k[X1,...,Xy,] over a field k is set theoretically generated by n — 1 polynomials,
and with the statement of the Cowsik-Nori theorem(Theorem 6.3.1) that

any ideal of pure height n — 1 in a polynomial ring k[ X1, ..., X,] over a field
k of positive characteristic is set theoretically generated by n — 1 elements.



Chapter 1

Preliminaries

In this chapter we shall put together some notations, some terminologies and
preliminaries from commutative algebra that we will be using throughout these
notes.

1.1 Localization

Suppose R is a commutative ring. For a subset S of R, we say that S is a
multiplicative subset of R if 1 is in S and for s and ¢ in S, st is also in S.
For a multiplicative subset S of R and an R-module M, we have

Ms ={m/t : me M and t€ S}.

For m,n in M and ¢t,s in S, we have m/t = n/s if u(sm — tn) = 0 for some
u in S. Mg is called the localization of M at the multiplicative set S. The
following are some facts about localization.

Fact 1.1.1 Suppose R is a commutative ring and S is a multiplicative subset
of R. Let M be an R-module. Then the following are easy to see.

(a) Rs is aring and the map R — Rg that sends r to r/1 is a ring homomor-
phism.

(b) Ms becomes an Rg-module under the natural operations
m/s+n/t=(tm+sn)/st and (a/u)(m/t) =am/ut
for m,nin M ,ain R and s,t,u in S.
(c) The natural map i : M — Mg that sends m to m/1 is an R-linear map.

(d) The natural map i : M — Mg has the following universal property :
Given an Rg-module N and an R-linear map f : M — N there is a
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unique Rg-linear map F' : Mg — N such that the diagram
M 5 Ms
N IF
N
commutes.

(e) For an element f in R, we write Ry for Rs and write My for Ms where
S = {1,f,f?%...}. For a prime ideal p of R, R, and M, respectively,
denote Rs and Mg where S = R — p.

(f) We have Mg~ M ®gr Rs as Rs - modules.

(g) Let M, N be two R-modules and let f: M — N be an R-linear map. It
follows from the universal property that there is an Rg-linear map
F : Mg — Ns such that the following diagram

M — N
l ¥

Ms — Ng
commutes.

Definition 1.1.1 A homomorphism 7 : R =& A of commutative rings is called
flat if for all short exact sequences

0—M —>M-—>M'—0

of R-modules and R-linear maps, the induced sequence
0> Me®A—>MERA— M"'®rA—0
is exact.

Proposition 1.1.1 For a commutative ring R and a multiplicative subset S of
R, the natural map i : R — Rg is flat.

Definition 1.1.2 Suppose R is a commutative ring and M is an R-module. We
say that M is finitely presented if there is an exact sequence

0—K—R"— M —0

of R-modules, for some nonnegative integer n and a finitely generated R-module
K. Equivalently, M is finitely presented if there is an exact sequence

R — R — M —0

of R-modules, where m and n are nonnegative integers.
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Remark 1.1.1 We leave it as an exercise that for a noetherian commutative
ring R, an R-module M 1is finitely generated if and only if it is finitely presented.

Notations 1.1.1 Let R be a commutative ring.
1. We denote the set of all prime ideals of R by Spec(R).
2. The set of all maximal ideals of R will be denoted by max(R).

3. For an ideal I of R, V(I) will denote the set of all prime ideals of R that
contain /.

4. For an element f of R, D(f) will denote the set of all the prime ideals of
R that do not contain f.

Exercise 1.1.1 Suppose R is a ring and S C T be two multiplicative subsets
of R. Then the following diagram

R—)Rs

Nd
Rr

of the natural maps commutes. Further if T is the image of 7' in Rs then (Rs);
is naturally isomorphic to Rr. We say that Ry is a further localization of Rgs
to explain this phenomenon.

1.2 The Local-Global Principle

Lemma 1.2.1 Suppose R is a commutative ring and M is an R-module. Then
the following are equivalent :

1. M=0,
2. M, =0 for all p in Spec(R),

3. M,, = 0 for all maximal ideals m of R.
Proof. See the book of Kunz ([K1]), Chapter III.

Proposition 1.2.1 Suppose R is a commutative ring and M is an R-module.
For two submodules M' and M" of M, we have M' = M" if and only if M,, =
M for all maximal ideals m of R.

Proof. See the book of Kunz ([K1]), Chapter IV.
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Example 1.2.1 Suppose R is a Dedekind domain which is not a Principal ideal
domain (PID). If I is an ideal of R that is not principal, then I is not isomorphic
to R but I,, = R,, for all maximal ideals m of R.

Corollary 1.2.1 Suppose I and J are two ideals of R. Then I = J if and only
if I,, = J,, for all maximal ideals m of R containing I N J.

Proof. The corollary follows from Proposition 1.2.1 .

Corollary 1.2.2 Suppose that R is a commutative ring and M is an R-module.
Let {m;}ier = S be a subset of M. Then the set {m;}ic; generates M if and
only if the image {m;/1}ier of S in M, generates M,, for all maximal ideals m
of R.

Proof. Let N be the submodule of M generated by S. Now the proof is an
immediate consequence of Proposition 1.2.1.

Lemma 1.2.2 Suppose R is a commutative ring and let fi, fa,..., fr be ele-
ments of R. Then D(f1)UD(f2)U...UD(f;) = Spec(R) if and only if the ideal
Rfi+ Rfa+:--+ Rf, =R.

We leave the proof of this Lemma as an exercise.

Corollary 1.2.3 Suppose R is a commutative ring and assume that Spec(R) =
D(f)U D(g) for some f and g in R. Let M be an R-module.

a) Suppose that My and M, are finitely generated. Then M is finitely gener-
f g Y
ated.

b) Let miy...,My be elements in M such that their respective images enerate
g
both Mf and Mg. Then miy...,My generate M.

Proof. The corollary follows from Corollary 1.2.2.

Corollary 1.2.4 Suppose R is a commutative ring. Then a sequence

M LM M
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of R-modules and R-linear maps is exact if and only if the induced sequence
M, — M, — M,

is exact for all maximal ideals m of R.
Proof. See the book of Kunz ([K1]), Chapter IV.

Corollary 1.2.5 Let f: M — N be an R-linear map.
1. Then f is injective if and only if f,, is injective for all m in max R.

2. Similarly, f is surjective if and only if f,, is surjective for all m in max R.
Proof. It is immediate from Corollary 1.2.4.

Example 1.2.2 Suppose D is a Dedekind domain that is not a PID. Let I be an
ideal that is not principal. Then I, is one generated for all m in max R. This is
probably the simplest example to illustrate that the local number of generators
and the global number of generators are not always the same. Deriving the
global number of generators from the local number of generators is one of our
main interests in these notes.

Definition 1.2.1 (Zariski Topology) For a noetherian commutative ring R,
the Zariski Topology on Spec(R) is defined by declaring D(f) as the basic open
sets, for f in R. Equivalently, the closed sets in Spec(R) are V (I), where I is
an ideal in R.

Exercise 1.2.1 Let R be a commutative noetherian ring. Then Spec(R) is
connected if and only if R has no idempotent element other than 0 and 1.

1.3 Homomorphisms of Modules and Flatness

The main theorem in this section is about the commutativity of the tensor
product for a flat extension with the module of homomorphisms of modules. Of
particular interest are the cases of polynomial extensions and localizations.

Notations 1.3.1 Suppose R is a commutative ring and M and N are two
R-modules. We shall denote the set of all R-linear maps from M to N by
Hompg(M, N) or simply by Hom(M, N). Note that Hom(M, N) is also an R-
module in a natural way.
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Definition 1.3.1 Suppose R, M,N are as in Notations 1.3.1 and let S be a
multiplicative subset of R. We define a natural map

¢ : ST'Homgr(M,N) — Hompg,(Ms, Ns)
by defining o(f/t) : Ms — Ns as
e(f/t)(m/s) = f(m)/st
for f in Hom(M,N), min M and s,tin S.

Exercise 1.3.1 Let R, M,N,S be as in Definition 1.3.1 and let M be finitely
generated. Prove that the natural map in Definition 1.3.1 is injective. Further,
if M is finitely presented then the natural map is an isomorphism.

In fact, Definition 1.3.1 and Exercise 1.3.1 are, respectively, the particular
cases of Definition 1.3.2 and Theorem 1.3.1 that follow.

Definition 1.3.2 Let i : R — A be a flat homomorphism of rings. Let M and
N be two R-modules. Define the natural map

¢ : Homp(M,N)® A — Homs(M ® A,N ® A)

by setting o(f ® t)(m ® s) = f(m) ® st for f in Hom(M,N), min M, and s,t
in A.

Theorem 1.3.1 Leti: R — A be a flat homomorphism of commutative rings
and let M, N be two R-modules with M being finitely presented. Then the natural

map
¢ : Homg(M,N)® A — Homs(M ® A,N ® A)

is an isomorphism.

Proof. First assume that M =~ R" is free. In that case we have the commutative
diagram :

Hom(M,N)® A %> Hom(M ® A,N ® A)

R 1

N"® A £y (N®A)".
Here N™ denotes the direct sum of n copies of N and ¢’ is the natural identifi-
cation. Since the vertical maps are isomorphisms, ¢ is also an isomorphism.
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In the general case, since M is finitely presented, there is an exact sequence
R™ — R" — M —0
of R-linear maps. This sequence will induce the following commutative diagram:

0 - Hom(M,N)® A— Hom(R",N)® A— Hom(R™ N)® A
{ 4 1
0 — Hom(M',N')—> Hom(A™,N') »  Hom(A™,N")

where M' =M ® Aand N' =N ® A.

Since the operation of taking Hom( ,N) is left exact and R — A is flat
the first row of this diagram is exact. For similar reasons, the last row is also
exact. By the case when M is free, the last two vertical maps are isomorphisms.
Hence the first vertical map is also an isomorphism. This completes the proof
of Theorem 1.3.1 .

Remark 1.3.1 All the rings we consider now onwards will be assumed to be
noetherian and commutative. That is why any finitely generated module will
also be a finitely presented module.

Remark 1.3.2 Let A = R[X] be the polynomial ring over a noetherian com-
mutative ring R. Let M and N be two finitely generated R-modules. It follows

that
Hom(M ® R[X],N ® R[X]) ~ Hom(M,N) ® R[X].

Remark 1.3.3 Let R be a noetherian commutative ring and S be a multiplica-
tive subset of R. For finitely generated R-modules M and NV, we have

Hompg(Ms,Ns) ~ Homp(M,N)®g Rs % (Homg(M,N))s .

1.4 Definition of Projective Modules

Before we define projective modules, we want to discuss the splitting properties
of exact sequences.

Definition 1.4.1 Suppose R is a commutative ring and let
0o—M LML M o0

be an exact sequence of R-modules and R-linear maps. We say that the sequence
splits if there is an R-linear map ¢ : M"” — M such that go{ = Id.
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Lemma 1.4.1 Suppose that R is a commutative ring and let
0—M LM M —o0

be an exact sequence of R-modules and R-linear maps. Then the following
conditions are equivalent :

1. The sequence splits.

2. M = M'&® N for some submodule NV of M such that the restriction
gln : N — M" is an isomorphism.

3. There is amap t: M — M’ such that tof = Idp.
4. The natural map
¢ : Hom(M",M) — Hom(M",M"),

that sends a map h : M — M to goh, is surjective.

Proof. It is easy to see that (1) & (2) & (3).
To see that (1) implies (4) let { : M" — M be a split i.e. go¢ = Idp». We
have the following

M 5 M
(v /d
MII

commutative diagram. Given amap h : M" — M", we have p(Coh) = go(oh =
h. Hence ¢ is surjective. This establishes (4).

To see (4) implies (1), let ¢(¢) = Id. Then ( is a split of g. This completes
the proof of the Lemma.

Corollary 1.4.1 Suppose R is a commutative noetherian ring and let
0—M —M-—M'—0

be an exact sequence of finitely generated R-modules and R-linear maps. Then
the sequence splits if and only if the induced exact sequences

0— M,, — M, — M, —0
split for all m in max(R).
Proof. It is immediate from Lemma 1.4.1 and Corollary 1.2.5.

Now we are ready to define projective modules.



1.4. DEFINITION OF PROJECTIVE MODULES 11

Definition 1.4.2 Suppose R is a commutative ring and let P be an R-module.
We say that P is a projective R-module if one of the following equivalent condi-
tions hold :

1. Given a surjective R-linear map f: M — N and an R-linear map
g : P — N there is an R-linear map h : P — M such that the diagram

P
h_/’lg
M f N — 0

commutes.

2. Every exact sequence 0 — N — M — P — 0 of R-modules and
R-linear maps splits.

3. There is an R-module @ such that P & Q is free.

4. The functor M — Hompg(P, M) from the category of R-modules to itself
is exact.

Proof.
(1) = (2) follows by looking at the diagram

P
hy 1Id

M — P— 0.

(2) = (3) We can find a surjective map f : F — P, where F is free. Take Q
= kernel (f). Then P ® Q = F is free.

(3) = (4) Let 0 — M’ Ly M £ M" — 0 be an exact sequence of R-
modules and R-linear maps. It is a general fact that
0 — Hom(P,M') — Hom(P,M) — Hom(P,M")
is exact. So, we need only to show that the map
Hom(P,M) — Hom(P,M")

is surjective. Let F = P& Q be free and let h: P — M" be any R-linear
map. If hg : F — M" is the map such that hg|p = h and holg = 0
then there is an R-linear map hy : F — M such that gohy = ho. Let
h' = ho|p, then goh' = h.

(4) = (1) is obvious.



