Jata Structures SS=

and the

William J. Collin

u'p&}!dl
e, ii'i‘i I
i ' . e

N W

Data Structures and the
Java Collections Framework

William J. Collins
Lafayette College

i

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis
Bangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

McGraw-Hill Higher Education 2

A Division of The McGraw-Hill Companies

DATA STRUCTURES AND THE JAVA COLLECTIONS FRAMEWORK

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights
reserved. No part of this publication may be reproduced or distributed in any form or by any means,
or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill
Companies, Inc., including, but not limited to, in any network or other electronic storage or
transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

This book is printed on acid-free paper.

International 1234567890 QPFQPF0987654321
Domestic 34567890QPF/QPF09876543

ISBN 0-07-236964-7
ISBN 0-07-112184-6 (ISE)

General manager: Thomas E. Casson

Publisher: Elizabeth A. Jones

Developmental editor: Emily J. Gray

Executive marketing manager: John Wannemacher
Project manager: Jane E. Matthews

Senior production supervisor: Sandy Ludovissy
Coordinator of freelance design: David W. Hash
Cover designer: Rokusek Design

Cover image: © PhotoDisc, Inc.

Senior supplement producer: Stacy A. Parch
Media technology senior producer: Phillip Meek
Compositor: Lachina Publishing Services
Typeface: 10/12 Times Roman

Printer: Quebecor World Fairfield, PA

Library of Congress Cataloging-in-Publication Data

Collins, William J. (William Joseph)
Data structures and the Java collections framework / William J. Collins—1st ed.
p. cm.
Includes index.
ISBN 0-07-236964-7
1. Java (Computer program language). 2. Data structures (Computer science). 1. Title.

QAT76.73.J38 C657 2002
005.7'3—dc21 2001030694
CIP

INTERNATIONAL EDITION ISBN 0-07-112184-6

Copyright © 2002. Exclusive rights by The McGraw-Hill Companies, Inc., for manufacture and
export. This book cannot be re-exported from the country to which 1t is sold by McGraw-Hill.
The International Edition is not available in North America.

www.mhhe.com

To Karen, my wife of 35 years, for giving
me 20 of the happiest years of my life.

w.J.C.

PREFACE

his book is intended for an object-oriented course in data structures and algo-

rithms. The implementation language is Java, and it is assumed that students

have taken an introductory course in which that language was used. That
course should have covered the fundamental statements and data types, as well as
arrays and the basics of file processing.

THE JAVA COLLECTIONS FRAMEWORK

One of the distinctive features of this text is its emphasis on the Java Collections
Framework, part of the java.util package. Basically, the framework is a hierarchy
with interfaces at each level except the lowest, and collection classes that implement
those interfaces at the lowest level. The collection classes implement most of the
data structures studied in a second computer science course, such as a resizable array
class, a linked-list class, a balanced binary-search-tree class, and a hash-set class.

There are several advantages to using the Java Collections Framework. First,
students will be working with code that has been extensively tested; they need not
depend on modules created by the instructor or textbook author. Second, students
will have the opportunity to study professionals’ code, which is substantially more
efficient—and succinct—than what they have seen before. Third, the framework is
available for later courses in the curriculum, and beyond!

OTHER IMPLEMENTATIONS CONSIDERED

As important as the Java Collections Framework is, it cannot be the exclusive focus
of such a fundamental course in data structures and algorithms. Approaches that dif-
fer from those in the Java Collections Framework also deserve consideration. For
example, the HashSet and HashMap classes utilize chaining, so there is a separate
section on open addressing, and a discussion of the trade-offs of one design over the
other. Also, there is coverage of data structures (such as graphs) and algorithms
(such as the heap sort) that are not yet included in the Java Collections Framework.

This text also satisfies another essential need of a data structures and algorithms
course: the need for students to practice developing their own data structures. There
are programming projects in which data structures are either created “from the
ground up” or extended from examples in the chapters. And there are other projects
to develop or extend applications that use the Java Collections Framework.

Preface

GRAPHICAL USER INTERFACE

Instead of console input-output, we employ a simple graphical user interface (GUI)
with a single input line and any number of output lines. A brief outline of this GUI is
given in Chapter 1, and a more extensive description is provided in Appendix 2. Two
immediate consequences of using this GUI are that input loops are no longer applica-
ble, and that the output is scrollable. But the main significance is that students gain a
better understanding of event-driven programming: the real-world environment.

PEDAGOGICAL FEATURES

This text offers several features that may improve the teaching environment for
instructors and the learning environment for students. Each chapter starts with a list
of objectives, and concludes with at least one major programming assignment. Each
data structure is carefully described, with a precondition and postcondition for each
method. In addition, most of the methods include examples of how to call the
method, and the results of that call.

The implementation details, especially of the Java Collections Framework
classes, are carefully investigated in the text and reinforced in a suite of 24 labs. The
organization of these labs is described later in this preface. Each chapter has a vari-
ety of exercises, and the answers to all of the exercises are available to the instructor.

SUPPORT MATERIAL

The website for all of the support material is www.mhhe.com/collins, and it has
links to the following information for students:

B An overview of the labs and how to access them

B The source code for all projects developed in the text
B Applets for projects that have a strong visual component

Additionally, instructors can obtain the following from the website:
M Instructors’ options with regard to the labs
B PowerPoint slides for each chapter (approximately 1500 slides)

B Answers to every exercise

SYNOPSES OF THE CHAPTERS

Chapter 1 presents those features of Java that serve as the foundation for subsequent
chapters. Much of the material reflects an object orientation: inheritance, polymor-
phism, and exception handling. There are lab experiments to review classes, as well
as on inheritance and exceptton handling. See the “Organization of the Labs” sec-
tion in this preface for more information on labs.

xvi

Preface

Chapter 2 introduces abstract classes and interfaces, and there is a 1ab for both of
these topics. Of special interest is the Collection interface, the root of many classes in
the Java Collections Framework. As a simple implementation of the Collection inter-
face, a primitive version of a singly linked list class is created. This LinkedCollection
class serves mainly to provide a backdrop for several key features of the Java Col-
lections Framework, such as iterators and embedded classes. A lab experiment on
iterators helps to solidify a student’s understanding of this vital concept.

Chapter 3, an introduction to software engineering, outlines the four stages of
the software-development life cycle: analysis, design, implementation, and mainte-
nance. The Unified Modeling Language is introduced as a design tool to depict
inheritance, composition, and aggregation. Big-O notation, which pervades subse-
quent chapters, allows environment-independent estimates of the time requirements
for methods. Both run-time validation and timing are discussed, and for each of
those topics there is a follow-up lab.

Chapter 4, on recursion, represents a temporary shift in emphasis from data
structures to algorithms. Backtracking is introduced, not only as a general technique
for problem solving, but as another illustration of creating polymorphic references
through interfaces. And the same BackTrack class is used for searching a maze; plac-
ing eight queens on a chess board, where none is under attack by another queen; and
illustrating that a knight can traverse every square in a chess board without landing
on any square more than once. Other applications of recursion, such as for the Tow-
ers of Hanoi game, further highlight the elegance of recursion, especially when com-
pared to the corresponding iterative methods. This elegance is further illustrated in
labs on Fibonacci numbers, the binary search, and generating permutations. Recur-
sion is also encountered in later chapters, notably in the Java Collections Framework
versions of the quick sort and merge sort. Moreover, recursion is an indispensable—
even if seldom used—tool for every computing professional.

In Chapter 5, we begin our study of the Java Collections Framework with the
ArrayList data structure and class. An ArrayList structure is a smart array: auto-
matically resizable, and with methods to handle insertions and deletions at any
index. The design starts with the method description~—precondition, postcondi-
tion, and method heading—of the most widely used methods in the ArrayList class.
There follows an outline of the implementation of the class, and further details are
available in a lab. The application of the ArrayList class, high-precision arithmetic,
is essential for public-key cryptography. This application is extended in a lab and
in a programming project. There is another programming project to develop a
Deque class.

Chapter 6 presents the LinkedList data structure and class, characterized by linear-
time methods for inserting, removing, or retrieving at an arbitrary position. This
property makes a compelling case for list iterators: objects that traverse a LinkedList
object and have constant-time methods for inserting, removing, or retrieving at the
“current” position. The Java Collections Framework’s design is doubly linked and
circular, but other approaches are also considered. The application is a small line-

Preface

editor, for which list iterators are well suited. This application is extended in a pro-
gramming project.

Queues and stacks are the subjects of Chapter 7. The Queue class is not cur-
rently included in the Java Collections Framework, but is easily and efficiently
implemented with a LinkedList field. A contiguous implementation is also presented.
The specific application of calculating the average waiting time at a car wash falls
into the general category of computer simulation. The Stack class implementation,
in the package java.util, predates the Java Collections Framework. There are two
applications of the Stack class: the implementation of recursion, and the conversion
from infix to postfix notation. This latter application is expanded in a lab, and forms
the basis for a project on evaluating a condition.

Chapter 8 focuses on binary trees in general, and binary search trees in partic-
ular. The essential features of binary trees are presented; these are important for
understanding later material on AVL trees, red-black trees, heaps, and decision
trees. The study of binary search trees sets the stage for the subject of chapter 9, bal-
anced binary search trees. In fact, the binary search tree class is a monochromatic
version of the Java Collections Framework’s implementation of red-black trees.

In Chapter 9, we look at balanced binary search trees, specifically, AVL trees
and red-black trees. Rotations are introduced as the mechanism by which rebalanc-
ing is accomplished. With the help of Fibonacci trees, we establish that the height
of an AVL tree is always logarithmic in the number of elements in the tree. Red-
black trees are similarly well behaved. The AVLTree class is implemented, except
for the remove method (Project 9.1).

Red-black trees are implemented in the Java Collections Framework in the
TreeMap and TreeSet classes, the foci of Chapter 10. In a Map object, each element
has a unique key part and also a value part. A TreeMap object is stored in a red-black
tree, ordered by the elements’ keys. There are labs to guide students through the
details of restructuring after an insertion or removal. The application consists of
searching a thesaurus for synonyms. A TreeSet object is implemented as a TreeMap
object in which each element has the same dummy value part. The application of the
TreeSet class is a simple spell-checker. There are project assignments to determine
the frequency of each word in a text file, and to build a concordance.

Chapter 11 introduces the PriorityQueue interface, which is not yet part of the
Java Collections Framework. A heap-based implementation allows insertions in
constant average time, and removal of the highest-priority element in logarithmic
worst time. The application is in the area of data compression, specifically, Huffman
encodings: given a text file, generate a minimal, prefix-free encoding. The project
assignment is to convert the encoding back to the original text file. The lab experi-
ment incorporates fairness into a priority queue, so that ties for highest-priority ele-
ment are always resolved in favor of the element that was on the priority queue for
the longest time.

Sorting is the topic of Chapter 12. Estimates of the maximum lower bounds for
comparison-based sorts are developed. The Java Collections Framework provides

xviii

Preface

two sort methods: the quick sort for arrays of primitive types, and the merge sort for
arrays of objects and for implementations of the List interface. Two other important
sort algorithms, the tree sort and the heap sort, are also included. The chapter’s lab
experiment compares all of these sort algorithms on randomly generated integers.
The project assignment is to sort a file of names and social security numbers.

Chapter 13 starts with a review of sequential and binary searching, and then
investigates hashing. The Java Collections Framework has a HashMap class for ele-
ments that consist of key-value pairs. The HashSet class is backed by the HashMap
class; that is, a HashSet object is viewed as a HashMap object in which all the ele-
ments have the same dummy value parts. Basically, the average time for insertion,
removal, and searching is constant! This average speed is further explored in a lab
that compares HashMap objects to TreeMap objects. There is also a comparison of
chained hashing (the basis for the HashMap class) and open-address hashing. This
comparison is further explored in a programming project.

The most general data structures—graphs, trees, and networks—are presented in
Chapter 14. There are, initially, outlines of the essential algorithms: breadth-first tra-
versal, depth-first traversal, connectedness, finding a minimal spanning tree, and find-
ing a shortest path between two vertices. The only class developed is the (directed)
Network class, with an adjacency-list implementation. Other classes, such as Undirected
Graph and UndirectedNetwork, can be straightforwardly defined as subclasses of the
Network class. The traveling salesperson problem is investigated in a lab, and there is
a programming project to complete an adjacency-matrix version of the Network class.
Another backtracking application is presented, with the same BackTrack class that was
introduced in Chapter 4.

With each chapter, there is an associated web page that includes all programs
developed in the chapter, and applets, where appropriate, to animate the concepts
presented.

APPENDICES

Appendix 1 contains the background that will allow students to comprehend the math-
ematical aspects of the chapters. Summation notation and the rudimentary properties
of logarithms are essential, and the material on mathematical induction will lead to a
deeper appreciation of the analysis of binary trees and open-address hashing.

Appendix 2 is a brief tutorial on the GUI and GUIListener classes. These classes
support the event model for input and output in all the programs in the text and labs.
Understanding the event model and the role of separate threads is quite a bit more dif-
ficult than understanding console input and output. But virtually every application pro-
gram is event driven, so the time spent on these topics is an investment in the future.

Appendix 3 presents a user’s view of the Java Collections Framework. For
each method, a method description is provided: precondition, postcondition, and
method heading. The relationships between the six classes and the four interfaces
are as follows:

Preface

The ArrayList class implements the List interface, which extends the
Collection interface.

The LinkedList class implements the List interface, which extends the
Collection interface.

The TreeMap class implements the Map interface.

The TreeSet class implements the Set interface, which extends the
Collection interface.

The HashMap class implements the Map interface.

The HashSet class implements the Set interface, which extends the
Collection interface.

ORGANIZATION OF THE LABS

There are 24 website labs associated with this text. For both students and instruc-
tors, the Uniform Resource Locator (URL) is www.mhhe.com/collins. The labs do
not contain essential material, but provide reinforcement of the text material. For
example, after the ArrayList and LinkedList classes have been investigated, there is a
lab to perform some timing experiments on those two classes.

The labs are self-contained, so the instructor has considerable flexibility in
assigning the labs:

1. They can be assigned as closed labs.
2. They can be assigned as open labs.
3. They can be assigned as ungraded homework.

In addition to the obvious benefit of promoting active learning, these labs also
encourage use of the scientific method. Basically, each lab is set up as an experiment.
Students observe some phenomenon, such as the organization of the Java Collections
Framework’s LinkedList class. They then formulate and submit a Aypothesis—with
their own code—about the phenomenon. After resting and, perhaps, revising their
hypothesis, they submit the conclusions they drew from the experiment.

There are more labs related to earlier chapters than to later ones. This allows
students to start working right from the beginning of the course, even before pro-
gramming projects can be assigned.

ACKNOWLEDGMENTS

Chun Wai Liew developed the graphical user interface employed throughout the
book and converted the Java classes to utilize Swing components. Joshua Bloch of
Sun Microsystems provided valuable insights into the Java Collections Framework.
And T am grateful to Sun Microsystems for permission to include code (mostly
Joshua’s!) from the Java Collections Framework.

XX Preface

The following reviewers made many helpful suggestions:

Joseph M. Clifton, University of Wisconsin, Platteville
Homer C. Gerber, University of Central Florida
James K. Huggins, Kettering University

Dean Kelley, Minnesota State University, Mankato
Teresa Leyk, Texas A&M University

Mitchell L. Neilsen, Kansas State University
Thaddeus F. Pawlicki, University of Rochester
Gregory J. E. Rawlins, Indiana University

Munindar P. Singh, North Carolina State University
Sebastian Thrun, Carnegie Mellon University
Kenneth R. Vollmar, Southwest Missouri State University
Ming Wang, Embry-Riddle Aeronautical University
Zhi-Li Zhang, University of Minnesota

I am thankful for the encouragement and support from McGraw-Hill. Emily Gray
and Betsy Jones were cordially persistent in steering me away from unworkable
ideas. Jane Matthews kept the production on schedule.

Several students from Lafayeite College made important contributions. Eric
Panchenko created all of the applets and many of the driver programs; Yi Sun con-
structed the initial template for the labs; Xenia Taoubina wrote many of the method
descriptions and examples in Appendix 3. Finally, I am indebted to all of the stu-
dents at Lafayette College who participated in the class testing of the book and
endured earlier versions of the labs.

Bill Collins

vi

Preface xiv

CHAPTER 1

Important Features of Java 1

CHAPTER 2
Interfaces and Collection Classes 39

CHAPTER 3

CHAPTER 4
Recursion 93

CHAPTER 5

Array Lists 140

CHAPTER 6

CHAPTER 7

CHAPTER 8

Introduction.-to Software Engineering 65
Linked Lists 185
Queues-and Stacks 233

277

Binary Trees and Binary Search Trees

CHAPTER 9

Balanced Binary Search Trees 323
CHAPTER O

Tree Maps-and Tree Sets 361

CHAPTER 11
Priority Queues 415

CHA-PTEB 12

Sorting 453

Brief Contents

CHAPTER 13

Searching and the Hash Classes 495

CHAPTER 14

Graphs, Trees, and Networks 539

APPENDIX 1
Mathematical Background 593

APPENDIX 2
The GUI and GUIListener Classes 607

APPENDIX 3
The Java Collections Framework 619

Bibliography 709

Index 711

Preface xiv

cHAp-rsnl
Important Features of Java 1

Chapter Objectives 1
1.1 Classes 2
1.1.1 Method Descriptions 2
1.1.2 Data Abstraction 5
1.1.3 An Employee Class 7
1.1.4 Local Variables and Fields 10
1.1.5 Constructors 10
1.1.6 Instance Variables and Static Variables 11
1.1.7 Visibility Modifiers 12
1.1.8 Graphical User Interfaces 13
1.1.9 The Company Class 14
Lab 1: The CompanyMain Project 14
1.1.10 Inheritance 14
1.1.11 The protected Visibility Modifier 16
1.1.12 Inheritance and Constructors 18
Lab 2: The SalariedEmployee Class 22
1.1.13 Polymorphism 23
1.1.14 Information Hiding 27
1.1.15 Exception Handling 27
1.1.16 Propagating Exceptions 30
Lab 3: An Example of Exception Handling 31
Summary 33
Exercises 33
Programming Project 1.1: Developing and Using a
Sequence Class 37

CHAPTER 2

Interfaces and Collection
Classes 39

Chapter Objectives 39

2.1 Abstract Methods and Abstract Classes 40

viii

Lab 4: A Class for Regular Polygons 41
2.2 Interfaces 41
2.3 Agrays 45
2.4 Collection Classes 46
2.5 Storage Structures for Collection Classes 48

Lab 5: The ArrayCollection Class’s
Implementation of the Collection Interface 49

2.5.1 Linked Structures 49
2.5.2 The LinkedCollection Class 49

2.5.3 Fields and Method Definitions in the
LinkedCollection Class 51

2.5.4 lIterators 55
Lab 6: Expanding the LinkedCollection Class 59

2.5.5 Data Structures and the Java Collections

Framework 59
Summary 59
Exercises 60

Programming Project 2.1: Expanding the
LinkedCollection Class 62

CHAPTEH3

Introduction to Software
Engineering 65

Chapter Objectives 65
3.1 The Software Development Life Cycle 66
3.2 Problem Analysis 66
3.2.1 System Tests 68
3.3 Program Design 69
3.3.1 Method Descriptions and Fields 69
3.3.2 Dependency Diagrams 70
34 Program Implementation 73
34.1 Method Validation 73
Lab 7: Drivers 74
3.4.2 Is Correctness Feasible? 74
3.4.3 Estimating the Efficiency of Methods 75
344 Big-O Notation 76

3.4.5 Getting Big-O Estimates Quickly 78
3.4.6 Trade-Offs 82

3.4.7 Run-Time Analysis 84

3.4.8 Overview of the Random Class 85

Lab 8: Randomness and Timing 86
3.5 Program Maintenance 86
Summary 87
Exercises 88

Programming Project 3.1: Further Expansion of the
LinkedCollection Class 91

cHApTEn4
Recursion 93

Chapter Objectives 93
4.1 Introduction 94
4.2 Factorials 94
4.2.1 Execution Frames 96
4.3 Decimal to Binary 98
Lab 9: Fibonacci Numbers 101
4.4 Towers of Hanoi 102
4.4.1 A Recurrence Relation 110
4.5 Backtracking 111
4.5.1 An A-maze-ing Application 114
4.6 Binary Search 120
Lab 10: Iterative Binary Search 131
Lab 11: Generating Permutations 131
4.7 Indirect Recursion 131
4.8 The Cost of Recursion 132
Summary 133
Exercises 134

Programming Project 4.1: Iterative Version of
Towers of Hanoi 142

Programming Project 4.2: Eight Queens 144
Programming Project 4.3: A Knight’s Tour 146

CHAPTER 5
Array Lists 149

Chapter Objectives 149
5.1 The List Interface 150

Contents ix

5.2 The ArrayList Class 151

5.2.1 Method Descriptions for the Arraylist
Class 152

ArrayList Class Heading 158

Fields in the Artaylist Class 159
5.2.4 Arraylist Objects Are Serializable 160
5.2.5 Arraylist Objects Are Cloneable 161

5.3 The ArrayList Implementation 162
5.3.1 Definition of the add Method 163
5.3.2 Amortized Time 165

5.3.3 The clone Method and the Copy
Constructor 166

5.3.4 Fail-Fast lterators 168

Lab 12: More Details on the Arraylist Class 169
5.4 Application: High-Precision Arithmetic 169

5.4.1 Design of the VeryLongint Class 170

54.2 Implementation of the VeryLongint
Class 171

Lab 13: Extending the Verylongint Class 175
5.5 The Vector Class 175
Summary 175
Exercises 175

Programming Project 5.1: Extending the
VeryLongint Class 179

Programming Project 5.2: The Deque Class 180

5.2.2
523

cHAPTER6
Linked Lists 185

Chapter Objectives 185
6.1 The LinkedList Class 186

6.1.1 The LinkedList Class versus the
ArraylList Class 187

LinkedList Iterators 190

Fields and Implementation of the LinkedList
Class 195

Fields and Implementation of Listltr

Class 203

Lab 14: More Implementation Details of the
Listiir Class 206

Lab 15: Timing the ArrayList and
LinkedList Classes 207

6.1.5 Alternative Designs and Implemeniations
of the LinkedList Class 207

6.1.2
6.1.3

6.14

x Contents

6.1.6 Circular Linked Lists
Application: A Line Editor 211

6.2.1 Design of the Editor Class 215
6.2.2 Implementation of the Editor Class

6.2.3 Big-O Analysis of the Editor Class
Methods 221

The EditorDriver Class

223

224

Programming Project 6.1: Extending the Line
Editor 226

Programming Project 6.2: Alternative Design and
Implementation of the LinkedList Class 231

210
6.2

217

6.2.4
Summary
Exercises

221

CHAPTER7

Queues and Stacks 233

Chapter Objectives 233
7.1 Queues 234

7.1.1 Design and Implementation of the
Queue Class 235

7.1.2 Alternative Designs and Implementation of
the Queue Class 237

7.2 Computer Simulation 242
7.3 Application: A Simulated Car Wash 244
7.3.1 Design of the CarWash Class 245
7.3.2 Implementation of the CarWash Class 246
7.3.3 Analysis of the CarWash Methods 249
7.3.4 Randomizing the Arrival Times 250
Lab 16: Randomizing the Arrival Times 251
Stacks 251

7.4.1 Design and Implementation of the
Stack Class 252

The Stack Class in the Java Collections
Framework 253

Alternative Designs and Implementations

of the Stack Class 253

7.5 Application: How Compilers Implement
Recursion 254

7.4

74.2

7.4.3

7.6 Application: Converting From Infix to
Postfix 257
7.6.1 Postfix Notation 259

7.6.1 Transition Marrix 260

7.6.3 Tokens 261
Lab 17; Converting from Infix to Postfix 263
7.6.4 Prefix Notation 263

Summary 267

267

Programming Project 7.1: Extending Speedo’s
Car Wash 270

Programming Project 7.2: Run-Time Evaluation of
a Condition 272

Programming Project 7.3: An Iterative Version of
Maze-Search 276

Exercises

CHAPTERS

Binary Trees and Binary
Search Trees 277

Chapter Objectives 277

8.1 Definition and Properties of Binary
Trees 278

8.1.1 The Binary Tree Theorem 284
8.1.2 External Path Length 287

8.1.3 Traversals of a Binary Tree 288
Binary Search Trees 294

8.2.1 The BinSearchTree Class 295

8.2.2 Fields and Embedded Classes in the
BinSearchTree Class 298

Implementation of the BinSearchTree
Class 298

8.2.4 The remove Method 304
8.2.5 The Treelterator Class 313
Lab 18: A Run-Time Estimate of the Average

8.2

82.3

Height of a BinSearchTree Object 315
Summary 316
Exercises 317

Programming Project 8.1: An Alternative Design
and Implementation of the Binary-Search-
Tree Data Structure 321

CHAPTER 9
Balanced Binary Search Trees 323
Chapter Objectives 323

9.1 A Problem with Binary Search Trees 324

9.2 Rotations 324
9.3 AVL Trees 329
9.3.1 The Height of an AVL Tree 330
9.3.2 The AVLTree Class 332
9.3.3 The fixAfterinsertion Method 335
9.3.4 Correctness of the add Method 345
9.4 Red-Black Trees 348
9.4.1 The Height of a Red-Black Tree 351
Summary 355
Exercises 356

Programming Project 9.1: Defining the remove
Method in the AVLTree Class 360

CHAPTERlO

Tree Maps and Tree Sets 361

Chapter Objectives 361
10.1 The TreeMap Class 362

10.1.1 Method Descriptions of the TreeMap
Class 362

10.1.2 The Fields in the TreeMap Class 365

10.1.3 The Comparator and Comparable
Classes 365

10.1.4 The Entry Class 367

10.1.5 Implementation of the TreeMap
Class 367

10.1.6 The fixAfterinsertion Method 369
10.1.7 Three Cases of Insertion 371

Lab 19: A Red-Black Tree Insertion with All
Three Cases 375

10.1.8 More TreeMap Methods 375

10.1.9 The fixAfterDeletion Method 380

Lab 20: A Red-Black Tree Removal with All

Four Cases 388

10.1.10 The entrySet Method 389

10.2 Application: TreeMap Objects: A Simple

Thesaurus 389

10.2.]1 Design and Implementation of the
Thesaurus Class 390

10.2.2 Design and Implementation of the
ThesaurusDriver Class 392

Contents xi

10.3 The TreeSet Class 395

10.3.1 Design and Implementation of the
TreeSet Class 398

10.4 Application: A Simple Spell-Checker 399
10.4.1 Design and Implementation of the
SpellChecker Class 400

10.4.2 Design and Implementation of the
SpeliCheckerDriver Class 402

Summary 405

Exercises 405

Programming Project 10.1: Enhancing the
SpellChecker Project 408

Programming Project 10.2: Determining Word
Frequencies 410

Programming Project 10.3: Building a
Concordance 412

CHAPTER 1 1
Priority Queues 415

Chapter Objectives 415
11.1 Introduction 416
11.2 Definition of the PriorityQueue
Interface 417
11.3 Implementations of the PriorityQueue
Interface 417
11.3.1 The Heap Class 419
11.3.2 Fields in the Heap Class 424
11.3.3 Implementation of the Heap Class 424
11.3.4 The percolateUp Method 425
11.3.5 The percolateDown Method 430
Lab 21: Incorporating Fairness in Heaps 432
11.4 Application: Huffman Codes 432
114.1 Huffman Trees 435
11.4.2 Greedy Algorithms 438
11.4.3 The Hufiman Class 439
Summary 446
Exercises 447

Programming Project 11.1 Decoding a Huffman-
Encoded Message 450

