

8651602

SUREFIRE

PROGRAMMING IN

WARREN A. STEWART

A hands-on
introduction to
using C on CP/M, MS-DOS, and
Unix-based mlcrocomputers|

: E8661602

| TARB| TAB BOOKS Inc.

Blue Ridge Summit, PA 17214

-
P
S

UNIX is a trademark of AT&T Bell Laboratories. CP/M is a trademark of
Digital Research, Inc. MS-DOS, Xenix aretrademarks of Microsoft. ZEUSisa
trademark of Zilog. CROMIX is a trademark of CROMEMCO. Idris is a
trademark of Whitesmiths LTD. Coherent is a trademark of Mark Williams
Co. Unosisatrademark of Charles River Data Systems. PDP, DEC,and VAX,
Ultrix are trademarks of Digital Equipment Corp. IBM, PCIX are trademarks
of International Business Machines. ATT is atrademark of ATT.BDS Cisa
trademark of BD Software. C/80 and TOOLWORKS are trademarks of The
Software Toolworks, and DeSMET C is a trademark of DeSmet Software.

FIRST EDITION
FIRST PRINTING

Copyright © 1985 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Stewart, Warren A.
Surefire programming in C.

Bibliography: p.
Includes index.

1. C (Computer program language) |. Title.
QA76.73.C15S74 1985 001.64'24 84-26898
ISBN 0-8306-0873-7
ISBN 0-8306-1873-2 (pbk.)

Cover illustration by Larry Selman

Preface

In the media surrounding computer technology, UNIX and C
have become familiar terms. Industry analysts assess the strate-
gic importance of UNIX for AT&T in its battle with IBM for the
computer marketplace. They monitor the reactions to the
announcements of a growing number of UNIX clones—
operating systems such as Coherent, Zeus, Idris, Xenix, Cromix,
Unos, Pcix, and Ultrix, just to name a few.

The success of UNIX in the world of minicomputers is
legendary. Briefly, UNIX began with Ken Thompson’s work on
a PDP-7 minicomputer in 1969. In a 1978 article, Mcllroy
reports that there was one overriding objective of the UNIX
development—to create a computing environment in which
programming research could comfortably and effectively take
place (Bell System Technical Journal, July-August, 1978). From
these beginnings, UNIX became a full-blown operating system
for the Digital Equipment Corporation PDP/11 series of
minicomputers.

The original UNIX was written in assembly language. The
C programming language was designed by Dennis Ritchie of
Bell Laboratories as a language in which to rewrite UNIX. Now
the vast majority of the UNIX system and its application
programs are written in C. For that matter, C is the primary
programming language of the UNIX environment.

vii

Acknowledgments

Several people have made generous contributions toward my
writing this book, and to all of them I am grateful. My thanks go
to Walt Bilofsky, Susan Hayes, Leor Zolmon, Fredrick Richter,
Rick Rump, Harvey Nero, and Mark Byrd for contributing C
compilers and for helping solve various disk formatting prob-
lems encountered along the way.

Manuscript review comments by Denis Conrady and James
Hunt significantly improved the book. Larry Freyou and Art
Norton tested many of the programs on their computers. And
Carol Lindsey’s painstaking review of the manuscript and
numerous editorial suggestions greatly improved the book.

Without my wife Ellen, this book would not have been
possible. In addition to her editing skills and word processing
prowess, her encouragement, understanding, and love sus-
tained me throughout the project. To Ellen, my thanks and my
love.

Introduction

One writes a computer program to instruct a machine to
perform a task. Because machines cannot communicate in
natural languages like English, it is necessary to write the
instructions in a language the computer can understand.
The computer’s native language is composed of ones and
zeros. A valid instruction in the computer’s language might be
1011101111000001. These words are part of a binary language, a
language in which only the symbols 0 and 1 are used. This
binary word may tell the computer to perform an addition
operation in one of its arithmetic registers. Clearly, writing
thousands of these binary instructions yields a computer
program difficult for humans to understand. Higher level
programming languages were developed to serve as a middle
ground. The C programming language is one such language.
This book is intended for those who want to learn to write
in C. It is assumed that you have access to a C compiler and a
computer system on which you can experiment with the
programs shown in this book. C compilers are available from a
variety of manufacturers for many different computer systems.
There is some variation in the way the language has been
implemented by different manufacturers. In addition to provid-
ing detailed information on the common features these imple-
mentations share, this book presents material and exercises that

Xi

will help you discover the nonstandard features your compiler
possesses. Further, guidelines are given as to how the programs
in this book can be modified to properly execute with a
nonstandard C compiler.

This book is a tutorial on writing programs in C; you need
not be an expert programmer to use it. In some cases BASIC
language programs are used for comparative purposes. Though
little is lost if you are not familiar with BASIC, some familiarity
with the terminology associated with programming languages
is helpful.

Chapter 1 presents examples of elementary C programs and
discusses the environment in which C programs are developed.
The C preprocessor and some fundamental input/output
operations are also discussed. Chapter 2 introduces variables,
data types, constants, and arrays and indicates how each of the
data types is printed.

In Chapter 3, the overall organization of a typical C
program is discussed, the distinction between local variables
and global variables is presented, and the concept of a C
function is developed. Chapter 4 presents arithmetic and
relational operators, while Chapter 5 introduces control state-
ments.

Pointers and arrays are the topics of Chapter 6, structures
are introduced in Chapter 7, and Chapter 8 is devoted to input
and output (I/O) operations. Examples of programs that
perform disk I/O for standard UNIX C and nonstandard C
compilers are provided. Finally, Chapter 9 presents several
advanced topics, including recursion, bit level operations,
typedef statements, and unions.

Two appendices are also proyided. Appendix A is for
readers who are not familiar with the octal and hexadecimal
number systems, or scientific notation. The appendix provides
an overview of these topics. Appendix B is a series of tables that
have been placed at the end of the book for easy reference.

NOTATION USED IN THIS BOOK

The ellipses(...) are used to mean “and so on.” For
example,

1,2,3,...,99

represents the first 99 positive integers.
References to other literature are cited by ‘a bracketed
indicator such as [KERN78]," which refers to Kernighan and

Xii

Ritchie’s definitive work on the C programming language. The
list of references is found at the end of the book.

Some sections are marked with an asterisk (*). These
sections can safely be skimmed or skipped on the first reading.
You can return to these sections at a later point after gaining
more familiarity with C. All other notation used is introduced
in the text.

Xiii

/G
/ <
.

Contents

The C Programming Environment 3
Text Editing and Compilation—The Linker—Compile and Link Commands—Debugging
The C Preprocessor 7
C Input and Output 10
Standard Input and Output Streams 13
Exercises 16

Variable Names and Declarations 18
Integer Variables 21

Integer Constants 22

Printing Integers with printf 23

Float and Double Variables and Constants 26
Printing Floats and Doubles with printf 27
Character Variables and Constants 28
Printing Characters with printf 30
Character Strings 32

Array Basics 32

Printing Character Arrays with printf 35
Exercises 37

Functions 39

Defining Functions 41

Functions and Local Variables 44
Global Variables 47

Formal Parameters 48

Call by Value 49

Call by Reference 50

Static Variables 52

Register Variables 54

Storage Classes 55

Typical Organization of a C Program 56
Exercises 59

Operators, Expressions, and Statements 61
The Simple Assignment Operator 63
Arithmetic Operators 64

Unary Minus, Increment, and Decrement Operators 67
Operational Assignment Operators 69
Operator Precedence 71

Caveats on Order of Evaluation 74
Arithmetic with Char Data Type 75
Arithmetic with Unsigned Data Types 76
Type Conversions 78

The Cast and Size of Operators 79
Relational Operators 80

Logical Connectives 84

Negation Operator 86

The ?: Conditional Operator 87
Preprocessor Macros 88

Exercises 90

If Statement 92
Compound Statements 94
If-Else Statement 96
Nested If Statements 99
While Loops 101
For Loops 106
Getline—Null Statements—Omitting Loop Control Expressions—Comma Operator
Break Statement 117
Continue Statement 121
Switch 122
Do-While Loops 124
Labels and GOTO Statements 126
Some Preprocessor Asides 129
Loop and Control Examples 130
Exercises 134

Basics of Pointers 137

Passing Pointers to Functions 140
Arrays and Address Arithmetic 148
Pointer Expressions and Precedence 156
A Stack Example 160

More on Printf 165

Scanf 167

Multidimensional Arrays 169

Initializing Arrays 173

Functions that Return Pointers 175

Arrays of Pointers 176

Arrays of Pointers Versus Two Dimensional Arrays 178
Command Line Arguments 181

Pointers to Pointers 183

Exercises 185

Declaring Structures 188

Structure Tags and Templates 189

Structures in Structures 193

Arrays of Structures 194

Pointers to Structures 197

Passing Structure Data to Functions 200
Functions Returning Pointers to Structures 202
The Size of Structures 204

Self-Referencing Structures 206

1/0 Library Access 208
Getchar and Putchar 208
Printf 210
Scanf 212
Reading and Writing Files 217
fopen and fclose—Getc and Putc—fprintf and fscanf
Stdin, Stdout, Stderr 226
Creat, Unlink 227
SPRINTF, SSCANF 228

Typedef 230
Recursion 232
Pointers to Functions 237
Bit Level Operations 239
Unions 245
Multi-file C Programs 246
Data Privacy
More C Preprocessor Statements 248
Exercises 250

The Decimal System 251
The Binary System 252
The Octal System 253
Hexadecimal Numbers 254
Scientific Notation 256

Chapter 1
Getting Started with C

To begin learning C, let’s examine our first C program:

If you are familiar with BASIC, you’ll find this C program is
just like the following BASIC program:

Or, if you have programmed in Pascal, it is like the following
Pascal program:

Because this is our first C program, let’s examine it in some
detail. Main is the name of a C function. Every C program hasa

1

function called main. The parentheses following the word main
indicate that it is a function. Functions are like black boxes of
computation and logic. Data can be passed to them and they act
on the data according to the instructions they contain. The
main function of the welcome program is not passed any data;
that is why there is nothing between the parentheses following
its name.

The left brace ({) introduces the statements that define the
function main. This version of main begins with acomment. All
text between the symbols /* and */iscommentary for the benefit
of the programmer or other human readers. Following the
comment, there is one statement:

Statements are written in a free format; they are not required to
begin in a particular column, and more than one statement can
be written on the same line.

Printf, like main, is a function. You can tell by the
parentheses that follow its name. Between printf’s parentheses
are the characters “welcome”. This string of seven characters
(the double quotation marks are not included) is data that is
passed to the function printf. Printf is a function that writes the
data passed to it on the terminal screen.

The semicolon following printf(“welcome”) is the C
statement terminator. Every C statement is terminated by a
semicolon. Finally, the closing right brace (}) indicates the
end of the statements in the function main.

You have just examined your first C program. But, before
you leave it, you should be aware that the first C program
behaves a little differently than a first BASIC or Pascal program
(as they are written here). The second C program points out the
difference:

It may appear that this program will print two lines of text, but
actually it prints only one line. The printf function does not

2

automatically move down a line each time it is used. If you want
a new line, you must explicitly say so. Thus, the first program
prints:

welcome

while the second program prints:
hithere

If the second program is intended to print two lines, the
program would look like this:

The \n is aspecial “‘escape sequence’’ used in C to represent
a new line. C provides escape sequences for several invisible
characters. A discussion of this and other C escape sequences is
found in Chapter 2. Note that the comment in the second
program extends across two lines. All text between /* and */isa
comment, even when the text spans two or more lines.

These programs are simple indeed; but to make them
actually work on your system you must enter the program text
into the system, and then compile and link the program. If you
have used compilers before and are familiar with the process of
compilation and linkage, skip forward to the section on the “C
preprocessor’’ later in this chapter. If you are not familiar with
the process, you should read the description that follows. In the
next section, you will examine the type of environment that
supports C programming.

THE C PROGRAMMING ENVIRONMENT

In the previous section you examined a couple of ele-
mentary C programs. Now, you will examine the process which
transforms C language programs into executable machine code
programs. The process has several distinct phases: program
creation using a text editor, compilation, linkage editing, and
debugging. The following sections highlight these phases of
program development.

Text Editing and Compilation

The first step in writing a C program is to type the C
statements into a file. A text editor is used to accomplish this
task. The use of a text editor will not be discussed in this book; if

3

you are not already accustomed to the text editor on your system,
take a little time to familiarize yourself with its use.

The file containing C statements is called a source file or
source code. Source files are translated into the machine code
instructions that execute in the computer. The translation from
source code to machine code is performed by a series of
computer programs. The first translation program is the C
compiler. A C compiler’s job is to translate (or compile) C
language statements into assembly language statements. As-
sembly language is a human readable form of machine code.
The assembly language statements are then processed by the
assembler. The assembler translates assembly language into
object modules or object code. Figure 1-1 depicts the process of
C program development discussed so far.

With the production of the object code, the translation
from source code to machine code is nearly complete. However,
several object files are required to make one executable pro-
gram. For example, if your program uses the printf function,
the object code for that function must become a part of your
program. Various object files must be linked together to form
one executable program. Thus, the last step in the translation
process is to link object files into the final machine code. This
task is performed by a program called a linkage-editor or linker.

The Linker

The linker allows previously compiled functions to be used
in programs. This is an important feature of the C environment.
It saves time; often-used functions do not have to be repeatedly

TERMINAL c
KEYBOARD SOURCE
FILE

(o] ASSEMBLY
COMPILER LANGUAGE
FILE

OBJECT
MODULE

ASSEMBLER

Fig. 1-1. C program development process: text editing and compilation.

4

recompiled. Further, compiler vendors will supply libraries of
functions you can link into your programs. For example,
functions such as printf, getchar, and putchar are supplied in
input/output libraries and are readily available for your use.
Such libraries let you create useful programs much more rapidly
than if you had to write all the functions yourself.

In addition to linking vendor-supplied object code into
your programs, you can use the linker to link functions you
have developed into your programs. For instance, suppose you
have written a C function to sort names alphabetically. It would
be convenient if you could use this function in several programs
without having to compile it on every occasion. You could
generate the object code once, and use that code in several
programs. Environments that support C generally allow this
feature. This feature is called separate compilation. The linker
is used to link separately compiled functions into one execut-
able program.

Figure 1-2 updates Fig. 1-1 by adding the action of the
linker and showing the resulting picture of the program
development process.

Compile and Link Commands

The commands you issue on your system to perform
compilation and linkage depend on the compiler you are using.
As examples of how the command sequence appears, suppose
you want to create an executable program from C source
statements stored in a file called prog.c. Using the BDS C
compiler, the commands would be:

The first command invokes the compiler. After the compiiation
is complete, the second command invokes the linker.

To perform the same process with the DeSmet C compiler
on an IBM PC, the commands would be:

Again, the compiler is invoked by the first command, and the
linker is invoked by the second.

As you can see, the actual commands required to perform
the compilation and linkage process vary from system to system.
Refer to the user guide supplied with your compiler to
determine the commands required on your system.

c
TERMINAL
KEYBOARD Sc'):l:FECE
ASSEMBLY
OBJECT
HANGUAGE ASSEMBLER MODULE
FILE
EXECUTABLE
LINKER PROGRAM
OBJECT
MODULE | | ogjecT
1 MODULE | ,
: * | oBJECT
Other object modules MOI:‘ULE
such as library

functions.

Fig. 1-2. C program development process: text editing, compilation and linkage.

6

