Ian Gorton George T. Heineman

Ivica Crnkovic Heinz W. Schmidt
Judith A. Stafford Clemens A. Szyperski
Kurt Wallnau (Eds.)

Component-Based
Software Engineering

9th International Symposium, CBSE 2006
Vasteras, Sweden, June/July 2006
Proceedings

LNCS 4063

@ Springer

/"4 Ian Gorton George T. Heineman

' Ivica Crnkovic Heinz W. Schmidt

Judith A. Stafford Clemens A. Szyperski
Kurt Wallnau (Eds.)

Component-Based
Software Engineering

9th International Symposium, CBSE 2006
Viisterds, Sweden, June 29 — July 1, 2006
Proceedings

[T

N Springer E200603661

Volume Editors

Ian Gorton
National ICT Australia, Eveleigh, NSW 1430, Australia
E-mail: ian.gorton @nicta.com.au

George T. Heineman
WPI, Worcester, MA 01609, USA
E-mail: heineman@cs.wpi.edu

Ivica Crnkovic
Miilardalen University, 721 23 Visteras, Sweden
E-mail: ivica.crnkovic@mdh.se

Heinz W. Schmidt
Monash University, Clayton VIC 3800 , Australia
E-mail: heinz.schmidt@csse.monash.edu.au

Judith A. Stafford
Tufts University, Medford, MA 02155, USA
E-mail: jas@cs.tufts.edu

Clemens A. Szyperski
Microsoft Corp., Redmond, WA 98053, USA
E-mail: cszypers@microsoft.com

Kurt Wallnau
Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
E-mail: kew @sei.cmu.edu

Library of Congress Control Number: 2006927704

CR Subject Classification (1998): D.2, D.1.5, D.3, F3.1
LNCS Sublibrary: SL 2 — Programming and Software Enginéering

ISSN 0302-9743
ISBN-10 3-540-35628-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35628-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11783565 06/3142 543210

Preface

On behalf of the Organizing Committee I am pleased to present the proceedings of the
2006 Symposium on Component-Based Software Engineering (CBSE). CBSE is
concerned with the development of software-intensive systems from reusable parts
(components), the development of reusable parts, and system maintenance and
improvement by means of component replacement and customization. CBSE 2006
was the ninth in a series of events that promote a science and technology foundation
for achieving predictable quality in software systems through the use of software
component technology and its associated software engineering practices.

We were fortunate to have a dedicated Program Committee comprising 27
internationally recognized researchers and industrial practitioners. We received 77
submissions and each paper was reviewed by at least three Program Committee
members (four for papers with an author on the Program Committee). The entire
reviewing process was supported by Microsoft’s CMT technology. In total, 22
submissions were accepted as full papers and 9 submissions were accepted as short
papers.

This was the first time CBSE was not held as a co-located event at ICSE. Hence
special thanks are due to Ivica Crnkovic for hosting the event. We also wish to thank
the ACM Special Interest Group on Software Engineering (SIGSOFT) for their
sponsorship of CBSE 2005. The proceedings you now hold were published by
Springer and we are grateful for their support. Finally, we must thank the many
authors who contributed the high-quality papers contained within these proceedings.
As the international community of CBSE researchers and practitioners continues to
prosper, we expect the CBSE Symposium series to similarly attract widespread
interest and participation.

May 2006 Ian Gorton

Organization

CBSE 2006 was sponsored by the Association for Computing Machinery (ACM)
Special Interest Group in Software (SIGSOFT).

Organizing Committee

Program Chair: Ian Gorton (NICTA, Australia)
Steering Commiittee: Ivica Crnkovic
(Milardalen University, Sweden)

George T. Heineman

(WPI, USA)

Heinz W. Schmidt

(Monash University, Australia)

Judith A. Stafford (Tufts University, USA)
Clemens Szyperski (Microsoft Research, USA)
Kurt Wallnau

(Software Engineering Institute, USA)

Program Committee

Uwe Assmann, Dresden University of Technology, Germany
Mike Barnett, Microsoft Research, USA

Judith Bishop, University of Pretoria, South Africa

Jan Bosch, Nokia Research Center, Finland

Michel Chaudron, University of Eindhoven, The Netherlands
Shiping Chen, CSIRO, Australia

Susan Eisenbach, Imperial College, UK

Dimitra Giannakopoulou, RIACS/NASA Ames, USA

Lars Grunske, University of Queensland, Australia

Richard Hall, LSR-IMAG, France

Dick Hamlet, Portland State University, USA

George Heineman, Worcester Polytechnic Institute, USA
Tom Henzinger, EPFL, Switzerland and UC Berkeley, USA
Paola Inverardi, University of L'Aquila, Italy

Jean-Marc Jezequel, IRISA (INRIA & Univ. Rennes 1), France
Bengt Jonsson, Uppsala University, Sweden

Dean Kuo, University of Manchester, UK

Magnus Larsson, ABB, Sweden

Kung-Kiu Lau, University of Manchester, UK

Nenad Medvidovic, University of Southern California, USA
Rob van Ommering, Philips, The Netherlands

Otto Preiss, ABB Switzerland

VI Organisation

Ralf Reussner, University of Oldenburg, Germany

Douglas Schmidt, Vanderbilt University, USA

Jean-Guy Schneider, Swinburne University of Tech., Australia
Dave Wile, Teknowledge, Corp., USA

Wolfgang Weck, Independent Software Architect, Switzerland

Previous CBSE Workshops and Symposia

8th International Symposium on CBSE, Lecture Notes in Computer Science,
Vol. 3489, Heineman, G.T. et al (Eds.), Springer, St. Loius, USA (2005)

7th International Symposium on CBSE, Lecture Notes in Computer Science,
Vol. 3054, Crnkovic, 1.; Stafford, J.A.; Schmidt, H.W.; Wallnau, K. (Eds.),
Springer, Edinburgh, UK (2004)

6th ICSE Workshop on CBSE: Automated Reasoning and Prediction
http://www.sei.cmu.edu/pacc/CBSE6. Portland, Oregon (2003)

5th ICSE Workshop on CBSE: Benchmarks for Predictable Assembly
http://www.sei.cmu.edu/pacc/CBSES. Orlando, Florida (2002)

4th ICSE Workshop on CBSE: Component Certification and System Prediction.
Software Engineering Notes, 26(10), November 2001. ACM SIGSOFT Author(s):
Crnkovic, 1.; Schmidt, H.; Stafford, J.; Wallnau, K. (Eds.)
http://www.sei.cmu.edu/pacc/CBSE4-Proceedings.html. Toronto, Canada, (2001)

Third ICSE Workshop on CBSE: Reflection in Practice
http://www.sei.cmu.edu/pacc/cbse2000. Limerick, Ireland (2000)

Second ICSE Workshop on CBSE: Developing a Handbook for CBSE
http://www.sei.cmu.edu/cbs/icse99. Los Angeles, California (1999)

First Workshop on CBSE
http://www.sei.cmu.edu/pacc/icse98. Tokyo, Japan (1998)

Table of Contents

Full Papers

Defining and Checking Deployment Contracts for Software Components
Kung-Kiu Lau, Viadyslav Ukis iiiiii...

GLoo: A Framework for Modeling and Reasoning About
Component-Oriented Language Abstractions
Markus Lumpe

Behavioral Compatibility Without State Explosion: Design and
Verification of a Component-Based Elevator Control System

Paul C. Attie, David H. Lorenz, Aleksandra Portnova,

Hana Chockler

Verification of Component-Based Software Application Families
Fei Xie, James C. Browne

Multi Criteria Selection of Components Using the Analytic Hierarchy
Process
Joao W. Cangussu, Kendra C. Cooper, Eric W. Wong

From Specification to Experimentation: A Software Component Search
Engine Architecture
Vinicius Cardoso Garcia, Daniel Lucrédio, Frederico Araujo Durao,
Eduardo Cruz Reis Santos, Eduardo Santana de Almeida,
Renata Pontin de Mattos Fortes, Silvio Romero de Lemos Meira

Architectural Building Blocks for Plug-and-Play System Design
Shangzhu Wang, George S. Avrunin, Lori A. Clarke

A Symmetric and Unified Approach Towards Combining
Aspect-Oriented and Component-Based Software Development
Davy Suvée, Bruno De Fraine, Wim Vanderperren

Designing Software Architectures with an Aspect-Oriented Architecture
Description Language
Jennifer Pérez, Nour Ali, Jose A. Carsi, Isidro Ramos

A Component Model Enginecred with Components and Aspects
Lionel Seinturier, Nicolas Pessemier, Laurence Duchien.

X Table of Contents

CBSE in Small and Medium-Sized Enterprise: Experience Report
Reda Kadri, Francois Merciol, Salah Sadou 154

Supervising Distributed Black Boxes
Philippe Mauran, Gérard Padiou, Xuan Loc Pham Thi 166

Generic Component Lookup
Till G. Bay, Patrick Eugster, Manuel Oriol 182

Using a Lightweight Workflow Engine in a Plugin-Based Product Line
Architecture
Humberto Cervantes, Sonia Charleston-Villalobos 198

A Formal Component Framework for Distributed Embedded Systems
Christo Angelov, Krzysztof Sierszecki, Nicolae Marian,
TIVDCTIG VB 5555 smrsmems swsws cmems omemn amems s ims &6 0o no 6 6w s wo o 206

A Prototype Tool for Software Component Services in Embedded
Real-Time Systems
Frank Liders, Daniel Flemstrom, Anders Wall, Ivica Crnkovic 222

Service Policy Enhancements for the OSGi Service Platform
Nico Goeminne, Gregory De Jans, Filip De Turck, Bart Dhoedt,
Frank Gielen 238

A Process for Resolving Performance Trade-Offs in Component-Based
Architectures
Egor Bondarev, Michel Chaudron, Peter de With 254

A Model Transformation Approach for the Early Performance and
Reliability Analysis of Component-Based Systems
Vincenzo Grassi, Raffaela Mirandola, Antonino Sabetta 270

Impact of Virtual Memory Managers on Performance of J2EE
Applications
Alexander Ufimtsev, Alena Kucharenka, Liam Murphy 285

On-Demand Quality-Oriented Assistance in Component-Based Software
Evolution
Chouki Tibermacine, Régis Fleurquin, Salah Sadow 294

Components Have Test Buddies
Pankaj Jalote, Rajesh Munshi, Todd Probsting..................... 310

Table of Contents XI

Short Papers

Defining “Predictable Assembly”
Diichk Hamlet «:o:soimscosmnins i 8558000 imewn nasmn nmsme smsms s 320

A Tool to Generate an Adapter for the Integration of Web Services
Interface
Kwangyong Lee, Juil Kim, Woojin Lee, Kiwon Chong 328

A QoS Driven Development Process Model for Component-Based
Software Systems
Heiko Koziolek, Jens Happe uuuuieunannnn .. 336

An Enhanced Composition Model for Conversational Enterprise

JavaBeans
Franck Barbier 344

Dynamic Reconfiguration and Access to Services in Hierarchical
Component Models
Petr Hnétynka, Frantisek PLasil 352

MADCAR: An Abstract Model for Dynamic and Automatic
(Re-)Assembling of Component-Based Applications
Guillaume Grondin, Noury Bouraqadi, Laurent Vercouter 360

Adaptation of Monolithic Software Components by Their
Transformation into Composite Configurations Based on Refactoring

Gautier Bastide, Abdelhak Seriai, Mourad Oussalah 368

Towards Encapsulating Data in Component-Based Software Systems
Kung-Kiu Lau, Faris M. Taweel 376

Virtualization of Service Gateways in Multi-provider Environments
Yvan Royon, Stéphane Frénot, Frédéric Le Mouél............ 385

Author Index 393

Defining and Checking Deployment Contracts
for Software Components

Kung-Kiu Lau and Vladyslav Ukis

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom
{kung-kiu, vukis}@cs.man.ac.uk

Abstract. Ideally in the deployment phase, components should be composable,
and their composition checked. Current component models fall short of this ideal.
Most models do not allow composition in the deployment phase. Moreover, cur-
rent models use only deployment descriptors as deployment contracts. These
descriptors are not ideal contracts. For one thing, they are only for specific con-
tainers, rather than arbitrary execution environments. In any case, they are
checked only at runtime, not deployment time. In this paper we present an ap-
proach to component deployment which not only defines better deployment con-
tracts but also checks them in the deployment phase.

1 Introduction

Component deployment is the process of getting components ready for execution in a
target system. Components are therefore in binary form at this stage. Ideally these bi-
naries should be composable, so that an arbitrary assembly can be built to implement
the target system. Furthermore, the composition of the assembly should be checked so
that any conflicts between the components, and any conflicts between them and the
intended execution environment for the system, can be detected and repaired before
runtime. This ideal is of course the aim of CBSE, that is to assemble third-party bina-
ries into executable systems. To realise this ideal, component models should provide
composition operators at deployment time, as well as a means for defining suitable
deployment contracts and checking them.

Current component models fall short of this ideal. Most models only allow compo-
sition of components in source code. Only two component models, JavaBeans [7] and
the .NET component model [6, 20], support composition of binaries. Moreover, current
models use only deployment descriptors as deployment contracts [1]. These descriptors
are not ideal contracts. They do not express contracts for component composition. They
are contracts for specific containers, rather than arbitrary execution environments. In
any case, they are checked only at runtime, not deployment time.

Checking deployment contracts at deployment time is advantageous because they es-
tablish component composability, and thus avoid runtime conflicts. Moreover, they also
allow the assembly to be changed if necessary before runtime. Furthermore, conflicts
due to incompatibilities between components and the target execution environment of
the system into which they are deployed can be discovered before runtime.

In this paper we present an approach to component deployment which not only de-
fines better contracts but also checks them in the deployment phase. It is based on a

1. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 1-16, 2006.
(©) Springer-Verlag Berlin Heidelberg 2006

2 K.-K. Lau and V. Ukis

pool of metadata we have developed, which components can draw on to specify their
runtime dependencies and behaviour.

2 Component Deployment

We begin by defining what we mean by component deployment. First, we define a ‘soft-
ware component’ along the lines of Szyperski [24] and Heinemann and Councill [10],
viz. ‘a software entity with contractual interfaces and contextual dependencies, defined
in a component model’.!

Our definition of component deployment is set in the context of the component life-
cycle. This cycle consists of three phases: design, deployment and runtime (Fig. 1).

Fig. 1. Software component lifecycle

In the design phase, a component is designed and implemented in source code, by
a component developer. For example, to develop an Enterprise JavaBean (EJB) [18]
component in the design phase, the source code of the bean is created in Java, possibly
using an IDE like Eclipse. A component in this phase is not intended to run in any
particular system. Rather, it is meant to be reusable for many systems.

In the deployment phase, a component is a binary, ready to be deployed into an
application by a system developer. For example, in the deployment phase, an EJB is a
binary “.class” file compiled from a Java class defined for the bean in the design phase.

For deployment, a component needs to have a deployment contract which specifies
how the component will interact with other components and with the target execution
environment. For example, in EJB, on deployment, a deployment descriptor describing
the bean has to be created and archived with the “.class” file, producing a “jar” file,
which has to be submitted to an EJB container.

An important characteristic of the deployment phase is that the system developer
who deploys a component may not be the same person as the component developer.

In the runtime phase, a component instance is created from the binary component and
the instantiated component runs in a system. Some component models use containers
for component instantiation, e.g. EJB and CCM [19]. For example, an EJB in binary
form as a “.class” file archived in a “ jar” file in the deployment phase gets instantiated
and is managed by an EJB container in the runtime phase.

2.1 Current Component Models

Of the major current software component models, only two, viz. JavaBeans and the
NET component model, allow composition in the deployment phase. To show this, we
first relate our definition of the phases of the component lifecycle (Fig. 1) to current
component models.

' Note that we deal with components obeying a component model and not with COTS [2].

Defining and Checking Deployment Contracts for Software Components 3

Category 1: EJB, COM, CCM, Category 2: JavaBeans Category 3: .NET Component Model
Koala, SOFA, KobrA, ADLs,
UML2.0, PECOS, Pin, Fractal

Fig. 2. Current component models

Current component models can be classified according to the phases in which com-
ponent composition is possible. We can identify three categories [16] as shown in Fig. 2.

In the first category, composition (denoted by the small linking box) happens only at
design time. The majority of current models, viz. EJB, COM [3], CCM,ADLs (archi-
tecture description languages) [22]. etc. fall into this category. For instance, in EJB, the
composition is done by direct method calls between beans at design time. An assem-
bly done at design time cannot be changed at deployment time, and gets instantiated at
runtime into executable instances (denoted by InsA, InsB.)

In the second category, composition happens only at deployment time. There is only
one model in this category, viz. JavaBeans. In JavaBeans, Java classes for beans are de-
signed independently at design time. At deployment time, binary components (“*.class”
files) are assembled by the BeanBox, which also serves as the runtime environment for
the assembly. Java beans communicate by exchanging events. The assembly is done at
deployment time by the BeanBox, by generating and compiling an event adapter class.

In the third category, composition can happen at both design and deployment time.
The sole member of this category is the .NET component model. In this model, compo-
nents can be composed as in Category 1 at design time, i.e. by direct method calls. In
addition, at deployment time, components can also be composed as in Category 2. This
is done by using a container class, shown as a rectanglular box with a bold border. The
container class hosts the binary components (“.dll” files) and can make direct method
calls into them.

Finally, current component models target either the desktop or the web environment,
except for the .NET component model, which is unified for both environments. Having
a component model that allows components to be deployed into both desktop and web
environments enhances the applicability of the component model.

2.2 Composition in the Deployment Phase

Composition in the deployment phase can potentially lead to faster system development
than design time composition, since binary components are bought from component
suppliers and composed using (ideally pre-existing) composition operators, which can
even be done without source code development. However, composition at component
deployment time poses new challenges not addressed by current component models.
These stem mainly from the fact that in the design phase, component developers design

*In C2 [17] new components can be added to an assembly at deployment time since C2 com-
ponents can broadcast events; but new events can only be defined at design time.

4 K.-K. Lau and V. Ukis

Al i A st
Execution Environment

TM = Threading model
ED = Environmental .
dependencies Is the assembly conflict—free?

Fig. 3. Composition in deployment phase

and build components (in source code) independently. In particular, for a component,
they may (i) choose any threading model; and (ii) define dependencies on the execution
environment. This is illustrated by Fig. 3.

A component may create a thread inside it, use some thread synchronisation mech-
anisms to protect some data from concurrent access, or not use any synchronisation
mechanisms on the assumption that it will not be deployed into an environment with
concurrency.

Also each component supplier may use some mechanisms inside a component that
require some resources from the system execution environment, thus defining the com-
ponent’s environmental dependencies. For instance, if a component uses socket com-
munication, then it requires a network from the execution environment. If a component
uses a file, then it requires file system access. Note that component suppliers do not
know what execution environments their components will be deployed into.

In the deployment phase, the system developer knows the system he is going to build
and the properties of the execution environment for the system. However, he needs to
know whether any assembly he builds will be conflict-free (Fig. 3), i.e. whether (i) the
threading models in the components are compatible; (ii) their environmental dependen-
cies are compatible; (iii) their threading models and environmental dependencies are
compatible with the execution environment; and (iv) their emergent assembly-specific
properties are compatible with the properties of the execution environment if compo-
nents are to be composed using a composition operator. The system developer needs to
know all this before the runtime phase. If problems are discovered at runtime, the sys-
tem developer will not be able to change the system. By contrast, if incompatibilities are
found at deployment time, the assembly can still be changed by exchanging components.

By the execution environment we mean either the desktop or the web environment,
and not a container (if any) for components. These two environments are the most wide-
spread, and differ in the management of system transient state and concurrency. Since
the component developer does not know whether the components will be deployed on
a desktop or a web server, the system developer has to check whether the components
and their assembly are suitable to run in the target execution environment.

2.3 Deployment Contracts

Deployment contracts express dependencies between components, and between them
and the execution environment. As shown in [1], in most current component mod-
cls a deployment contract is simply the interface of a component. In EJB and CCM,

Defining and Checking Deployment Contracts for Software Components 5

Container W

Execution Environment Execution Environment
DD = Deployment descriptor ? = Deployment contract

Fig. 4. Deployment contracts

deployment contracts are deployment and component descriptors respectively. As
shown in Fig. 4, a deployment (or component) descriptor contractualises the manage-
ment of a component by a container. However, the information about components inside
the descriptors is not used to check whether components are compatible. Nor is it used
to check whether a component can be deployed in an execution environment.

By contrast, our approach aims to check conflicts between components; and, in the
presence of a component container, between the container and the execution environ-
ment; in the absence of a container, between components and the execution environ-
ment. This is illustrated by Fig. 4, where the question marks denote our deployment
contracts, in the presence or absence of containers.

We can also check our deployment contracts, so our approach addresses the challenge
of deployment time composition better than existing component models that allow de-
ployment time composition, viz. the. NET component model and JavaBeans. In the NET
component model, no checking for component compatibilities is done during deploy-
ment. In JavaBeans, the BeanBox into which beans are deployed, is deployed on the
desktop environment, and it checks whether beans can be composed together by check-
ing whether events emitted by a source bean can be consumed by the target bean, by
matching event source with event sink. However, this check is not adequate with regard
to threading models and environment dependencies, as shown by the following example.

Example 1. Consider a Java bean that creates a thread inside itself to perform some
long-running task in the background and sends an event to another bean from within
that thread. The target bean may have problems. For example, if the target bean makes
use of a COM component that requires a single-threaded apartment, and the bean is
invoked from different threads, the component assembly is bound to fail.

This shows that the threading model of the source bean, namely sending an event
from an internally created thread, and the environmental dependency of the target bean,
namely the use of the COM component requiring a single-threaded apartment, are in-
compatible. The assembly will fail at runtime even though the BeanBox’s check for
component (event) compatibility is passed.

3 Defining Deployment Contracts

In this section we discuss how we define suitable deployment contracts. Our approach is
based on metadata about component environmental dependencies and threading mod-
¢ls. To determine and create suitable metadata, we studied the two most comprehensive,
operating system-independent frameworks [9] for component development: J2EE [23]

6 K.-K. Lau and V. Ukis

and .NET Framework [25]. In particular, we studied the core APIs of these two frame-
works in order to identify where and how a component can incur environmental de-
pendencies and influences on its threading model. The comprehensiveness and wide
application of these frameworks should imply the same for the metada we create. We
define deployment contracts using these metadata® as attributes that the component de-
veloper is obliged to attach to components he develops.

3.1 Environmental Dependencies

A component incurs an environmental dependency whenever it makes use of a resource
offered by the operating system or the framework using which it is implemented. For
each resource found this way we created an attribute expressing the semantics of the
environmental dependency found. Each attribute has defined parameters and is there-
fore parameterisable. Moreover, each attribute has defined attribute targets from the
set {component, method, method’s parameter, method’s return value, property }. An
attribute target defines the element of a component it can be applied to.

To enable a developer to express resource usage as precisely as possible, we allow
each attribute to have (a subset of) the following parameters: 1) ‘UsageMode’: {Create,
Read, Write, Delete} to indicate the usage of the resource. Arbitrary combinations of
values in this set are allowed. However, here we assume that inside a component, cre-
ation, if specified, is always done first. Also, deletion, if specified, is always done last;
2) “Existence’: {Checked, Unchecked} to indicate whether the component checks for
existence of a resource or makes use of it assuming it is there; 3) ‘Location’: {Local,
Remote} to indicate whether a resource required by component is local on the machine
the component s deployed to or is remote; 4) ‘UsageNecessity’: {Mandatory, Optional}
to indicate whether a component will fail to execute or will be able to fulfil its task if
the required resource is not available.

Meaningful combinations of the values of these parameters allow an attribute to ap-
pear in different forms (120 for an attribute with all 4 parameters) which have to be
analysed differently.

In addition to these four parameters, any attribute may have other parameters specific
to a particular environmental dependency. For instance, consider an attribute on a com-
ponent’s method expressing an environmental dependency to a COM component shown
in Fig. 5. (Such a component was used in Example 1.) The component has a method
“Method2” that has the attribute “UsedCOMComponent™ attached. The attribute has
(1) shows the COM GUID used by the component; (2) says that three parameters:

public class B

{
[UsedCOMComponent("DC577003-3436-470c-8161-EA9204B11EBF ", 1
COMA ppartmentModel.Singlethreaded, 2)
UsageNecessity.Mandatory)] 3)

}puhliu void Method2(...) {...}

Fig.5. A component with an environmental dependency

* A full list and details can be found in [14].

Defining and Checking Deployment Contracts for Software Components 7

Table 1. Categories of resource usage and component developer’s obligations

Usage of an operating-system resource. For instance: Files, Directories, Input/Ouput Devices
like Printers, Event Logs, Performance Counters, Processes, Residential Services,
Communication Ports and Sockets.

Usage of a resource offered by a framework. For instance: Application and Session State
storages offered by J2EE and .NET for web development, Communication Channels to
communicate with remote objects.

Usage of a local resource. For instance: Databases, Message Queues and Directory
Services.

Usage of a remote resource. For instance: Web Services or Web Servers, Remote Hosts,
and resources from Category 3 installed remotely.

Usage of a framework. For instance: DirectX or OpenGL.

Usage of a component from a component model. For instance: a Java Bean using a COM
component via EZ JCOM [8] framework.

[

53]

BN

D

o)

the used COM component requires a single-threaded environment; (3) says that the
usage of the COM component is mandatory. Furthermore, implicitly the attribute says
that the component requires access to a file system as well as Windows Registry since
COM components have to be registered there with GUID.

We have analysed the pool of attributes we have created, and as a result we can define
categories of resource usage for which the component developer is obliged to attach the
relevant attributes to their component’s elements. The categories are shown in Table 1:

Using binary components with relevant attributes from the categories in Table 1, it
is possible at deployment time to detect potential conflicts based on contentious use of
resources from Table 1.

Finally, metadata about environmental dependencies can be used to check for mutual
compatibility of components in an assembly. For instance, if a component from an
assembly requires continuous access to a file in the file system in the write mode but
another component in the assembly also writes to the same file but creates it afresh
without checking whether it has existed before, the first component may lose its data
and the component assembly may fail to execute.

3.2 Threading Models

A component can create a thread, register a callback, invoke a callback on a thread [4, 5],
create an asynchronous method [11], make use of thread-specific storage [21] or access
a resource requiring thread-affine access,* etc. For each of these cases, we created an
attribute of the kind described in Section 3.1 expressing the semantics of the case.

For instance, consider an attribute expressing the creation of a thread by a compo-
nent shown in Fig. 6. (Such a component was used in Example 1.) The component
has a method “Method1” that has the attribute “SpawnThread” attached. The parameter
(1) indicates the number of threads spawned. If this method is composed with another
component’s method requiring thread affinity, the composition is going to fail.

4 N . 5
Thread-affine access to a resource means that the resource is only allowed to be accessed from
one and the same thread.

8 K.-K. Lau and V. Ukis

public class A

[SpawnThread(1)] (§)]
public void Method(...) {...}
}

Fig. 6. A component with a defined threading model

Table 2. Categories of threading issues and component developer’s obligations

Existence of an asynchronous method.

Registration or/and invocation of a callback method.

Existence of reentrant or/and thread-safe methods.

Existence of component elements requiring thread-affine access.
Existence of Singletons or static variables.

Spawning a thread.

Usage of Thread-specific storage.

Taking as a method parameter of returning a synchronisation primitive.

W =

eSS

0| |

We have analysed the pool of attributes we have created, and as a result we can define
categories of threading issues for which the component developer is obliged to attach
the relevant attributes to their components. These categories are shown in Table 2:

Using binary components with attributes from the categories shown in Table 2, it is
possible at component deployment time to detect potential conflicts based on inappro-
priate usage of threads and synchronisation primitives by components in an assembly.
Itis also possible to point out potential deadlocks in a component assembly.

In total, for both environmental dependencies and threading models, we have created
a pool of about 100 metadata attributes®. Now we show an example of their use.

Example 2. Consider Example 1 again.The two incompatible Java beans are shown in
Fig. 7 with metadata attributes from Sections 3.1 and 3.2. Using these attributes we can
detect the incompatibility of the beans at deployment time.°

Is the assembly conflict—free?

Fig.7. Example 1 using metadata attributes

In the design phase, The two beans are the ones in Figs. 5 and 6. In the deployment
phase, by performing an analysis of the metadata attributes attached to the compo-
nents, we can deduce that method “A.Method1()” invokes the method “B.Method2()”

* In .NET Framework v2.0 there are about 200 attributes, but they are only checked at runtime.
® Note that this problem may also arise in other component models.

