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PREFACE

his book is intended for an object-oriented course in data structures and algo-

rithms. The implementation language is Java, and it is assumed that students

have taken an introductory course in which that language was used. That
course should have covered the fundamental statements and data types, as well as
arrays and the basics of file processing.

THE JAVA COLLECTIONS FRAMEWORK

One of the distinctive features of this text is its emphasis on the Java Collections
Framework, part of the java.util package. Basically, the framework is a hierarchy
with interfaces at each level except the lowest, and collection classes that implement
those interfaces at the lowest level. The collection classes implement most of the
data structures studied in a second computer science course, such as a resizable array
class, a linked-list class, a balanced binary-search-tree class, and a hash-set class.

There are several advantages to using the Java Collections Framework. First,
students will be working with code that has been extensively tested; they need not
depend on modules created by the instructor or textbook author. Second, students
will have the opportunity to study professionals’ code, which is substantially more
efficient—and succinct—than what they have seen before. Third, the framework is
available for later courses in the curriculum, and beyond!

OTHER IMPLEMENTATIONS CONSIDERED

As important as the Java Collections Framework is, it cannot be the exclusive focus
of such a fundamental course in data structures and algorithms. Approaches that dif-
fer from those in the Java Collections Framework also deserve consideration. For
example, the HashSet and HashMap classes utilize chaining, so there is a separate
section on open addressing, and a discussion of the trade-offs of one design over the
other. Also, there is coverage of data structures (such as graphs) and algorithms
(such as the heap sort) that are not yet included in the Java Collections Framework.

This text also satisfies another essential need of a data structures and algorithms
course: the need for students to practice developing their own data structures. There
are programming projects in which data structures are either created “from the
ground up” or extended from examples in the chapters. And there are other projects
to develop or extend applications that use the Java Collections Framework.
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GRAPHICAL USER INTERFACE

Instead of console input-output, we employ a simple graphical user interface (GUI)
with a single input line and any number of output lines. A brief outline of this GUI is
given in Chapter 1, and a more extensive description is provided in Appendix 2. Two
immediate consequences of using this GUI are that input loops are no longer applica-
ble, and that the output is scrollable. But the main significance is that students gain a
better understanding of event-driven programming: the real-world environment.

PEDAGOGICAL FEATURES

This text offers several features that may improve the teaching environment for
instructors and the learning environment for students. Each chapter starts with a list
of objectives, and concludes with at least one major programming assignment. Each
data structure is carefully described, with a precondition and postcondition for each
method. In addition, most of the methods include examples of how to call the
method, and the results of that call.

The implementation details, especially of the Java Collections Framework
classes, are carefully investigated in the text and reinforced in a suite of 24 labs. The
organization of these labs is described later in this preface. Each chapter has a vari-
ety of exercises, and the answers to all of the exercises are available to the instructor.

SUPPORT MATERIAL

The website for all of the support material is www.mhhe.com/collins, and it has
links to the following information for students:

B An overview of the labs and how to access them

B The source code for all projects developed in the text
B Applets for projects that have a strong visual component

Additionally, instructors can obtain the following from the website:
M Instructors’ options with regard to the labs
B PowerPoint slides for each chapter (approximately 1500 slides)

B Answers to every exercise

SYNOPSES OF THE CHAPTERS

Chapter 1 presents those features of Java that serve as the foundation for subsequent
chapters. Much of the material reflects an object orientation: inheritance, polymor-
phism, and exception handling. There are lab experiments to review classes, as well
as on inheritance and exceptton handling. See the “Organization of the Labs” sec-
tion in this preface for more information on labs.
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Chapter 2 introduces abstract classes and interfaces, and there is a 1ab for both of
these topics. Of special interest is the Collection interface, the root of many classes in
the Java Collections Framework. As a simple implementation of the Collection inter-
face, a primitive version of a singly linked list class is created. This LinkedCollection
class serves mainly to provide a backdrop for several key features of the Java Col-
lections Framework, such as iterators and embedded classes. A lab experiment on
iterators helps to solidify a student’s understanding of this vital concept.

Chapter 3, an introduction to software engineering, outlines the four stages of
the software-development life cycle: analysis, design, implementation, and mainte-
nance. The Unified Modeling Language is introduced as a design tool to depict
inheritance, composition, and aggregation. Big-O notation, which pervades subse-
quent chapters, allows environment-independent estimates of the time requirements
for methods. Both run-time validation and timing are discussed, and for each of
those topics there is a follow-up lab.

Chapter 4, on recursion, represents a temporary shift in emphasis from data
structures to algorithms. Backtracking is introduced, not only as a general technique
for problem solving, but as another illustration of creating polymorphic references
through interfaces. And the same BackTrack class is used for searching a maze; plac-
ing eight queens on a chess board, where none is under attack by another queen; and
illustrating that a knight can traverse every square in a chess board without landing
on any square more than once. Other applications of recursion, such as for the Tow-
ers of Hanoi game, further highlight the elegance of recursion, especially when com-
pared to the corresponding iterative methods. This elegance is further illustrated in
labs on Fibonacci numbers, the binary search, and generating permutations. Recur-
sion is also encountered in later chapters, notably in the Java Collections Framework
versions of the quick sort and merge sort. Moreover, recursion is an indispensable—
even if seldom used—tool for every computing professional.

In Chapter 5, we begin our study of the Java Collections Framework with the
ArrayList data structure and class. An ArrayList structure is a smart array: auto-
matically resizable, and with methods to handle insertions and deletions at any
index. The design starts with the method description~—precondition, postcondi-
tion, and method heading—of the most widely used methods in the ArrayList class.
There follows an outline of the implementation of the class, and further details are
available in a lab. The application of the ArrayList class, high-precision arithmetic,
is essential for public-key cryptography. This application is extended in a lab and
in a programming project. There is another programming project to develop a
Deque class.

Chapter 6 presents the LinkedList data structure and class, characterized by linear-
time methods for inserting, removing, or retrieving at an arbitrary position. This
property makes a compelling case for list iterators: objects that traverse a LinkedList
object and have constant-time methods for inserting, removing, or retrieving at the
“current” position. The Java Collections Framework’s design is doubly linked and
circular, but other approaches are also considered. The application is a small line-
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editor, for which list iterators are well suited. This application is extended in a pro-
gramming project.

Queues and stacks are the subjects of Chapter 7. The Queue class is not cur-
rently included in the Java Collections Framework, but is easily and efficiently
implemented with a LinkedList field. A contiguous implementation is also presented.
The specific application of calculating the average waiting time at a car wash falls
into the general category of computer simulation. The Stack class implementation,
in the package java.util, predates the Java Collections Framework. There are two
applications of the Stack class: the implementation of recursion, and the conversion
from infix to postfix notation. This latter application is expanded in a lab, and forms
the basis for a project on evaluating a condition.

Chapter 8 focuses on binary trees in general, and binary search trees in partic-
ular. The essential features of binary trees are presented; these are important for
understanding later material on AVL trees, red-black trees, heaps, and decision
trees. The study of binary search trees sets the stage for the subject of chapter 9, bal-
anced binary search trees. In fact, the binary search tree class is a monochromatic
version of the Java Collections Framework’s implementation of red-black trees.

In Chapter 9, we look at balanced binary search trees, specifically, AVL trees
and red-black trees. Rotations are introduced as the mechanism by which rebalanc-
ing is accomplished. With the help of Fibonacci trees, we establish that the height
of an AVL tree is always logarithmic in the number of elements in the tree. Red-
black trees are similarly well behaved. The AVLTree class is implemented, except
for the remove method (Project 9.1).

Red-black trees are implemented in the Java Collections Framework in the
TreeMap and TreeSet classes, the foci of Chapter 10. In a Map object, each element
has a unique key part and also a value part. A TreeMap object is stored in a red-black
tree, ordered by the elements’ keys. There are labs to guide students through the
details of restructuring after an insertion or removal. The application consists of
searching a thesaurus for synonyms. A TreeSet object is implemented as a TreeMap
object in which each element has the same dummy value part. The application of the
TreeSet class is a simple spell-checker. There are project assignments to determine
the frequency of each word in a text file, and to build a concordance.

Chapter 11 introduces the PriorityQueue interface, which is not yet part of the
Java Collections Framework. A heap-based implementation allows insertions in
constant average time, and removal of the highest-priority element in logarithmic
worst time. The application is in the area of data compression, specifically, Huffman
encodings: given a text file, generate a minimal, prefix-free encoding. The project
assignment is to convert the encoding back to the original text file. The lab experi-
ment incorporates fairness into a priority queue, so that ties for highest-priority ele-
ment are always resolved in favor of the element that was on the priority queue for
the longest time.

Sorting is the topic of Chapter 12. Estimates of the maximum lower bounds for
comparison-based sorts are developed. The Java Collections Framework provides
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two sort methods: the quick sort for arrays of primitive types, and the merge sort for
arrays of objects and for implementations of the List interface. Two other important
sort algorithms, the tree sort and the heap sort, are also included. The chapter’s lab
experiment compares all of these sort algorithms on randomly generated integers.
The project assignment is to sort a file of names and social security numbers.

Chapter 13 starts with a review of sequential and binary searching, and then
investigates hashing. The Java Collections Framework has a HashMap class for ele-
ments that consist of key-value pairs. The HashSet class is backed by the HashMap
class; that is, a HashSet object is viewed as a HashMap object in which all the ele-
ments have the same dummy value parts. Basically, the average time for insertion,
removal, and searching is constant! This average speed is further explored in a lab
that compares HashMap objects to TreeMap objects. There is also a comparison of
chained hashing (the basis for the HashMap class) and open-address hashing. This
comparison is further explored in a programming project.

The most general data structures—graphs, trees, and networks—are presented in
Chapter 14. There are, initially, outlines of the essential algorithms: breadth-first tra-
versal, depth-first traversal, connectedness, finding a minimal spanning tree, and find-
ing a shortest path between two vertices. The only class developed is the (directed)
Network class, with an adjacency-list implementation. Other classes, such as Undirected
Graph and UndirectedNetwork, can be straightforwardly defined as subclasses of the
Network class. The traveling salesperson problem is investigated in a lab, and there is
a programming project to complete an adjacency-matrix version of the Network class.
Another backtracking application is presented, with the same BackTrack class that was
introduced in Chapter 4.

With each chapter, there is an associated web page that includes all programs
developed in the chapter, and applets, where appropriate, to animate the concepts
presented.

APPENDICES

Appendix 1 contains the background that will allow students to comprehend the math-
ematical aspects of the chapters. Summation notation and the rudimentary properties
of logarithms are essential, and the material on mathematical induction will lead to a
deeper appreciation of the analysis of binary trees and open-address hashing.

Appendix 2 is a brief tutorial on the GUI and GUIListener classes. These classes
support the event model for input and output in all the programs in the text and labs.
Understanding the event model and the role of separate threads is quite a bit more dif-
ficult than understanding console input and output. But virtually every application pro-
gram is event driven, so the time spent on these topics is an investment in the future.

Appendix 3 presents a user’s view of the Java Collections Framework. For
each method, a method description is provided: precondition, postcondition, and
method heading. The relationships between the six classes and the four interfaces
are as follows:
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The ArrayList class implements the List interface, which extends the
Collection interface.

The LinkedList class implements the List interface, which extends the
Collection interface.

The TreeMap class implements the Map interface.

The TreeSet class implements the Set interface, which extends the
Collection interface.

The HashMap class implements the Map interface.

The HashSet class implements the Set interface, which extends the
Collection interface.

ORGANIZATION OF THE LABS

There are 24 website labs associated with this text. For both students and instruc-
tors, the Uniform Resource Locator (URL) is www.mhhe.com/collins. The labs do
not contain essential material, but provide reinforcement of the text material. For
example, after the ArrayList and LinkedList classes have been investigated, there is a
lab to perform some timing experiments on those two classes.

The labs are self-contained, so the instructor has considerable flexibility in
assigning the labs:

1. They can be assigned as closed labs.
2. They can be assigned as open labs.
3. They can be assigned as ungraded homework.

In addition to the obvious benefit of promoting active learning, these labs also
encourage use of the scientific method. Basically, each lab is set up as an experiment.
Students observe some phenomenon, such as the organization of the Java Collections
Framework’s LinkedList class. They then formulate and submit a Aypothesis—with
their own code—about the phenomenon. After resting and, perhaps, revising their
hypothesis, they submit the conclusions they drew from the experiment.

There are more labs related to earlier chapters than to later ones. This allows
students to start working right from the beginning of the course, even before pro-
gramming projects can be assigned.
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