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PREFACE

The late nineteenth-century development of algebra and geometry was
marked by continual interplay between the two subjects. Algebraic
methods were applied to the study of geometry, and geometry was helpful
in interpreting algebraic results. Indeed, many concepts now regarded as
of primarily algebraic interest had their genesis in geometric problems,
and today’s “n-dimensional geometry” is a branch of algebra couched in
geometric language solely for reasons of analogy. This book returns to the
spirit of the historical development as providing a natural and effective
approach to these topics, exploiting their relationships whenever possible.

’%ﬁs course is designed for undergraduates at a stage when it may bridge
the gap between the usual intuitive introduction to calculus and the more
rigorous and abstract treatment of advanced mathematics courses. For
some students an abrupt change from “intuition” to “rigor” may be a
traumatic experience, accentuated by instructions to prove theorems when
it is not clear what one is permitted to assume. We attempt to effect a
smooth transition from plausibility to proof, indicating at every stage our
presuppositions and level of rigor. This is not, then, intended as a tightly
organized presentation of projective geometry and linear algebra; other
related topics of interest (e.g., groups) are included. Highly structured
presentations have greater significance to a student already somewhat
familiar with their subject matter. An acquaintance with the main con-
cepts and methods of modern algebra and geometry is needed both by
students who will go on to more specialized courses in these subjects and
by those in other fields.

The starred exercises in the problem sets are not necessarily difficult.
The star is used to indicate that the problem is especially significant, or .
that the result is likely to be encountered again later in the book. Hence
all the starred problems should at least be read, if not worked.

There are many gaps in the textual exposition which are left to the reader
to fill. Attention is called to such gaps by the reference, “See Problem 00
at the end of this section.” The student is invited to attempt to fill the
gap before turning to the cited problem at the end of the section. If he
is unsuccessful, he may find a hint as to how to proceed by reading the
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v PREFACE

cited problem, for such hints are given in the case of a number of nonroutine
problems.

Serious use of this device can, we believe, encourage initiative in the
student and give him both a firmer grasp of the material and greater
enjoyment than would come from reading a presentation complete in every
detail. Because of these features, the amount of material covered is some-
what greater than the number of pages in the book may indicate.

Chapters 1, 2, and 3 may be covered as quickly or as slowly as the
background and interests of the students dictate. For students with a
substantial background in algebra, the main topics in the book can be
covered in one semester. Most classes with little college experience in
algebra and geometry (beyond analytic geometry) will find ample material
for a full year course.

The idea for this book originated when I was a visiting professor at
Swarthmore, many years ago. The initial drafts were written at Reed,
during tenure of a fellowship of the Fund for the Advancement of Educa-
tion. A Cottrell Grant from The Research Corporation and grants from
the research funds of Wesleyan University were helpful in developing the
manuscript. Colleagues at several colleges have made useful suggestions,
have caught errors, and have offered interesting exercises; T. H. M. Cramp-
ton, R. G. Long, A. P. Mattuck, G. M. Merriman, and Hing Tong should
be especially mentioned. I owe thanks to all these individuals and institu-
tions. But it transcends my power to express my indebtedness to my
principal colleague—Louise Johnson Rosenbaum.

M<iddletown, Conn. RicAsR.
January 1963
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CHAPTER 1

Geometrical Introduction (I)

Mathematics has been traditionally divided into three categories: geom-
etry, algebra, and analysis. There are no clear-cut dividing lines separat-
ing these disciplines, and each is useful in, and in some instances essential
to, the solving of problems in the other two fields. Some analysis (i.e.,
material concerned with limits and limiting processes) will appear in this
book, but its role will be a subordinate one. Geometry and algebra will be
presented as closely related subjects, each interesting in itself, each helpful
in obtaining results and clarifying concepts in the other field, and both
furnishing methods which can fruitfully be applied in the physical sciences,
in engineering, and in some of the social sciences.

Of these three branches of mathematics, geometry has the longest
history as a formal discipline. This first chapter will be devoted to review-
ing some familiar subject matter and methods of geometry, and to intro-
ducing some new types of problems and new methods.

1-1 CLASSIFICATION OF GEOMETRIES

There are many sorts of geometries, with two principal modes of classi-
fication: by subject matter and by method. One division on the basis of
subject matter, for example, is that between plane and solid geometry.
More significant subject-matter divisions, giving rise to a “hierarchy” of
geometries, will receive considerable attention in later chapters.

A classification on the basis of method, namely, the synthetic and the
analytic, is familiar to all students, at least in fact if not by name. In
the synthetic approach, the proof proceeds by logical argument to the
desired conclusion from geometrical hypotheses and already proven the-
orems. In the analytic method, the geometrical data of the problem are
translated into algebraic terms through the medium of a coordinate sys-
tem, laws of algebra are utilized to transform the data and to draw (alge-
braic) conclusions from them, and finally the results are translated back
into geometrical language, presumably as the desired result.
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2 GEOMETRICAL INTRODUCTION (I)

Two remarks should be made about the foregoing characterizations of
the synthetic and analytic methods. (i) The analytic method has no nec-
essary connection with “analysis,” one of the three branches of mathe-
matics mentioned in the introduction to this chapter. (ii) Deductive
reasoning from hypothesis to conclusion is not restricted to synthetic
geometry. A rigorous approach to analytic geometry would also start
with axioms (synonyms: postulates, assumptions), permitting the trans-
lation from geometrical language to algebraic and back again, and justify-
ing the algebraic manipulations which we perform. Indeed, the current
view of mathematicians is that every mathematical system is one in which
each conclusion is obtained by a chain of logical argument from certain
axioms assumed at the start. The characteristic feature of “pure” syn-
thetic geometry is that almost all axioms refer to geometrical entities,
and that a coordinate system (with its attendant arithmetic and algebra)
does not enter. More will be said about axiomatized systems in Sec-
tion 2-1.

As an exercise in comparison of methods, we will sketch analytic and
synthetic proofs that the altitudes of a triangle are concurrent. A set of
lines is concurrent if all the lines of the set pass through one point. The
point of concurrency of the altitudes is called the orthocenter of the triangle.

It will be especially instructive if you close the book before reading
the outlines of proofs given below, and try to work out the analytic and
synthetic proofs yourself.

Analytic. Let the vertices of the triangle be A(a, 0), B(b, 0), C(0, ¢).
Then the line BC has slope —c¢/b, and AC has slope —c/a. Hence the
altitudes through A and B have slopes b/c and a/c, respectively. There-
fore, the altitude through A has the equation bx — cy = ab, while the
altitude through B has the equation ax — cy = ab. Solving these equa-
tions simultaneously gives + = 0 as the abscissa of the point of intersec-
tion of the altitudes through A and B. But the altitude through C clearly
lies along the y-axis, i.e., the third altitude is the line x = 0. [J

Synthetic. Through each of the vertices 4, B, C of the given triangle,
draw a line parallel to the opposite side of the triangle. In this way we
construct a triangle, A’B’C’, say. The altitudes of ABC are the perpen-
dicular bisectors of the sides of A’B’C’. But the perpendicular bisectors
of the sides of a triangle are known to meet in a point (the center of the
circumscribed circle, or circumcenter, of the triangle). [

Comments. (i) The position of the coordinate axes relative to the triangle
is virtually standard; any student, after only a brief introduction to ana-
lytic geometry, would make the choice suggested above, or another equally
convenient. After the axes have been chosen, the rest of the analytic
procedure is also standard.




1-1 CLASSIFICATION OF GEOMETRIES 3

But there is a trick to the synthetic proof. An individual might be
quite experienced, ingenious, and perceptive, and still not hit upon the
easy approach.

This is a common situation; the synthetic method often requires con-
siderable ingenuity and power of visualization on the part of the student,
while the analytic method, once a convenient position has been chosen
for the coordinate axes, usually proceeds in fairly routine fashion. The
synthetic method often provides a short and elegant proof if essential
features are noted and correctly interpreted, or if appropriate construction
lines are drawn. The analytic method has the advantage of being “sure,”
albeit sometimes “slow.”

(ii) Note that both proofs involve much background material. To
consider only one item of the analytic proof, we observe that the formula
for the slope of a line comes from the concept of similar triangles. Like-
wise, one step of the synthetic proof is based on the concurrency of the
perpendicular bisectors of the sides of a triangle, an easily obtained result,
usually proved early in a geometry course.

PROBLEM SET 1-1

Try each of the following problems by both the synthetic and the analytic
methods. In some cases one of the methods will prove to be decidedly simpler
than the other.

1. Prove that the diagonals of a parallelogram bisect each other, and the
converse.
2. Prove that the medians of a triangle meet in a point (called the centroid
of the triangle) which is two-thirds the distance from each vertex to the mid-
point of the opposite side.
*3  Prove that the bisectors of the angles of a triangle are concurrent. (The
point of concurrency is the center of the inscribed circle, abbreviated “incenter.”)

*4, Let A1, Az, A3, As, P, @ be 6 distinct points on a circle. Show that
sin Z AsPA; sin L A4PA> sin £ A3QA; sin L A4QA2

sin ZA3PAz sin ZAsPA;  sin ZA3QA; sin ZAQA1
5. Let A, B, C, D be any four points, not all on one line and not necessarily
all lying in a plane. Let P, @, R, S be the midpoints of the segments AB, BC,
CD, DA, respectively. What can be said about the figure PQRS?

6. (a) Suppose that a variable line through a fixed point P meets a fixed
circle in A and B. The point P may be inside, on, or outside the circle. Show
that the product PA - PB is constant.

(b) If P is outside the circle, with a tangent from P touching the circle
3t [ show that PA - PB = P75
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7. Given a fixed line [ and a fixed point A not on I. Point P moves so that
its distance from [ always equals the distance AQ, where @ is the foot of the
perpendicular dropped from P to {. What is the locus of P?

8. (a) In a plane, what is the locus of a point, the sum of the squares of
whose distances from two fixed points is constant?

(b) Same as (a), in three dimensions.

9. What is the locus of the midpoint of a line segment of constant length
whose end points move on two fixed intersecting perpendicular lines?

10. (a) Show that the locus of the midpoint of a line segment of constant
length whose end points move on two fixed intersecting nonperpendicular lines
is an ellipse.

(b) What is the locus of a point which divides a line segment of length / in
the ratio r: (I — r) if the ends of the line segment move on two fixed, inter-
secting lines?

(c) Show that in 9(b), the locus is a circle if and only if the lines are per-
pendicular and r = 1/2.

11. What is the locus of the midpoint of a line segment of constant length
whose endpoints move on two fixed, perpendicular, nonintersecting lines?

12. Show that in a plane, the locus of the center of a circle tangent to two
fixed unequal circles which are external to each other consists of both branches
of two hyperbolas whose foci are the centers of the fixed circles.

13. Let A, B, C, D be consecutive vertices of a parallelogram and let X, ¥
be arbitrary points on AB, CD, respectively.

(a) Let AY and DX meet at P, and BY and CX meet at Q. Show that the

line PQ bisects the area of the parallelogram.
(b) Let AY and CX meet at R; BY and DX meet at S. What can be said

about the line RS?

14. Let D be an arbitrary point of the altitude AH of triangle ABC. Let
BD meet AC at E, and CD meet AB at F. Show that angle AHFE equals angle
AHF. Are there any cases which need special treatment? (From a Putnam
Prize Exam.)

15. Prove that, if two medians of a triangle are equal in length, then the
triangle is isosceles.

16. In triangle ABC (Fig. 1-1), AD and BE meet on the bisector of angle C,
and AD = BE. Show that the triangle is isosceles.

C

Ficure 1-1
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17. In triangle ABC with AC = AB, let D be the midpoint of BC, let E be
the foot of the perpendicular from D to AC, and let F be the midpoint of DE.
Show that AF is perpendicular to BE. (From The American Mathematical
Monthly.)

18. In triangle ABC, D lies on BC and E on AC. AC = BC, the measure of
angle C is 20°, that of angle DAB is 50°, and that of angle EBA is 60°. Prove
that the measure of angle DEB is 30°.

*19. The points P, Q, R, S lie on the sides AB, BC, CD, DA of the quadri-
lateral ABCD. Show that if PQ and RS meet on AC, then PS and QR meet
on BD. ,

20. Given a triangle ABC and a point P not on any side of the triangle.
Let M1, M2, M3 be the centroids of triangles PAB, PBC, PCA. Prove that
for a fixed triangle A BC and for the position of P arbitrary, the triangle M MaoM3
has a fixed size and shape. Does P have to be in the plane of triangle ABC?
Can you describe the size and location of triangle MM o M3 relative to the
size and location of triangle ABC'?

21. (a) In triangle ABC, let P, Q, R be points on AB, BC, CA such that
AP/AB = 1 = BQ/BC = CR/CA. Show that the area of the triangle whose
sides are CP, AQ, BR is % the area of triangle ABC.

(b) If the fraction % in part (a) is changed to 1/n, what does the fraction
1 become?

22. (a) Suppose that a secant ! meets a circle in A and B, the midpoint of
the chord AB being M. Let P1Q1 and P2Q2 be chords of the circle through M.
Suppose that P1Q2 and P2Q; meet [ in G and H, respectively, and that PiP2
and Q1Q2> meet ! in R and S, respectively. Show that MG = MH and that
MR = MS. (Brooks)

(b) With reference to part (a), let the tangents at P and @ meet [ in U
and V. Show that MU = MV. (Morgan)

23. Given a parallelogram ABCD with a circle passing through A. Let the
circle meet AB, AC, AD in P, @, R, respectively. Prove that AB- AP =
AD- AR = AC- AQ. (Morgan)

24. In Fig. 1-2, PX and PY are the tangents to the circle from the arbitrary
point P; XY is also tangent to the circle (at A), and AB is a diameter of the
cirele. Show that XC = Y A. Is your proof valid for all positions of P outside

the circle? (Morgan)
B

/

X (G )

FiGure 1-2
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*95. In a plane, I, I/, m are three concurrent lines, and O, P are two points
not lying on any of the lines. To each point X of | we make correspond the
point X’ of I/ such that OX and PX’ meet on m. Show that all the lines XX’
are concurrent at a point Q. What can be said about the location of @?

*96. Let the circles C1, Co intersect in P, P’; circles G2, @3 intersect in Q, Q';
and circles @3, @1 intersect in R, R’. Show that the lines PP/, QQ’, RR’ are
concurrent. Must the circles all lie in one plane?

27. Definition. Two lines are skew if they do not lie in a plane.

(a) Let I, m be skew lines, with P, @ any points on [, and P/, Q" any points
on m. Show that the lines PP, QQ’ are skew.

(b) Let each pair of lines: I, m; m, n; n,l be skew. Are there lines which
intersect all three lines [, m, n? Describe fully.

1-2 “MODERN’’ GEOMETRY

The theorems used in the foregoing set of problems are all standard
results of Euclidean geometry, the sort of propositions known to the
Greeks over 2000 years ago and proved by them by the synthetic method.
Virtually no advance over the geometry of the Greeks was made until
the introduction of the analytic method (Descartes, 1637).

The preceding sentences represent an oversimplification of the situation.
Some of the Greek geometers used a sort of coordinate system, but not
in a systematic fashion, probably because of their poorly developed alge-
braic notation.

“Descartes’ merits,” writes Struik in his book, A Concise History of
Mathematics, “lie above all in his consistent application of the well de-
veloped algebra of the early Seventeenth Century to the geometrical
analysis of the Ancients, and, by this, in an enormous widening of its
applicability . . . the first analytic geometry of conic sections which is
fully emancipated from Apollonios appeared only with Euler’s Introductio
(1748).”

Analytic geometry permitted easy and systematic study of the conic
sections (which had already been investigated by the Greeks by what we
now consider laborious methods) and also of some higher plane curves,
such as the cycloid, the cissoid, the conchoid, and the limagon, some of
which likewise had been studied by the Greeks.

After the introduction of analytic geometry, its methods became stand-
ard for certain work in astronomy, but enthusiasm for geometry as a sub-
ject for study again subsided until the 18th and 19th centuries. The
revival took several forms: the development of new geometries (i.e., of
new subject matter) some of which will be treated in this book; a marked
extension of analytic geometry with the introduction of algebraic methods
different from and supplementary to those of Descartes (this will be an
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important concern for us); and a renewal of interest in the methods and
general subject matter of Euclid, leading to the discovery of many beauti-
ful theorems (principally relating to simple figures like the triangle and
the circle) which had not been suspected by the Greeks or by any mathe-
maticians in the intervening 2000 years.

Listed below are a few of the many theorems discovered in the 18th
and 19th centuries. (Some of them had also been known to the Greeks.)
These particular theorems have been selected because of their relationship
to each other and to other theorems of more general nature, which will
appear later in our work. It is suggested that you attempt to prove
them, by synthetic or analytic means. If you are unsuccessful, look up
a proof in one of the texts listed after the problems. (It will be surprising
if you succeed in proving more than a few of these theorems, but you
should at least understand their statements.)

PROBLEM SET 1-2

1. The circumcenter, the orthocenter, and the centroid of a triangle are col-
linear. (A set of points is collinear if all the points of the set lie on a straight
line.) The distance from the centroid to the orthocenter is equal to twice the
distance from the centroid to the circumcenter. (Euler line, 18th century)

9. Let R be the radius of the circumscribed circle of a triangle, r the radius
of the inscribed circle, and d the distance between the circumcenter and the
incenter. Then (Euler, 18th century)

1 1 1l

L TR

*3. The lines joining the vertices of a triangle (Fig. 1-3) to a given point not
on the sides of the triangle determine on the sides of the triangle six segments
such that the product of three nonconsecutive segments is equal to the product
of the remaining three (Ceva, 17th century):

AGLBACHGB = CB .4 (1B or g,—g%%, gi =1
C B/
B, A’ C
P
P 1
A G B A B g/
(a) (b)

Figure 1-3
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*4. Discussion of directed distances. It is often convenient to choose one of
the two “senses” on a line as positive, in which case the opposite sense is nega-
tive. Thus, if the arrowhead denotes the positive sense in Fig. 1-4, AB is posi-
tive and CB is negative. Whichever is the choice of positive sense on the line,
if B is the midpoint of the segment AC, then CA/AB = —2. With this con-_
vention for directed distances, it is possible to state the following converse of
Ceva’s theorem.

C
W
Ficure 1-4

Given a triangle ABC with A’, B/, ¢’ on BC, CA, AB, respectively, such that
AC’ - BA'-CB' = C'B- A'C - B'A, where the equality is valid both in magni-
tude and in sign. Then A 4’, BB’, CC’ are concurrent.

*5 et a transversal ¢ meet the sides BC, CA, AB of triangle ABC in A4’,
B’, C". Then, considering directed distances (Menelaus, 1st century, A.p.)

ACLAB AL CB'
1 s e e e R v SeERE s BN .
AC¢*-BA"-CB C'B:- AC A, or OB A0 BA 1

*¢. Given a triangle ABC with A’, B/, ¢’ on BC, CA, AB, respectively, such
that AC' - BA’ -CB’ = —C’B- A'C - B’A. Then A’, B/, (" are collinear. (Con-
verse of Menelaus’ theorem)

Each of the theorems of Problems 7 through 11 can be treated as a corollary
of the converse of Ceva’s theorem.

7. The medians of a triangle are concurrent.
8. The internal angle bisectors of a triangle are concurrent.
9. The altitudes of a triangle are concurrent.

10. The lines joining each of the vertices of a triangle to the point of contact
on the opposite side of the inseribed circle are concurrent. (Gergonne, 19th
century)

11. (a) Definition. An escribed circle (or, excircle) of a triangle is a circle
tangent to one side of the triangle between the vertices and to the other two
sides produced. (There are, then, three escribed circles of a given triangle.)

The lines joining the vertices of a triangle to the points of contact of the
opposite sides, with the excircles relative to those sides, are concurrent. (Nagel,
19th century)

(b) Show that the Nagel point can also be described as the point of intersec-
tion of lines joining each vertex of a triangle to the point “halfway around the
perimeter” of the triangle.

Each of the theorems of Problems 12 through 15 can be treated as a corollary
of the converse of Menelaus’ theorem.
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12. The external angle bisectors of a triangle meet the opposite sides in three
collinear points. :

13. Two interior angle bisectors and the bisector of the exterior angle at the
third vertex meet their respective opposite sides in collinear points.

14. The tangents to the circumcircle of a triangle at its vertices meet the
opposite sides of the triangle in three collinear points. What can be said con-
cerning the special cases involving parallelism?

15. (a) Let 4, B, C be three points of a line [, and X, ¥, Z three points on
another line m, coplanar with I. Then the points of intersection of AY and
XB, of AZ and XC, and of BZ and YC are collinear. (Theorem of Pappus, 4th
century, or Pascal, 17th century)

(b) Can you use the result of (a) to solve easily Problem 13 (a), Section 1-1?

16. (a) In a given plane, let 4, B, C be fixed collinear points, and [, m fixed
lines. Let z, y, 2 be lines through A, B, C, respectively, with z and y meeting
on I, and y and z meeting on m. Show that the locus of the intersection of z
and z is a line. (Euclid)

(b) Same as part (a), except that A, B, C are not collinear. Then the locus
of the intersection of z and z is a conic. (Maclaurin, 18th century)

(¢) Generalization of part (a): In a given plane, let A1, Ag, ..., A, be fixed
collinear points, and I1, l2, . . ., la—1 be fixed lines. Let z1, z2, ..., Ta be lines
through A1, Asg, ..., A, respectively, with 21 and z2 meeting on [1, 22, and z3
meeting on Iz, ..., n—1, and , meeting on l,—1. Show that the locus of the
intersection of each pair not already mentioned is a line. (Pappus)

(d) Obtain a result related to part (c) as part (b) is related to part (a).

The following references may be helpful.

N. A. Courr, College Geometry. New York: Barnes and Noble, Inc., 1952.
R. A. JounsoN, Advanced Euclidean Geometry. New York: Dover Publica-

tions, 1929.
D. J. Struik, A Concise History of Mathematics. New York: Dover Publi-

cations, 1948.

Drawings of the figures associated with the foregoing theorems will
impress a reader with the simplicity and beauty of the results, and a study
of the proofs of the theorems will probably impress him with their diffi-
culty and diversity. The traditional methods of elementary geometry are
not sufficient for easy handling of such material. More than that, the
traditional methods do not lay bare certain essential relationships of con-
figurations, of which the results of the foregoing theorems are merely
special cases.

This book is devoted to the elucidation of methods which are powerful
in bringing to the fore some of the basic features of geometry and alge-
bra, and in obtaining and proving results economically. This presentation
begins in Chapter 4; the remainder of Chapter 1 and Chapter 2 involve



