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PREFACE

Phenomenal physics? What can be so unusual or amazing about physics?
Of course, physicists think physics is exciting, but that’s because it’s their
life's work. There can be an enormous thrill in discovering a new subatomic
particle, or in finding a new way to explain a familiar process. There can
also be small but satisfying thrills in observing and understanding the daily
natural events around us. Rainbows and hi-fi sets and spinning wheels and
soap bubbles are more fun to deal with if you know their scientific origins.
The success of physics in explaining everyday phenomena is truly phenom-
enal.

However, that’s not why I named the book Phenomenal Physics.
Phenomenal also means concerned with phenomena—phenomenological. In
presenting the standard topics of physics, I first describe examples from the
real world. Each chapter opens with a section called ‘‘Handling the
Phenomena.”’ You can usually do these activities at home or in a dorm with
commonly available materials and in just a few moments. Of course, you
can, if you wish, bypass these sections or just read about the activities. That
would be a pity. Most people understand abstract ideas better if they first
handle the phenomena involved. These activities are not a substitute for
laboratory work. Instead, they supplement the demonstrations that many
instructors present. You can learn more, however, if you play with these
phenomena yourself.

This book contains far more information than you can cover in a one-
year course. Different instructors, in different schools, in different years,
choose to emphasize particular topics and skip others, but a solid core
remains. I have tried to cover the core topics thoroughly, and in the standard
sequence. The first ten chapters have few optional sections, matching the
traditional treatment of this material in most colleges. From Chapter 11 on,
however, there are many topics marked ‘*Optional.”” Some of these involve
treatment that is more sophisticated or requires more complicated math
than the basic presentation. Other optional topics, such as the one on the
physics of music, are not complicated, but might not be required in your
particular course. You might enjoy such a section even if it is not required,
or, in future years, you may find it useful for reference.

No calculus is used in the core topics, although some derivations in
optional material require simple differentiation or integration. Nevertheless,
the text appeals occasionally to geometrical arguments concerning the slopes
of graph curves or the areas under them. I did not omit any topic in the
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standard introductory course because of the calculus restriction. Only simple
algebra and a few trig-geometry facts are needed for the core topics. The
text uses the international system of units (S.I. units) almost exclusively.
Where translation to older units is needed, it is provided. There is a guide
to S.I. units in the Appendix as well as a summary of the few math facts
needed.

If you glance hastily at the table of contents, you might think that the
book shortchanges the treatment of “‘modern’ physics. There are no
separate chapters on atomic, molecular, nuclear, particle, or astrophysics.
Instead, from Chapter 1 on, the discussions use atomic models and examples
that involve astronomical data. I point out many cases where the frontiers
of research are only one short step beyond the introductory topic. For
example, the nature of mass is a current (and recurrent) problem in
cosmology, and I exploit this exciting situation in presenting Newton's laws.
The final chapter serves both as a survey of atomic and subatomic physics
and as a review of many topics studied earlier in the book. The same
situation prevails with regard to bhiological and physiological applications.
The human body and its parts are frequently used for examples in mechanics,
fluids, sound, optics. and electricity.

The text contains many border diagrams and pictures. Arthlyn Ferguson
skillfully and patiently drew the diagrams in a style meant to resemble the
sketches that a professor might put on a blackboard while lecturing. These
informal drawings describe, summarize, or sometimes comment on the
discussions.

Every few pages the text interrupts itself with a question, often of the
“‘yes, but’’ variety. Usually these follow some derivation or development
where the conclusion should be challenged, or where there appears to be
a paradox. Ideally, the reader should pause and try to answer such a
guestion, or at least mull it over for a while. My suggested answer or
comment about each question is at the end of the chapter. Students tell me
that they have found this type of question useful in other books that [ have
written. If nothing else, the interruption caused by turning to the end of the
chapter serves to waken the reader.

There are several features of the book designed to make your study
easier and faster. Each chapter has both an Introduction and a Summary.
Before studying a new chapter. read both. Then glance through the section
headings. You’ll get an idea of where you’re heading and what to look for.

You can solve most of the homework probiems without using a
calculator. In fact, you should always work out the approximate size, or the
order-of-magnitude, of an unknown quantity before plugging the detailed
numbers into the calculator. Zero in on the answer! For order-of-magnitude
calculations, 7 = 3, 72 = 10, 1047 = 938 = 1 x 10, and so on. In the
Appendix, there is a list of handy approximations.

Many people helped to produce this book. Naida Dewey faithfully
typed and retyped the manuscript. At Wiley, Don Deneck as the College
Physics Editor persuaded me to start the book. His successor, Robert
McConnin, shepherded it through the final stages. Rosemary Wellner and
Joan Knizeski prepared the manuscript for composition. Ann Renzi was the
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designer of the book, and Kathy Bendo was in charge of photo research.
The production supervisor was Nina R. West.

Several physicists read the first draft: Professor Alfred Romer of St.
Lawrence University, Professor Arnold Strassenburg of the State University
of New York at Stony Brook, and Professor Robert Bauman of the University
of Alabama at Birmingham. They brought numerous errors to my attention
and made useful suggestions for improvement that I tried to follow. Then
Professor Bauman heroically reread a second draft and provided me with
detailed criticism that was crucially important. No doubt some errors may
remain. Blame me, or better yet, let me know and [ will try to correct the
error. Ater thirty years of teaching physics, I still find lots of things that I
didn’t know I didn’t know before.

I hope that most of you who read this book are doing it because you
want to learn more about our world. Some, I know, are taking physics only
to fulfill some requirement. In either case, I hope you end up enjoying the
book and the course work. We live in a mysterious and phenomenal universe,
and, as far as we know, we're the only ones around who can comprehend
it.

Clifford E. Swartz
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THE SETTING AND
THE DRAMA
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YOU ARE HERE

In fact, that’s where we all are. The chart covers the size of everything
that exists, from the smallest subatomic distance that has been measured,
to the very edge of the universe. We stake out this entire realm as the
subject of our study. Humans, living in the middle range of sizes, have
discovered regularities and laws that link the behavior of atoms and the
nature of galaxies. In probing both the microworld and the macroworld, we
also learn more about ourselves.

SIZES AND DISTANCES

In order to map the whole universe and put it on a single page, we had to
use a power-of-10 scale. As you go from left to right, each unit is ten times
larger than the one before it. The basic unit of length in this map is the
meter (m), a little longer than the English yard. The meter is shown at point
0 on the scale, since 10° is equal to 1. Another way to think of the scale
markings is to visualize them as being on a logarithmic scale. *“One meter’’
is at the 0 point, since log 1 is equal to 0. Take a look at some of the other
familiar points on the map. A kilometer (about § miles) is noted at point 3.
A kilometer (km) is 1000 meters; the log of 1000 is 3, and 10% is 1000.
Similarly, a millimeter is at the point ~3 since 107® equals (75 53,

Question 1-1

We interrupt the text from time to time to challenge or emphasize
what has just been said. The questions we raise will not always
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For an actual scale drawing, the atomic
diameter would have to be at least
10,000 times the nuclear diameter. If
the dot representing the nucleus is 0.1
mm, the atomic sphere should be 1 m
in diameter.
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‘ have, eﬁmte answers You can ﬁnd our answer or opinion at the
f each chapter, but you should wrestle with each question for
ile before turning to our solution.
- g: question at this point concerns the location of humans on
the map of the universe. They are placed very close to zero. Does
~ that make them only a little taller than 1 meter?

Living creatures occupy a very small region of this map. The largest
whale is no more than 30 meters long, and so is pictured at a point less than
2 on the map. Biological cells can be seen with microscopes and are larger
than a millionth of a meter, shown on the scale at —6. (Since 10 is 1 million,
10-% is 1/1,000,000, or 0.000,001, or 1 millionth.)

Marching down the scale into the microworld, we find atoms at —10.
Most atoms are about the same size. From hydrogen to uranium, few of
them differ by more than a factor of two in diameter. Note that if each atom
is 107! meters across, you could line up 10'° of them, shoulder to shoulder,
in a distance of 1 meter. Since 10°, a thousand million, is one billion, that
would be 10 billion atoms. The atom itself is huge compared to its tiny
nucleus. Depending on the element, the nuclear diameter is smaller than the
atomic diameter by a factor of 10,000 to 100,000, That would put the nucleus
between —14 and —15 on the universe map. It is possible to measure quite
accurately the diameters of the protons and neutrons that make up the
atomic nucleus. As we will see in a later chapter, sizes much smaller than
this are not meaningful in current research. We put the lower limit of our
universe at 1015 meters.

Does it make sense to talk about sizes this small? Only if we can
measure them in some way. With your unaided eyes, using visible light, you
can see the shapes of objects that are one millimeter (1 mm) across. A
magnifying glass can provide a magnification of up to about 10, and a child’s
microscope may have a magnification of 100. Even the best research
microscopes do not have magnification greater than 1000 to 2000. Since
your unaided eye can see an object that has a size of | mm, with a research
microscope it can see objects that are toge of 1 mm, or 10-% meters, which
is called a micrometer. (The older name is micron.} The limit of magnification
is caused by the fact that light has a wavelength, or a size, of its own. You
cannot ‘‘see’’ something if the probe is larger than the detail you are trying
to see. Electron microscopes use electrons as probes. These can be smaller
than the wavelengths of visible light. Magnification by a factor of over 10°
has been achieved, making it possible to see objects that are only 108
meters across.

For sizes below the electron microscope range, we have to scatter
electrons or other subatomic particles and analyze their scattering patterns.
We’ll examine these methods in later chapters. Note, however, that in seeing
anything, we shoot or probe with something, and then detect what happens
to the probe. As you look at this book, for instance, light is being scattered
from the print and the page. A small fraction of the reflected light enters
your eye, where the information is processed, sent on to the brain, and
recognized. In much the same way, an airplane can be seen by scattering
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radar waves from it, and detecting the waves that are reflected to the
receiver. You could not read this book by scattering radar waves off it,
however. The radar waves are about the size of the book itself, and so are
too broad a probe to detect the printed details.

If it only makes sense to talk about sizes that we can measure, how can
we justify using some of those distances on the right side of the universe
map? You can measure a whale, or even a country, by fairly straightforward
methods. Surveying is still done by measuring baselines and angles. The
length of the meter was originally calibrated in a complicated and rather
misguided surveying project. At the time of the French revolution in 1791,
the French National Assembly voted to make the unit of length equal to
1/10,000,000 of a quadrant of the earth’s surface. The only reason for
prescribing such an exact ratio for an arbitrary standard was so that the
standard could always be reproduced—presumably the earth would never
change. A surveying party actually measured the earth’s arc all the way
from Dunkerque on the English channel to Mont-Juoy near Barcelona,
Spain.

Question 1-2

What good did that measurement do them? Even if you know the
length of France, how can you tell what fraction that is of the earth’s
circumference?

The trouble with using surveying techniques is that you need a measured
baseline. To measure the distance to the moon, the largest baseline available
is the diameter of the earth itself. Actually, a much smaller distance must
be used since there are problems if telescopes are sighted too close to the
horizon. Suppose you use two observatories 1000 km apart (about 630
miles). Both telescopes have to aim at the same point on the moon, and ar
the same time. (The moon is a moving object.) The geometry of the situation
is shown in the diagram. By measuring the angle between the vertical and
the moon at each location, the subtended angle can be found. That angle is
approximately equal to the distance between the two telescopes divided by
the distance to the moon.

6 = (baseline)/(distance) = 1000 km /384,000 km = 1 /384 radians

1 57°
= —radians - = 0.15 degree of arc
384 (rad1an> E
An angle of only 0.15 degree is small, but easy enough for one telescope
to measure. It’s a little more difficult to determine that small an angle by
having two telescopes synchronize their observations and subtract individual
measurement.

Question 1-3

Isn’t it necessary to use trigonometry to solve this problem? The
distance between moon and earth is the long leg of a right triangle.

A radar scanner sees an airplane. The
probes are electromagnetic waves
much longer than those of visible light.

g

ahe=R

¢ = arc length /radius When arc length
equals R, g equals 1 radian. There must
be 27 radians in a circle or in 360°.
Therefore, 1 radian = 57°.
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This is the size of the angle formed by
lines from a point on the moon that
would subtend a baseline of 1000 miles
on the earth.

Half the baseline is the short leg. Therefore, the tangent of one half
the subtended angle is equal to the ratio of one half the baseline
divided by the moon-earth distance. Isn’t this method right and the
other wrong?

The distance to the sun is 1.5 x 10! m. If a baseline on the earth of
1000 km (1 x 10° m) were used, the subtended angle would be only 6 x 10~
radians, or about one second of arc. That’s too small an angle to measure
for a wide target like the sun. The earth-solar distance is actually measured
by a comparison of other solar system distances and angles. The earth-
moon and earth-Venus distances are measured these days by timing the
flight of radar pulses from earth to object and back again. Since the velocity
of light—which is the same as that of radar—is known very precisely, the
distance measurement can be as precise as the measurement of time between
sending the pulse and receiving the echo.

: ; The distance to the near stars is also determined by surveying tech-
a%thmrzzzurnga dE:r:th;\i/negn l::ed;it:::g niques. In this case the baseline is unearthly! It is the diameter of the earth’s
relationships at that time of the Earth- Orbit around the sun. Even though that baseline is 3 x 10'* m long, the
Venus-Sun triangle. distance to the nearest star makes the angular measurement tricky.

Earth-Sun distance can be measured
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Questlon 1-4

If the dtstance to the nearest star is 3 8 x 1()16 m, what angle is
 subtended by the ‘baseline?

To make measurements using the orbit baseline, the same telescope
photographs a star field at six-month intervals. When the two photographs
are superimposed, most of the star images lie exactly on top of each other.
However, the fall and spring images of a very near star will be slightly
displaced from each other. The ratio of that slight displacement to the focal
length of the telescope is the same angle as the ratio of baseline to stellar
distance. For one second of arc and a focal length of 10 m, the image
displacement on the photographic plate is found as follows:

# =1sec= 5 x 107® rad = (displacement)/( 10 m)

The image displacement is about 50 x 107% m, or 50 micrometers. The
distance to the stars must be measured with a microscope!

The nearest star to our sun is about four light-years away. A light-year
is a unit of distance, not time. It’s the distance that light travels in one year
and is equal to 9.56 X 10'® m. (In the same way, we might say that the moon
is 1.3 light-seconds from the earth.) Triangulation, or surveying techniques,
can be used to measure distances as great as one hundred light-years or so.
However, this is hardly a step out into our galaxy, which has a diameter of
100,000 light-years. To measure those distances, we must appeal to conclu-
sions that follow from a whole set of observations about certain types of
stars whose brightness varies in a periodic fashion. The argument goes like
this: if you know how bright a star really is, you can tell how far away it is
by measuring the brightness you see here on earth. For instance, suppose
that all stars were really the same brightness but that we observe star A to
be four times brighter than star B and nine times brighter than star C. Then
B would be twice as far away as A, and C would be three times as far. The
intensity of light from a point source falls off as the square of the distance.
If you can measure the distance to A by triangulation, you can calculate the
distances to B and C. Of course, stars are not all the same size and
brightness. There are relationships, however, between the intrinsic bright-
ness of certain stars and such characteristics as their color and frequency
of changing brightness.

Relative brightness methods are also used to measure distances to the
near galaxies. These galaxies are island universes, each containing millions
or billions of stars. Our own galaxy contains about ten billion (10'?) stars,
and looks something like our near neighbor, the galaxy that can just be seen
with the naked eye in the Andromeda constellation. That galaxy, as you can
see in the illustration, has a pinwheel shape—just like our own galaxy.
Galaxies exist in a variety of forms, including spherical. Our solar system
is about two-thirds of the way out on one of the arms of our galaxy. When
we look toward the hub we see a high concentration of stars that appear in




The galaxy at distance D is much far-
ther from the earth than the galaxy at
distance d. Because the universe is
expanding, the velocity away from us
of the far galaxy is greater. Therefore,
the light of a particular element in that
galaxy has a longer wavelength.
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If a galaxy is traveling away from us,
the pattern of its spectral lines shifts
toward the red.

Note the horizontal white arrow drawn
on each spectrum, showing the posi-
tion of one prominent spectral line,
appearing here just as a dot. The lines
above and below the galaxy's spec-
trum show an earth spectrum.

THE SETTING AND THE DRAMA

the night sky as the Milky Way. From detailed counts of small samples of
the sky, we know that there are about ten billion (10'") galaxies in the
universe.

There is another method of measuring distances to the far galaxies. The
velocity of a galaxy with respect to us can be measured by its Doppler shift.
If a source of waves is moving toward an observer, the frequency of the
waves seems higher. A train whistle, for instance, has a higher pitch as the
train approaches a listener. As the train passes and races away, the pitch
abruptly lowers. In the same way the characteristic patterns of light produced
by various elements in distant galaxies are seen on earth to be shifted to
lower frequencies. The amount of this ‘‘red shift’’ to long wavelengths tells
us how fast the galaxy is fleeing from us. It turns out that all the galaxies
are flying apart from each other. The universe is expanding. Furthermore,
the further away the galaxy, the faster its speed away from us. Since this
rule is followed by the close galaxies whose distances we can measure by
brightness methods, we use the rule to find distances of the far galaxies by
measuring their red shift velocities. In this way galaxies have been observed
that are ten billion light-years away from us. They are traveling at speeds
over half that of light, and are close to the edge of our visible universe.

If, as seems likely, the universe started in an immense explosion about
fifteen billion years ago, and has been expanding ever since, there is, indeed,
a limit to the universe. Many of the details of the origin and of the far
reaches of the universe are still shrouded in mystery. Regardless of the
details, however, there is a limit to our universe at about 102 meters.
Beyond that distance, any object would be traveling away from us so fast
that any information sent to us (such as the characteristic patterns of the
light produced by different elements) would be red-shifted into the back-
ground noise of low energy radiation. Blue light, for instance, would not
just shift to red light, but might have the much longer wavelength of radio
waves.
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HANDLING THE PHENOMENA—DISTANCES

Question 1-5

How long would it take something traveling. at the speed of light
(3 X 108 m/sec) to go 1 X 10° meters?

HANDLING THE PHENOMENA—DISTANCES

Physics is not math or logic. All our theories and models are useful only if
they predict real events in the real world. Futhermore, understanding
physics is not just an intellectual exercise. The phenomena must be handled.
When you talk about velocity, you should have some familiarity with various
velocities either by experiencing them or by measuring them. When you
talk about forces, you should feel them in your muscles. Such a goal is
limited, of course. In our study we want to go far beyond the normal human
experience, both to the very large and the very small. Nevertheless, there
are benchmarks along the way that can be experienced and comprehended.

In every chapter we propose ways to handle some of the phenomena
described in that chapter. Sometimes this will be done through the use of
models or analogies. These are not laboratory exercises, but are simple
things to do using materials available at home or in the dormitory. The
precision required and the time to be spent are usually very small.

How on earth can you experience the beginning topic of this chapter?
Perhaps you could build your own universe! Better yet, why not construct
a scale map of something close to home, such as the solar system? The map
of the universe that we presented was built on a logarithmic scale. To better
understand the nature of that scale, build your solar system on a linear
scale. That’s the kind used in ordinary road maps. A state map, for instance,
might use a scale of 20 miles to the inch (or 10 km to the cm). We list below
the distances of the planets from the sun, and also the diameters of the
planets and sun. Choose a scale so that Pluto can be included in whatever
room or hall you use, but also a scale so that the sun is more than a point.
Note the problem of trying to use a scale that represents the size of each
planet and also fits the whole system into a reasonable indoor space. If the
scale is such that the earth diameter is 1 cm, the earth-sun distance will be
over 100 m. One suggestion, which still requires a corridor or good-sized
room, is to use a scale of 1 ¢cm to 5,000,000 km. The model of the sun itself
will then be small, but more than a point. The other planets will be just
points, but their locations can be marked with arrows on paper tabs. If you
want a solar system that you can roll up and put in your pocket, make the
scale model on a long paper tape, such as a cashier’s tape. The diagram
shows how to make a marker tab that will fold down when rolled.

Why go to the trouble of making such a map? Perhaps you will see
something about the nature of the solar system that is not apparent from the

Average
Distance from Mean
Sun (in 106 Diameter

Planet km) (in km)
Mercury 57.9 4840
Venus 108.1 12520
Earth 149.5 12740
Mars 225.8 6780
Jupiter 777.8 139800
Saturn 1426 115000
Uranus 2868 47400
Neptune 4494 43000
Pluto 5908 5800

Sun e 1393000




