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AUTHOR’S PREFACE

This book came about as a result of reworking material
presented by the author in lecture courses and seminars
given in recent years at Moscow and Kiev Universities.
Stated briefly, the basic idea of the book is the following:
It is more useful to treat algebra, geometry, and analysis
as parts of a connected whole than as separate subjects.
Thus, geometric notions help to clarify and often antici-
pate facts from algebra or analysis, just as algebraic
methods often suggest the proper approach to be taken
in a geometric or analytic context. Of course, this is not a
new idea, and in fact, we can trace its influence on many
generations of mathematicians from Descartes to Hilbert.

In the present book, the idea of the unity of algebra,
geometry, and analysis is pursued in connection with
elementary topics, accessible to students of mathematics
and physics, even on the undergraduate level. Moreover,
the book contains considerable material which these
students are required to study in one form or another,
and, in my opinion, the approach adopted here is the
most accessible, pleasant, and useful way to master this
material. In the U.S.S.R., this book is also used by
students and candidates in technical institutes, by staff-
workers in computation centers (despite the book’s lack
of explicit computational procedures) and by engineers in
various professional-advancement courses. I also feel that
the book is suitable for self-study.

To some extent, the problems given here are intended to
help the student acquire technique, but most of them
serve to illustrate and develop further the basic subject
matter of the text. Some of the problems stem from
elementary seminars, others from more advanced semi-
nars, in which a certain degree of enthusiasm on the part
of the participants is taken for granted.
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I am happy to have the opportunity to express my
appreciation to M. A. Krasnosyelski and M. G. Krein for
numerous valuable suggestions, and to N. V. Efimov and
D. A. Raikov for their careful reading of the manuscript
before its publication; in many instances, their critical
remarks allowed me to improve the presentation.

I am especially grateful to the Prentice-Hall Publishing
Company, and in particular to Dr. Richard A. Silverman,
for undertaking to make this book available in an
English-language edition.

G.E. S.

TRANSLATOR’S PREFACE

The present volume is the first in a new series of trans-
lations of outstanding Russian textbooks and monographs
in the fields of mathematics, physics, and engineering. It
is my privilege to serve as Editor of the series. It is
hoped that this book by Professor G. E. Shilov will set
the standard for the volumes to follow.

The translation is a faithful one, to the extent that this is
compatible with the syntactic and stylistic differences
between Russian and English. However, 1 have oc-
casionally made slight changes, and 1 have attempted to
detect and correct all typographical errors. 1 have also
added a Bibliography, containing suggestions for col-
lateral and supplementary reading. Finally, it should
be noted that sections marked with asterisks contain
material of a more advanced nature, which can be
omitted without loss of continuity.

R. A. S.
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DETERMINANTS

I. Systems of Linear Equations

In this and the next two chapters, we shall study systems of linear equations.
In the most general case, such a system has the form

ap X k& ajXy d ovas o A1pXy = b1>
X1 + apx; + -0+ ayXx, = by, (1
ag1Xq + AprXy + -+ Ay X, = bk'

Here x;, x,,...,x, denote the unknowns which are to be determined.

(Note that we do not necessarily assume that the number of unknowns
equals the number of equations.) The quantities a,;, a5, . . ., @, are called
the coefficients of the system. The first index of a coefficient indicates the
number of the equation in which the coefficient appears, while the second
index indicates the number of the unknown with which the coefficient is
associated.! The quantities by, b,, . .., b, appearing in the right-hand side
of (1) are called the constant terms of the system; like the coefficients, they
are assumed to be known. By a solution of the system (1) we mean any set of
numbers ¢y, ¢y, . . ., ¢, which when substituted for the unknowns xy, x, . . ., X,
turns all the equations of the system into identities.2

1 Thus, for example, the symbol a3s should be read as “a three four” and not as
“a thirty-four.”
2 We emphasize that the set of numbers ¢y, ¢, ..., cn represents one solution of the
system and not »n solutions.
|



2  DETERMINANTS CHAP. 1

Not every system of linear equations of the form (1) has a solution. For

example, the system

2X1 + 3XZ = 5, 2

2X1 + 3X2 =6 ( )
obviously has no solution at all. Indeed, whatever numbers ¢, ¢, we
substitute in place of the unknowns x;, x,, the left-hand sides of the equations
of the system (2) are the same, while the right-hand sides are different. There-
fore, no such substitution can simultaneously convert both equations of the
system into identities.

A system of equations of the form (1) which has at least one solution is called
compatible; a system which does not have solutions is called incompatible.
A compatible system can have one solution or several solutions. In the
latter case, we distinguish the solutions by indicating the number of the
solution by a superscript in parentheses; for example, the first solution will

be denoted by c{", ¢V, . .., ¢!, the second solution by ¢{?, ¢{?, .. ., ¢!?, and

soon. The solutions c{", ¢§", ..., ¢V and ¢{®, ¢$, ..., ¢'* are considered

to be distinct if at least one of the numbers ¢{" does not coincide with the
corresponding numbers cfz) (i=1,2,...,n). Forexample, the system
2x; + 3x, =0,

3
4X1 + 6,\'2 =0 ( )

has the distinct solutions
eV =c"=0 and P =3¢ = -2

(and also infinitely many other solutions). If a compatible system has a
unique solution, the system is called determinate; if a compatible system has
at least two different solutions, it is called indeterminate.

We can now formulate the basic problems which arise in studying
the system (1):

1. To ascertain whether the system (1) is compatible or incompatible,
2. If the system (1) is compatible, to ascertain whether it is determinate;
3. If the system (1) is compatible and determinate, to find its unique solution;

4. If the system (1) is compatible and indeterminate, to describe the set of
all its solutions.

The basic mathematical tool for studying linear systems is the theory of
determinants, which we consider next.
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2. Determinants of Order n

2.1 Suppose that we are given a square matrix, i.e., an array of n?2 numbers
a; (,j=1,2,...,n):

dyy djp o 5 ® a,
ayy dpy ... dy,

“)
a1 dp2 R Aup ||

The number of rows and columns of the matrix (4) is called its order. The
numbers a;; are called the elements of the matrix. The first index indicates
the row and the second index the column in which a;; appears.

Consider any product of n elements which appear in different rows and
different columns of the matrix (4), i.e., a product containing just one element
from each row and each column. Such a product can be written in the form

aallaaZZ f@s aann' (5)

Actually, for the first factor we can always choose the element appearing in
the first column of the matrix (4); then, if we denote by «; the number of the
row in which the element appears, the indices of the element will be oy, 1.
Similarly, for the second factor we can choose the element appearing in the
second column; then its indices will be «,, 2, where o, is the number of
the row in which the element appears, and so on. Thus, the indices
®q, %, . . ., 0, are the numbers of the rows in which the factors of the product
(5) appear, when we agree to write the column indices in increasing order.
Since, by hypothesis, the elements a, 1, du,2 - - -» du,n aPpeQT in different rows
of the matrix (4), one from each row, then the numbers «,, a,, .. ., o, are all
different and represent some permutation of the numbers 1, 2, ..., n.

By an inversion in the sequence oy, &, . . ., &,, We mean an arrangement of
two indices such that the larger index comes before the smaller index. The
total number of inversions will be denoted by N(oy, op,...,o,). For
example, in the permutation 2, 1, 4, 3, there are two inversions (2 before 1,
4 before 3), so that

N2, 1,4,3) = 2.

In the permutation 4, 3, 1, 2, there are five inversions (4 before 3, 4 before 1,
4 before 2, 3 before 1, 3 before 2), so that

N@4,3,1,2) = 5.

If the number of inversions in the sequence «q, o, . . ., &, is even, we put a plus
sign before the product (5); if the number is odd, we put a minus sign before
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the product. In other words, we agree to write in front of each product of
the form (5) the sign determined by the expression

— 1 W(ey, agyeees @)
(= 1) 0.

The total number of products of the form (5) which can be formed from the
elements of a given matrix of order »n is equal to the total number of permuta-
tions of the numbers 1,2,...,n. As is well known, this number is equal
to nl.

We now introduce the following definition:

By the determinant D of the matrix (4) is meant the algebraic sum of the n!
products of the form (5), each of which is preceded by the sign determined
by the rule just given, i.e.,

D=3 (—DNevm s aa, a,,. .., , (6)

Henceforth, the products of the form (5) will be called the terms of the
determinant. The elements a;; of the matrix (4) will be called the elements of
the determinant. We denote the determinant corresponding to the matrix
(4) by one of the following symbols:

a ap ... apy
a s i % a,

D =" "2 "| = det|a;]. (7
an a,» CRR Ay

For example, we obtain the following expressions for the determinants of
orders two and three:

apy ap
= ay1dy — axdy,

azy dx

apy apy apg
y1 ay; a3| = aaxas3 + A1a3013 + A3101203
as; dasy dasz — 3142413 — 4112033 — A11A33d33.

We now indicate the role of determinants in solving systems of linear
equations, by considering the example of a system of two equations in two
unknowns:

apxy + apx; = by,
a1 Xy + Xy = bz.

Eliminating one of the unknowns in the usual way, we can easily obtain the
formulas

biay; — byay; , Xy = ayiby — ay b, ,
andzy; — da apdx; — aa;
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assuming that these ratios have nonvanishing denominators. The numerators
and denominators of the ratios can be represented by the second-order
determinants

apn ap
apdyy — ada;; = G @ d
by ay,
biay, — byay, = By iy 4
ay; by
apb, — anb; =
ajy bz .

It turns out that similar formulas hold for the solutions of systems with an
arbitrary number of unknowns (Sec. 7).

2.2. The rule for determining the sign of a given term of a determinant
can be formulated somewhat differently, in geometric terms. Corresponding
to the enumeration of elements in the matrix (4), we can distinguish two
natural positive directions: from left to right along the rows, and from top
to bottom along the columns. Moreover, the slanting lines joining any two
elements of the matrix can be furnished with a direction: we shall say that
the line segment joining the element a;; with the element a; has positive
slope if its right endpoint lies lower than its left endpoint, and that it has
negative slope if its right endpoint lies higher than its left endpoint.3 Now
imagine that in the matrix (4) we draw all the segments with negative slope
joining pairs of elements a,,;, 4,5, . - -, a,_, of the product (5). Then we put
a plus sign before the product (5) if the number of all such segments is even,
and a minus sign if the number is odd.

For example, in the case of a fourth-order matrix, a plus sign must be
put before the product a,;a;,a43a34, since there are two segments of negative
slope joining the elements of this product:

(@12 @13 a4
@21y G22 dy3 QAn
as dy  dy (@39
asr d4s .
However, a minus sign must be put before the product a4 a3,a;3a,4, since in
the matrix there are five segments of negative slope joining these elements:

3 This definition of ‘‘slope’ is not to be confused with the geometric notion with the
same name. In fact, the sign convention adopted here is the opposite of that used in
geometry (Translator).
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In these examples, the number of segments of negative slope joining the
elements of a given term equals the number of inversions in the order of the
first indices of the elements appearing in the term. In the first example,
the sequence 2, 1,4, 3 of first indices has two inversions; in the second
example, the sequence 4, 3, 1, 2 of first indices has five inversions.

We now show that the second definition of the sign of a term in q
determinant is equivalent to the first. To show this, it suffices to prove that
the number of inversions in the sequence of first indices of a given term
(with the second indices in natural order) is always equal to the number of
segments of negative slope joining the elements of the given term in the
matrix. But this is almost obvious, since the presence of a segment of
negative slope joining the elements a,; and a,; means that a«; > o; for
i < J, 1.e., there is an inversion in the order of the first indices.

Problem 1. With what sign do the terms

() a23a31a42a56014065,
(b) axya43a14a51a66a75
appear in the determinant of order 6? Ans. (a) +, (b) +.

Problem 2. Write down all the terms appearing in the determinant of order
4 which have a minus sign and contain the factor a,s.
Ans.  a11a32G23044, 441012023034, Q31042023014

Problem 3. With what sign does the term ay,a;,,_{...a, appear in the
determinant of order n? Ans. (= 1)nn=1/2,

3. Properties of Determinants of Order n

3.1. The transposition operation. The determinant

apyy dx o o o an

ayp dax e a,n (
8)

a,, dp, Siws a,,

obtained from the determinant (7) by interchanging rows and columns with
the same indices is said to be the transpose of the determinant (7). We now
show that the transpose of a determinant has the same value as the original
determinant. 1In fact, the determinants (7) and (8) obviously consist of the
same terms; therefore, it is enough for us to show that identical terms in
the determinants (7) and (8) have identical signs. Transposition of the matrix
of a determinant is clearly the result of rotating it (in space) through 180°
about the diagonal a;a,,. . .qa,, As a result of this rotation, every segment
with negative slope (e.g., making an angle « < 90° with the rows of the
matrix) again becomes a segment with negative slope (i.e., making the angle
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90° — o with the rows of the matrix). Therefore, the number of segments
with negative slope joining the elements of a given term does not change
after transposition. Consequently, the sign of the term does not change
either. Thus, the signs of all the terms are preserved, which means that the
value of the determinant remains unchanged.

The property just proved establishes the equivalence of the rows and
columns of a determinant. Therefore, further properties of determinants
will be stated and proved only for columns.

3.2. The antisymmetry property. By the property of being antisymmetric
with respect to columns, we mean the fact that a determinant changes sign
when two of its columns are interchanged. We consider first the case where
two adjacent columns are interchanged, for example columns j and j + 1.
The determinant which is obtained after these columns are interchanged
obviously still consists of the same terms as the.original determinant.
Consider any of the terms of the original determinant. Such a term contains
an element of the jth column and an element of the (j + 1)th column. If
the segment joining these two elements originally had negative slope, then
after the interchange of columns, its slope becomes positive, and conversely.
As for the other segments joining pairs of elements of the term in
question, each of these segments does not change the character of its slope
after the column interchange. Consequently, the number of segments with
negative slope joining the elements of the given term changes by one when
the two columns are interchanged; therefore, each term of the determinant,
and hence the determinant itself, changes sign when the columns are
interchanged.

Suppose now that two nonadjacent columns are interchanged, e.g., column
j and column k (j < k), where there are m other columns between them.
This interchange can be accomplished by successive interchanges of adjacent
columns as follows: First column j is interchanged with column j + 1, then
with columns j + 2, j + 3,..., k. Then the column k& — 1 so obtained
(which was formerly column k) is interchanged with columns k — 2,
k—3,...,j. In all, m+ 14+ m=2m+ 1 interchanges of adjacent
columns are required, each of which, according to what has been proved.
changes the sign of the determinant. Therefore, at the end of the process,
the determinant will have a sign opposite to its original sign (since for any
integer m, the number 2m + 1 is odd).

COROLLARY. A determinant with two identical columns vanishes.

Proof. Interchanging the columns, we do not change the determinant;
on the other hand, by what has been proved, the determinant must change
its sign. Thus D = — D, which implies that D = 0.

Problem. Show that of the n! terms of a determinant, exactly half (n!/2)
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have a plus sign according to the definition of Sec. 2, while the other half
have a minus sign.
Hint. Consider the determinant all of whose elements equal 1.

3.3. The linear property of determinants. This property can be formulated
as follows:

If all the elements of the j’th column of a determinant D are “‘linear
combinations” of two columns of numbers, i.e.,

aij=7\bi+l‘1‘ci (i:]az,"‘:n)7

where N and | are fixed numbers, then the determinant D is equal to a
linear combination of two determinants, i.e.,

Here both determinants have the same columns as the determinant D
except for the j’th column; the j’th column of D consists of the numbers
b;, while the j’th column of D, consists of the numbers c;.

Proof. Everyterm of the determinant D can be represented in the form

o182 -+ Qujj o Aogn = Q182 - - - (7\/7u, + W"a,) i &5 Agn

= My18oy2 - - - bal, cor Qo F PAy1Gays oo Cop v Qg

Adding up all the first terms (with the signs which the corresponding terms
have in the original determinant), we clearly obtain the determinant D,
multiplied by the number A. Similarly, adding up all the second terms, we
obtain the determinant D,, multiplied by the number p. This proves
formula (9).

It is convenient to write this formula in a somewhat different form. Let
D be an arbitrary fixed determinant. Denote by D;(p;) the determinant
which is obtained by replacing the elements of the jth column of D by the
numbers p; (i = 1,2,...,n). Then (9) takes the form

Di(Ab; + pc;) = ADj(b;) + wD/(cy).

This linear property of determinants can easily be extended to the case
where every element of the jth column is a linear combination not of two
terms but of any other number of terms, i.e.

;=W + pe; + <+ + i
In this case
Di(a;;)) = Di(Ab; + pe; + -+ + 1f)

(10)
AD;(b) + pDi(c;) + -+ + TD|(f).

It
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COROLLARY 1. We can factor out of a determinant any common factor
of a column of the determinant.

Proof. 1If a;; = Ab;, then by (10) we have
Dya;;) = D;j(Ab;) = ADy(b),
as required.
COROLLARY 2. If a column of a determinant consists entirely of zeros,
then the determinant vanishes.
Proof. Since 0 is a common factor of the elements of one of the
columns, we can factor it out of the determinant, obtaining
D;j(0) = D;j(0-1) = 0-D;(1) = 0.
Problem.. By making a termwise expansion, calculate the determinant
am + bp an + bq
cem+dp cn+ dq.
Ans. A = (mq — np)(ad — bc).
3.4. Addition of an arbitrary multiple of one column to another cclumn:
We do not change the value of a determinant by adding the elements of

one column multiplied by an arbitrary number to the corresponding
elements of another column.

Suppose that we add the kth column multiplied by the number A to the
jth column (k # j). The jth column of the resulting determinant consists of
elements of the form a;; + Aa;, (i =1,2,...,n). By (10) we have

Di(a;; + hay) = Dya;) + rDj(aq).
The jth column of the second determinant consists of the elements a;;, and
hence is identical with the kth column. It follows from the corollary on
p. 7 that Dy(a;) = 0, so that
. Dj(a;; + xay) = Dyay)),
as required.
This property can also be formulated more generally:

Suppose we add to the elements of the j’th column of a determinant first
the corresponding elements of the k’th column multiplied by A, next the
elements of the I'th column multiplied by ., etc., and finally the elements
of the p’th column multiplied by © (k # j,1 # j, p # j). Then the value
of the determinant remains unchanged.

Problem. The numbers 20604, 53227, 25755, 20927 and 78421 are divisible
by 17. Show that the determinant

2 0 6 0 4
532 27
25755
20 9 2 7
7 8 4 2 1

is also divisible by 17.



