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Editorial Policy

§ I. Lecture Notes aim to report new developments - quickly. informally. and at
ahigh level. The texts should be reasonably self-contained and rounded oft. Thus
they may. and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals. usually do not
have this “lecture notes™ character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript. but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of cach chapter, and an indication of the
estimated length. a bibliography, and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- atable of contents:

- an informative introduction. perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated:

- asubject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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FOREWORD

This volume collects the texts of two series of 8 lectures, and the expanded version
of a seminar, given at the C.LM.E. Session on ”Transition to Chaos in Classical and
Quantum Systems”, which took place at the Villa ”La Querceta” in Montecatini, Italy,
from July 6 to July 13, 1991.

The purpose of the Session was to give a broad survey of the mathematical problems
and techniques, as well as of some of the most relevant physical motivations, which arise
in the study of the stochastic behaviour, if any, of deterministic dynamical systems both
in classical and quantum mechanics.

The transition to chaos in the most relevant and widely studied examples of classical
dynamical systems, the area preserving maps, is thoroughly covered in the first series
of lectures, delivered by Professor John Mather and written in collaboration with Dr.
Giovanni Forni. In particular the reader can find in this text an up-to-date version of
the well known Aubry-Mather theory. The lectures of Professor Jean Bellissard cover
in turn, in addition to his algebraic approach to the classical limit, the behaviour of the
quantum counterpart of the above systems, with particular emphasis on localization, and
on qualitative as well as quantitative properties of the spectra of the relevant Schrodinger
operators in classically chaotic regions. They can be therefore considered an exhaustive
introduction to the mathematical aspects of the so-called ”quantum chaos”. The third
series of lectures, delivered by Professor Anatole Katok, covered the basic stochastic
properties of classical dynamical systems and some of their most recent developments.
Unfortunately Professor Katok could not find the time to write up the text of his course.

A very prominent role in describing the chaotic behaviour of classical dynamical
systems is played, as discussed also in Professor’s Katok lectures, by the proliferation
and equidistribution of the unstable periodic orbits of increasing period. An overview
of recent results in this direction, and of their intimate connection to the problem of the
classical limit of the quantized toral symplectomorphisms, is contained in an outgrowth
of a seminar held by M.Degli Esposti, written in collaboration with S.Isola and the
Editor.

Bologna, April 1994

Sandro Grafh
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1 The kicked rotor problem

One considers a spinning particle submitted to rotate around a fixed axis. Let 0 €
T = R/2rZ be its angle of rotation, L. € R its angular momentum, / its moment of
inertia, p its magnetic moment, and B a uniform magnetic field parallel to the axis
of rotation. Its kinetic energy is given by :

2

L
HQ'—’—Q—I‘}/LBL, (l)

We assume that this system is kicked periodically in time according to the following

Hamiltonian :
L?

H -
21

tuBL + kcos(0) Z ot —nT) . (2)
neZ

where T is the period of the kicks, and k is a coupling constant representing the kicks

strength. Here 6§ is the Dirac measure. Classically the motion is provided by the

solution of the Hamilton-Jacobi equations :

a0 OH dL,  OH (3)

dt L dt 90 '
Between two kicks, O0H/df = 0, so that L is constant whereas 0 varies linearly in
time. When the kick is applied, L changes suddenly according to L(nT + 0)

L(nT —0) + ksin(0). If we set :

L(nT -0 ;
A, =T (M—) t ,uB) 0, =0(nT —0), (4)

the equation of motion can be expressed as :
Appr = A, + Ksin(6,) Ony1 = 0 + Anyy mod 27 | (5)

where K is the dimensionless coupling strength namely :

kT
K = 5 (6)
The phase space is the cylinder C = T x R, if A is considered as a real number. If we
set

f(0,A) = (6, A" 0 =0+ A+ Ksin(0) A = A+ Ksin(0) , (7)

the solution of the equation of motion can be written as :
(011+—l~ AvH l) = f(()n» An) . (?ﬂ‘)

f is an analytic diffeomorphism of the cylinder C, which is area preserving, namely
df' NdA" = df A dA, and a twist map, namely 00'/0A > 0, which preserves the ends
(see the course of John Mather in this issue). We remark that f also commutes with
the translation A — A+ 27 of the action variable A in such a way that it also defines
a map of the 2-torus T2.



The orthodox way of quantizing this model consists in choosing the Hilbert space
K = L*(T,df/2r) as the state space, and replacing L and 6 by operators as follows :

h o R
L=—-— V = multiplication by V() , 9)
100
whenever V is a continuous 27 -periodic function of the variable 6 . Quantum Me-
chanics requires using a new parameter h, the Planck constant which gives rise to a
new dimensionless parameter :

’y = —_— = 47{'—— ’ (10)
1 ver

where vey, = 1/T is the kicks frequency, whereas vy is the eigenfrequency of the free

quantum rotor in a zero magnetic field. To compute the motion, we need to solve

Schrédinger’s equation, namely, we look for a path t € R — ¢y € K such that :

2

ihpe = H(tye  H(t) = % t uBL + kcos(0) S 8(t — nT) . (i1)
neZ

The 6-kicks may create a technical difficulty. To overcome it let us consider a smooth
approximation &, of § given by a non negative L!'-function on R supported by [0, €],
with integral equal to 1. The solution can be given in term of a convergent Dyson
expansion. Then letting ¢ converge to zero, we get the following result (see Appendix

1) :

Theorem 1 The solution of (11) is given by the following evolution equation :

7/"1'—() - F—lwo F—l i 6—1A2/2~,F—:Kcos0/'7(,x_f/ (12)
where I 71
A= 7(7 4 uB) , § (B (13)

Let us also introduce the dimensionless magnetic field z :

x = —uBT = Y = (14)

The operators of the form V whenever V(0) is a continuous 27 -periodic function of
the variable 6, can be obtained as the norm limit of polynomials in the operator

U=¢". (15)

In much the same way, one can quantize the action in the torus geometry by consid-
ering the operator :
V=e", (16)

U and V are two unitary operators satisfying the following commutation rule :

UV ="V . (17)



The C*-algebra generated by these two operators is the non commutative analog of
the space of continuous functions on the 2-torus. By analogy with the commutative
case, this algebra will be seen as the space of continuous functions on a virtual space,
the "quantal phase space”. Any such function will be the norm limit of polynomials
of the form :

a= > a(m)U™yme—mma/2 | (18)

meZ?,|m|<N

where the a(m)’s are complex numbers. We denote by A, the norm closure of this
algebra. Whenever v = 0, this algebra coincides with the space C(T?) of continuous
functions on the 2-torus. One remarks that cos(f) € A,, but there is no way of
writing Fy = exp (iA%/v) as an element of A, since it is not periodic with respect to
A. Therefore Fy ¢ A, in general. However, the following properties hold :

)FVF' =V () FRUFy' = UV~ 'e/? | (19)

so that, setting By(a) = Foaky ' for a € A,, B, defines an automorphism of A, which
coincides for v = 0 with the free rotation f, in T2, namely :
fo(8,4) = (0 + A, A), (20)
In particular if v # 0, a € A,, we get :
Bla) = FaF~"' = KON gy (a)em K@ e A, (21)
which means that 3 is an automorphism of A, .
At last, 3 admits a classical limit as 4 + 0, namely the automorphism of C(T?)

corresponding to the standard map (see section 3 below). For if V = K cos(f), let us
denote by £, the " Liouville operator” defined by :

~ Va—aV
— -

L,(a) , (22)
the limit of £,(a) as v +— 0 coincides with the Poisson bracket of V with a, and 3 can
be written as :

B=e%vo Bo . (23)

To summarize, we have obtained an algebraic framework describing the quantal ob-
servables which is completely analogous to the classical description of the system, and
which converges to the classical analog as v+ 0. In this framework,

(i) the observable algebra A, is the non commutative analog of the space C(T?)
of continuous functions on the classical phase space T2,

(ii) the quantal evolution is described through the automorphism 3 of A, which
admits the standard map as a classical limit.
Before leaving this section, let us describe the complementary point of view, given in
wave Mechanics by the Feynman path integral, which happens to be exact and finite
dimensional in this case.

Lemma 1 [fv € C>=(T), then the following formula holds :

too  du/

— \/27mp

((_1‘42/27111) (“) _ 6_m/4 l('u’_’U.—J‘)2/2'76‘!,’1‘2/27,1‘/,(IL/) ) (24)



Proof : From (9)&(13), we get A = —i70/00 — z. 1f i € C®(T), let (¥n),cz its

Fourier series, so that :
( —iA /2’7w) (0) Z —i(yn—z) /2-,’41 Z /+7r do’ 0_9/)_,'(771—;;)2/271/’(0/) .
neZ neZ

To compute the distribution kernel coming into this sum, we use the Poisson summa-
tion formula :

—im/4

_p _ 2 /e (4 —0'+ 2
Z fzn(B 0’ +x)—1yn®/2 27TZ(,1(0 0’ +x+2ml)* /2y )

neZ Vv 21y l€Z

Now we perform the change of variables v’ = 6’ + 271, u = 6, and the sum over [ € Z
will give rise to an integral over R with respect to u', leading to (24).

Using (12)&(24), we immediately get the following Feynman path integral repre-
sentation :

Corollary 1 For anyt € N and ) € C>*(T),we get :

=t d'll] dul —itm/4 I(L (Ug—ty_1—7)2/2—K cos(u,) )/7 Iy o)

(1 l/) () = /Rt (2my)t/? € ' (we) (25)
where uy = u, and the right-hand-side defines a convergent oscillatory integral which
is periodic of period 27 with respect to u.

Remark : The expression contained in the phase factor

_ a2
S(uy, - g ug,x) = Y (w - K cos(us)> . (26)

1<s<t—2 2

is nothing but the "Percival” Lagrangean or the ”Frenkel-Kontorova” energy func-
tional used by Aubry and Mather to describe the trajectories of the standard map.
For indeed the stationnary points of such a Lagrangean are finite sequences (1),
satisfying the recursion relation : o

Uy — Ugyy — Us—y + Ksin(ug) =0, (1 <s<t—1), ug—wy —x+ Ksin(u) = 0.

In particular if we set py = ug — us—y (for 1 < s < t) we get ugy1 = us + poyr for
0<s<t—1,and psy1 = ps + Ksin(u,) for 1 < s <t -1, z = p, + Ksin(u).
namely we recover the standard map (5) in R? now instead of T2, for a trajectory
(6o, Ao), -, (6, Ay) such that 6y = up mod 27, and A;,; = = mod 27.

2 The Rotation Algebra

2.1 The Polynomial Algebra P;

In this section we define properly the algebra A, and we will describe without proof
its most important propeities. We refer the reader to [BaBeFl] for more details.
Actually given an interval I of R, we will rather consider the algebra A; which is



roughly speaking the set of continuous sections of the continuous field y € I — A,.
The semiclassical limit will be included whenever I contains v = 0.

Let I be a compact subset of R. The polynomial algebra P; is defined as follows :

- the elements of Py are the sequences (a(m)),, .. with finite support, where for each
m = (m;,my) € Z? a(m) : v € [ — a(m,v) € C is a complex continuous function
on [.

- P; admits a natural structure of C(/)-module by setting, for a,b € Py, and | € C(I)

(a +b) (m) = a(m) + b(m) Aa(m;y) = A(y)a(m;y) . (27)
- any element a € P; admits an adjoint a* defined by :
a*(m;y) = a(—m;7) , (28)

where = denotes the complex conjugate of z in C.
-if a,b € Py, their product is defined by :
(ab) (m;y) = Y a(m’;7)b(m — m'; )™ Am=m) (29)
m’'eZ?
where we have set if m’ ' m” € Z? :

!

m' Am” = mimjy — mym| . (30)
- the topology on Py, is the direct sum topology obtained from the uniform norm on
C(I).
Denoting by P, the algebra P; whenever I = {~} it follows that P, = P, 4. More-
over setting a(a) = ((—=)™™2a(m))mezz, @ defines a *-isomorphism between P, and
P, 12x. Thus, as far as P, is concerned, one will consider that + is defined mod. 27.
The same definition holds if we replace I by the torus T namely the continuous func-
tions on I by the continuous 2r-periodic functions on R. We will denote by P the
corresponding algebra.

The following elements in P; are remarkable :

I(m;vy) =bémo U(m;y) =bémae V(my) = bm o) - (31)

For indeed, I is the identity of P; whereas U,V are unitaries namely UU* = U*l/ =
VV* = V*V = 1, and obey to the commutation rules (17). Moreover, P; is alge-
braically generated by U,V as a C([)-algebra, namely if a € Py, it can be written as

== Z a(m)(/m,‘/mgf,—wmlmz/E.

m’'eZ?
[t will be convenient to introduce the "Weyl operators” as follows :
‘/t'(m) - {/‘Ynll ‘{.’7712(,—1‘7"117"2/2 . (:}2)

From the interpretation given in the previous section, it follows that P; is the set
of trigonometric polynomials over the "non-commutative” 2-torus. In particular if
I = {0}, we recover the convolution algebra, which by Fourier transform is exactly
the algebra of usual trigonometric polynomials.

The "evaluation” homomorphism 7, is defined as the map from Py into P, by :

7 (a) = (a(m; 7)) meze - (33)
It is immediate to check that 7, is a *-homomorphism, namely it is linear, and pre-
serves the product and the adjoint.



2.2 Canonical calculus

Using the analogy with the space of trigonometric polynomials on the 2-torus, we now
define some rules for the differential calculus.
The integral is given by the trace defined by :

7(a) = a(0) € C(I) . (34)

We will denote by 7,(a) the value of 7(a) at v. The trace 7 is a linear module map
from P; into C(I) satisfying :

(i) positivity : T(a*a) = S meze la(m)]* >0, a € Py,
(i) normalization : 7(I) = 1,
(iii) trace property : 7(ab) = 7(ba), a,b € P;.

We remark that the value of 7(a) at v = 0 is the 0*" Fourier coefficient of ny(a),
namely the integral of its Fourier transform :

dfd A
(l)|"/:“ — /2 T(Lc](o,A) : (35)

where a is the Fourier transform of 7y(a).
The angle average, is defined by the element (a) in P; given by :

(a)(m) = Oy pa(0,mq) . (36)

The map a +— (a) is a module-map taking values in the commutative subalgebra D;
generated by V' as a C(I)-module. The usual Fourier transform permits to associate
with any element b of D; a continuous function of (v, A) € I x T denoted by b,. as
follows :

bao (v, A) = Y b(0,mg; y)e™ ™A (37)

m’'€Z?
The mapping b € Dy + by, € C(I x T), is a *-homomorphism, namely (b¢)q, = bayCar
and (b*)qw = bk,. We will say that b € Dy is positive whenever by, is positive. Using
these definitions, the angle averaging satisfies :

(1) positivity property : (a*a) >0, a € Py
(ii)  projection property:  ((a )) (a )
(iii) normalization : (I) =
(iv) conditional expectation : (ab) = ( Y, (ba) = bla) ,ifbeD;,acP;.

(38)
A differential structure is defined on P; through the data of two *-derivations dp and
04 given by :

(Dpa) (m) = imya(m) (0aa) (m) = imaa(m) . (39)
These two derivations 9, (if 1 = 0, A) actually commute and satisfy :

(1) they are C([)—linear

(i1) du(a*) = (J,a)” a€Pr,

(iii) Ou(ab) = (() a)b+ a(0,b) a,be Py,
)

(iv) OpU = iU , 0pV =0, 04U =0, 04V = —iV .

(40)



Moreover one can exponentiate them, namely defining by {py.4; (0, A) € T?} as the
2-parameter group of *-automorphisms given by :

po.a(a)(m) = ™M (m) | (41)

we get :
B.a = (M> =04, (42)
O PP

Actually pp 4 is a module-+-homomorphism such that (6, A) € T? v ppa(a) € Py is
continuous and :

PO,A O Por, A = Po1OATA (43)

If a,b € Py their Poisson (or Moyal [Bou|) bracket {a,b} is defined as follows :
2 -
{a,b}(m;~v) = Z a(m’;)b(m — m';y) = sin (r—’m’ A (m — m’)) , (44)
m'ez? gl 2

where we set (sinz)/x = 1 for z = 0. In particular that for v = 0, it coincides with
the usual Poisson bracket, namely :

{(L,b}cl = {acl.bd} o f)gac|é)Abc| == OA(LC|f)9bC] 5 (45)

From (44), the right-hand-side defines a continuous function of v on I, so that
the Poisson bracket {a,b} still belongs to P;. The ”Liouville operator” associated to
w € Py is the module map defined by :

Ly(a) = {w,a} ,a € P;. (46)

The properties of this operator are the following :

(1) Ly is C(I)—linear
(ii) Ly(a*) = Ly (a)* w,a € P, (47)
(iii) Ly(ab) = Ly(a)b + al.,(b) w,a,be Py,
(iv) [Lw,Lw] = L{wwy (Jacobi’s identity) w,w' € P; .
We also remark that
7(poa(a)) = 7(a) 7({a,b}) =0 a,beP;,(0,A) e T?, (48)
which is equivalent to the "integration by parts formula” :
7(0ua - b) = —7(a - 0,b) T (Lyw(a) - b) = =7 (a- Lu(b)) , (49)

2.3 The Rotation Algebra A,

In order to get all continuous functions on our non commutative torus, we ought to
define the non commutative analog of the uniform topology on P;. This can be done
by remarking that in the commutative case, the uniform topology is defined through
a C*-norm, namely a norm on the algebra which satisfies :

llabll < flalllibll la*all = llall* - (50)



The importance of this relation comes from the fact that such a norm is actually
entirely defined by the algebraic structure, namely it is given by the spectral radius of
a*a. Therefore, the algebraic structure is sufficient and the uniform topology becomes
natural.

To construct such a norm, one uses the representations of P;. A "representation” of P,
is a pair (7, H,), where H, is a separable Hilbert space, and 7 is a *-homomorphism
from P; into the algebra B(H,) of bounded linear operators on H,. The formula
(17)&(18) give an example of representation for which H, = L?(T,df/2r). In partic-
ular 7(U), 7(V) will be unitary operators on H, so that if a € Py, one gets (if || ]|,
denotes the sup norm in C(7)) :

@)l < 3 lla(m)]; < oo (51)
meZ?
Two representations (7, H,) and (7', H,) are equivalent whenever there is a unitary
operator S from H, into H, such that for every a € P; :

Sn(a)S~! = 7'(a) . (52)

Up to unitary equivalence, one can always assume that H, = £2(N), so that the family
of all equivalence classes of representations of P; is a set denoted by Rep(Pr). We
remark that the norm ||7(a)| depends only upon the equivalence class of m. We then
define a seminorm on P; by :

llally = sup{lI=(a)ll; = € Rep(Py)} . (53)
This notation agrees with the sup-norm on C(I) if a € C(I). Then one has [BaBeF]] :
Proposition 1 The mapping a € P; — |lal|; € Ry is a C*-norm.

Remark : The only non trivial fact in this statement is that it is a norm, namely
that ||lal|; = 0 implies a = 0.

Definition 1 The algebra A; (resp. A) is the completion of Py (resp. P ) under the
norm || - || (resp. || - |lT). A is called the "universal rotation algebra”.

Proposition 2 1)-Any representation of P; extends in a unique way to a represen-
tation of A;

2)-1f B is any C*-algebra, and 3 is a x-homomorphism from Py to B, then [ extends
in a unique way as a x-homomorphism from Ay to B.

3)-Any pointwise continuous group of *-automorphisms of Py extends in a unique way
as a norm pointwise continuous group of *-automorphisms of A;.

4)-The trace T and the angle average (-) satisfy :

Ir(a)llr < llallr — a}Mlr < llall;  a€Pr, (54)

and therefore they extend uniquely to A;.
5)-The norm || - ||; satisfies :

llall; = sup|ny(a)]| a€Ps. (55)
V€l
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In practice the explicit computation of the norm does not require the knowledge of
every representation. It is enough to have a faithfull family, namely a family {7;},e.
where J is a set of indices, such that m;(a) ~ 0 for all j's implies a = 0. In other
words NjesKer(r;) = {0}. We recall that the spectrum Sp(a) of an element a of
a C*-algebra with unit A, is the set of complex numbers z such that zI — a is non
invertible in A.

Proposition 3 Let (7)., be a faithfull family of representations of the C*-algebra
A, then :
lall; = sup |mj(a)]| Spla) = closure{UjesSp(m;(a))} - (56)
JE.

In particular if = is faithfull (namely if J contains only one point), ||al|; |7 (a)l|
and Sp(a) = Sp(n(a)).

2.4 Smooth functions in A;

Beside P;. one can define many dense subalgebras of A; playing the role of various
subspaces of smooth functions.

(i) For N € N, the algebra CY(A;) of N-times differentiable elements of P; is the
completion of A; under the norm :

lalle~ s >

0<nn' imtn’<N
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(ii) C=(Ar) = Nn>oCN(Aj). Tt coincides with the set of elements a — (a(m))mez2
with rapidly decreasing Fourier coefficients. It is a nuclear space, similar to the
Schwartz space on the torus. Its dual space S(A;) is a space of non commutative
tempered distributions which can be very useful in investigating unbounded elements.
(iii) H*(A;) is the Sobolev space, namely the completion of P; under the Sobolev
norm :

lallzes = (r(a%a) + r(a‘(—A)-‘“a))”2 A=0}+ 0%, (58)

where —A is the Laplacean on the non commutative torus. The imbedding H* (A;) —
H*(Ar) is compact if s > s and C*(A;) = Ny>oH*(As), showing that C=(A;) is a
nuclear space.

(iv) An element of A; is holomorphic in some domain D of (T +:R)? if the continuous
mapping (0, A) € T? — pp 4(a) € A;. can be extended as a holomorphic function on
D. A special interesting case consists in considering the algebra A;(r) for r > 0.
obtained by completing P; with the norm :

lallrr =sup 3 la(msy)le™™ (59)
V€l mez2
where |m|, = |my| + |m2|. Then A;(r) becomes a Banach x-algebra of holomorphic

elements in the strip D(r) = {|Imf| < r , [ImA| <r}.

(v) Let us consider now the case for which I is an open interval, and let P;° be the
subalgebra of P; the elements of which have Fourier coefficients given by C*-functions
on I. Let us define the operator d, on P;° by :

dya = (aa,(m)) . (60)
O meZ?




