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Preface.

Reissue of
Encyclopedia of Physics / Handbuch der Physik, Volume VIa

The mechanical response of solids was first reduced to an organized science of fairly
general scope in the nineteenth century. The theory of small elastic deformations is in
the main the creation of Caucny, who, correcting and simplifying the work of Navier
and Poisson, through an astounding application of conjoined scholarship, originality,
and labor greatly extended in breadth the shallowest aspects of the treatments of par-
ticular kinds of bodies by Gatieo, LEniz, James BernourLl, PARenT, DANIEL BER-
Nouttl, EuLer, and Couroms. Linear elasticity became a branch of mathematics, culti-
vated wherever there were mathematicians. The magisterial treatise of Love in its
second edition, 1906 - clear, compact, exhaustive, and learned - stands as the summary
of the classical theory. It is one of the great “gaslight works” that in BocHNER’s words'
‘either do not have any adequate successor[s] ... or, at least, refuse to be super-
seded ...; and so they have to be reprinted, in ever increasing numbers, for active
research and reference”, as long as State and Society shall permit men to learn mathe-
matics by, for, and of men’s minds.

Abundant experimentation on solids was done during the same century. Usually the
materials arising in nature, with which experiment most justly concerns itself, do not
stoop easily to the limitations classical elasticity posits. It is no wonder that the investi-
gations Love’s treatise collects, condenses, and reduces to symmetry and system were
in the main ill at ease with experiment and unconcerned with practical applications. In
Love’s words, they belong to “an abstract conceptual scheme of Rational Mechanics”.
He concluded thus his famous Historical Introduction:

The history of the mathematical theory of Elasticity shows clearly that the develop-
ment of the theory has not been guided exclusively by considerations of its utility for
technical Mechanics. Most of the men by whose researches it has been founded and
shaped have been more interested in Natural Philosophy than in material progress, in
trying to understand the world than in trying to make it more comfortable. From this
attitude of mind it may possibly have resulted that the theory has contributed less to
the material advance of mankind than it might otherwise have done. Be this as it may,
the intellectual gain which has accrued from the work of these men must be estimated
very highly. The discussions that have taken place concerning the number and mean-
ing of the elastic constants have thrown light on most recondite questions concern-
ing the nature of molecules and the mode of their interaction. The efforts that have
been made to explain optical phenomena by means of the hypothesis of a medium
having the same physical character as an elastic solid body led, in the first instance, to

'Saomon Bocner: “Einstein between centuries”, Rice Univ. Stud. 65 (3), 54 (1979).
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the understanding of a concrete example of a medium which can transmit transverse
vibrations, and, at a later stage, to the definite conclusion that the luminiferous
medium has not the physical character assumed in the hypothesis. They have thus
issued in an essential widening of our ideas concerning the nature of the aether and
the nature of luminous vibrations. The methods that have been devised for solving the
equations of equilibrium of an isotropic solid body form part of an analytical theory
which is of great importance in pure mathematics. The application of these methods
to the problem of the internal constitution of the Earth has led to results which must
influence profoundly the course of speculative thought both in Geology and in cosmi-
cal Physics. Even in the more technical problems, such as the transmission of force and
the resistance of bars and plates, attention has been directed, for the most part, rather
to theoretical than to practical aspects of the questions. To get insight into what goes
on in impact, to bring the theory of the behaviour of thin bars and plates into accord
with the general equations - these and such-like aims have been more attractive to
most of the men to whom we owe the theory than endeavours to devise means for
effecting economies in engineering constructions or to ascertain the conditions in
which structures become unsafe. The fact that much material progress is the indirect
outcome of work done in this spirit is not without significance. The equally significant
fact that most great advances in Natural Philosophy have been made by men who had
a first-hand acquaintance with practical needs and experimental methods has often
been emphasized; and, although the names of Green, Poisson, Cauchy show that the
rule is not without important exceptions, yet it is exemplified well in the history of
our science.

Love’s treatise mentions experiment rarely and scantly. Its one passage concerning ex-
periment in general, § 63, in effect warns its reader to have a care of experimental data
because of their indirectness.

In an irony of history the ever-increasing use of mathematical notation in physical
science, to the point that now often works on experiment are dominated by their
authors’ seemingly compulsive recourse to mathematical formulae interconnected by
copied or adapted bits of old mathematical manipulation, Love’s treatise is sometimes
in reproaches upon modern “pure” or “abstract” researchers held up as a model of prac-
tical, applied theory.

Experiment on the mechanical properties of solids became in the later nineteenth
century a science nearly divorced from theory. Nevertheless, no great treatise on ex-
periment fit to be set beside Love’s on theory ever appeared. Even such books of ex-
periment as were published seem to have in the main taken positions either domi-
nated by theory, usually crude, verbose, and ill presented, or flatly opposed to theory.

The modern reader will cite as objections against the foregoing coarse summary
many individual masterpieces that do not support it: brilliant comparisons of theory
with experiment by St. Venanr, independent experiments of fundamental importance
by WertHEmM, Cauchy’s marvellously clear mathematical apparatus for conceiving
stress and arbitrarily large strains and rotations, theories of internal friction and plas-
ticity proposed by Borrzmann, St. Venant, and others. If he is searching for ante-
cedents of what has happened in the second half of the twentieth century, he is
abundantly right in citing these and other achievements of the nineteenth while pass-
ing over the work of the ruck, but in that century’s gross product of solid mechanics
they are exceptions that prove rules.
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In planning this volume on the mechanics of solids for the Encydopedia of Physics 1
designed
1) To provide a treatise on experimental mechanics of solids that, not dominated by

mathematical theory and not neglecting the work of the eighteenth and nineteenth

centuries in favor of recent, more popular, and more costly forays, should be com-
parable in authority, breadth, and scholarship with Love’s.

2) To provide treatises on basic, mathematical theory that would stand at the level of
Love’s while in their own, narrower scope supplanting it by compact and efficient
development of fundamentals, making use of modern, incisive, yet elementary
mathematics to weave together old and recent insights and achievements.

3) To illustrate the power of modern mathematical theory and modern experiment by
articles on selected topics recently developed for their intellectual and practical im-
portance, these two qualities being closer to each other than to some they may
seem.

I encouraged the authors to meet the standard established by Love in just citation
and temperate respect for the discoverers.

The reader will be able to form his own judgment of such success and failure as did
accrue.

On the first head, experiment in general, the reader will find the treatise by Mr.
BeLL, filling all of Part 1. While it is not primarily a historical work, the historian S. G.
Brusu pronounced it in 1975 “the most important new publication by a single author”
on the history of physics.

On the second head, the reader should not expect to find the basic ideas of solids
treated @b novo or in isolation. The general and unified mechanics of EuLer and
Caucny, in which fluids, solids, and materials of other kinds are but instances, has
come into its own in our day. No wise scientist now can afford to shut out solids
when studying fluids or to forget the nature and peculiarities of fluids when studying
solids. The two are but extreme examples in the class of systems comprised by me-
chanics. Articles in Parts 1 and 3 of Volume I1I of the Encyclopedia: The Classical Field
Theories and The Non-Linear Field Theories of Mechanics, are cited so often by the authors
writing in Volume Vla as to make it fatuous to deny that they provide the basic con-
cepts, structures, and mathematical apparatus for the articles on theoretical mechanics
of solids. In particular The Non-Linear Field Theories goes into such detail regarding
large mechanical deformation as to allow most of the text in Volume Vla to concen.
trate upon small strain.

This much understood, we see that while Mr. Berr’s volume provides, at last, a
monument of exposition and scholarship on experiment, the articles by Messts.
GurTIN, CARLSON, FICHERA, Nacupi, AntMAN, and FisHEr & LerrMaN, by Mrs.
GEIRINGER, and by Mr. TiNG together provide a modern treatise on mathematical theo-
ries of the classical kinds. The survey of theories of elastic stability by Messrs. Knops
& Wikes, now justly regarded as the standard reference for its field, necessarily con-
siders deformations that need not be small.

Coming finally to application, in which theory and experiment complement one
another, the reader will find major examples in the articles by Messrs. CHEN; NUNZIA-
10, WaLsH, ScHULER and Barker; and THURSTON. Many more topics of application
might have been included. I regret that I could not secure articles about them. The
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most serious want is a survey of applications of linear elasticity to problems of intrin-
sic or applied interest that have arisen in this century and that illustrate the power of
new mathematical analysis in dealing with special problems. A long article of that
kind, a veritable treatise, was twice contracted and twice defaulted. Fortunately the gap
thus left has been abundantly and expertly filled by Mr. ViLLacGio, Qualitative Methods
in Elasticity, Leyden, Noordhoff, 1977.

Baltimore, December, 1983 C. TRUESDELL
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The Linear Theory of Viscoelasticity.

By
MARSHALL J.LEITMAN and GEORGE M. C. FisHER.

A. Introduction.

1. Plan and scope of this article. It has long been known that material behavior
is not always elastic. Indeed, many substances exhibit the property of hereditary
response. That is, the present state of stress depends not only upon the present
state of deformation, but also upon previous states. This property is revealed ex-
perimentally in the phenomena of creep, stress relaxation, and the intrinsic atten-
uation of propagating waves. The nonlinear mechanical theories of materials with
memory have been developed to characterize such behavior.! More specifically,
the linearly viscoelastic material is a model which seeks to characterize hereditary
effects within the context of an infinitesimal linearized theory. A theory based
on this model should, in the absence of hereditary effects, reduce to the classical
linearized theory of elasticity.

The linear theories of elasticity and viscoelasticity have much in common.
Indeed, there is considerable formal similarity in their developments. This is not
illusory since many results from the elastic theory have direct generalizations to
the viscoelastic theory.

In this article we focus not only upon the formal similarities but also upon
the intrinsic differences of the two theories. We attempt to isolate those con-
ceptual and mathematical difficulties which arise over and above those inherent
in elastic problems. The greatest of these arises directly from the inclusion of
hereditary effects. In elastic theories the relationship between stress and strain
is finite-dimensional, whereas, in a hereditary theory this relationship is generally
infinite-dimensional. Even within the context of a linear theory, the additional
complications may be formidable. It will be seen that the ramifications of this
assertion permeate the entire body of the theory.

We develop our subject entirely within the context of an infinitesimal lin-
earized theory. In this respect our presentation is phenomenological and follows
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2 Leirman and FisHER: The Linear Theory of Viscoelasticity. Sect.. 4.

the ideas set down first by BoLTzMANN2 and later by VOLTERRA.? Mathematically,
our formulation is patterned after the more recent work of KoNiG and MEIXNER*4
and GURTIN and STERNBERG.> We have been greatly influenced by the investiga-
tions of the non-linear theories of mechanics and the concept of fading memory.
Most significant of these are the fundamental studies of GREEN and RIVLIN,
Noryr, CoLEmaN and NovrL, CoLEMAN, and CoLEMAN and MizgL.$

We have attempted throughout to adopt a style which may be rendered
precise, in the mathematical sense, without overburdening the reader with cum-
bersome notation. This article is intended as a sequel to the Linear Theory of
Elasticity (LTE) by GURTIN, which appears in the preceding part of this volume.
The completeness of that article enables us to use it as a primary reference.

Our survey is divided into four chapters. In Chap. A we provide some requi-
site technical background and notation. Since we adopt most of the notation and
results developed in LTE, we are able to concentrate on those mathematical
concepts which are central to the viscoelastic theory but absent in the elastic
theory. A self-contained formulation of the foundations of the linear theory is
presented in Chap. B. We do not approach this theory as a linear approximation
to a non-linear theory but proceed directly within the phenomenological frame-
work of a linear theory. In Chap. C we present the fundamental mathematical
results of the quasi-static theory. By the term ‘‘quasi-static’’ we mean that all
inertial effects are systematically neglected. We include the inertial effects in
Chap. D, which concerns the full dynamic theory and the propagation of waves in
viscoelastic media. Throughout, we concentrate on presentation of results without
usually giving detailed proofs.

We are cognizant of certain omissions which might properly belong in an
article of this type. However, our selection of topics has been based upon limita-
tions of space coupled with a desire to give precedence to fundamental mathe-
matical aspects of the theory.

We have made only casual reference to the vast experimental literature. For
more information in this regard, the reader is referred to the reviews of FERRY
and KoLsky.”

We have paid little attention to the differential models for viscoelastic
behavior—finite networks of springs and dashpots. These models are somewhat
special and a separate treatment using them is unnecessary. We do, however,
include a discussion of their place in the general linear theory. We take as fun-
damental the classical Boltzmann model and the notion of linear superposition.

Our treatment of material symmetry is brief. It is readily seen that the concept
is the same for both elastic and viscoelastic materials. There is an extensive
treatment of this topic in LTE which obviates a parallel treatment in this article.
The only type of symmetry singled out for special consideration is that of iso-
tropy. Furthermore, we do not separately consider the problems associated with
constrained materials such as incompressible media. Our discussion is restricted
to general compressible viscoelastic solids. The extension to constrained solids
and fluids may be effected along lines of the general theories of mechanics.®

2 BoLTZMANN [1874, 1], [1878, 7.

3 VOoLTERRA [1909, 1], [1913, 1].

% K6N1G and MEIXNER [1958, 417

® GURTIN and STERNBERG [1962, 10].

8 Cited in footnote 1, p. 1.

? FERRY [1970, 4], KoLsKY [1963, 10], [1969, 3].
8 Cf. TRUESDELL and NoLr [1965, 29].



Sect. 2. Notation. Vectors, tensors, and linear transformations. 3

Only the linearization based upon infinitesimal deformations is considered.
It is possible, however, to develop a linear theory based upon finite deformations.
This has been done, for example, by CoLEMAN and NoLL.?

For brevity we have omitted completely the important discussion of thermo-
dynamics for viscoelastic materials. A sound basis for this theory is presented in
the work of COLEMAN.1® Other work of interest includes that of Bror and ScHA-
PERY! as well as the research concerning free energy, recoverable work, and
related work bounds as exemplified by the articles of Day, BREUER, MARTIN and
PoONTER, and BREUER and ONAT.12 Furthermore, B1o1’s!® well known develop-
ment of the concept of hidden variables has led VALANIS! to an interesting dis-
cussion of the viscoelastic potential function. CoLEMAN and GURTIN!® have
generalized the internal state variables approach in the context of modern
thermodynamics. THURSTON has identified a set of hidden variables as ensemble-
averaged occupation numbers which obey a relaxation type of differential equa-
tion and has subsequently derived, from microscopic concepts, the macroscopic
theory of linear viscoelasticity as the appropriate linearization.

We do not mention the notion of thermorheologically simple materials in the
sense of SCHWARZL and STAVERMAN.1? Although this concept seems quite useful,
especially for experimental investigations, the subject is still in a state of growth
and the reader is referred to the works of LEADERMAN, FERRY, MUKI and STERN-
BERG, and MoRLAND and LEE® for additional information.

Stability analysis for functional differential equations as applied to materials
with memory is still a subject in its infancy. Even at this stage, however, we can
refer to the works of CoLEMAN and MizeL and DAFERMOS,'® who shed some light
on the subject.

Throughout, we have not examined solutions to particular problems in linear
viscoelasticity. This has meant the exclusion of, among others, the general bound-
ary value problem, which includes the contact problem, the problem of ablating
boundaries, numerical techniques, and the effect of boundaries in wave propa-
gation.

Finally, we observe that no precise relationship between the quasi-static
and dynamic theories has yet been revealed.

2. Notation. Vectors, tensors, and linear transformations. The primary source
for notation and basic mathematical notions is the article in the preceding part of
this volume entitled ThLe Linear Theory of Elasticity (LTE) by M. E. GURTIN.
We use the notation in Subchaps. B.I and B.II of LTE virtually without change.
However, we depart from this procedure for Subchap. B.III of LTE (Functions of
position and time) since our requirements in this regard are somewhat different. A/
definitions and notation not explicitly established in this article are established by
GURTIN @ LTE.

® CoLEMAN and NoLL [1961, 2], [1964, 5].

10 CoLEMAN [1964, 4].

" Brot [1958, 3], [1965, 2], SCHAPERY [1962, 201, [1964, 23], [1965, 26].

12 Dav [1970, 2], BREUER [1969, 1], MARTIN and PONTER [1966, 17], BREUER and ONAT
[1963, 1], [1964, 1].

13 Brot [1965, 2].

14 VALANIS [1968, 6].

15 CoLEMAN and GURTIN [1967, 2].

18 THURSTON [1968, 5].

17 ScHwARZL and STAVERMAN [1952, 2].

18 LEADERMAN [1958, 12], Muki and STERNBERG [1961, 5], MORLAND and LEE [1960, 13].

19 CoLEMAN and MIzEL [1968, 2], DaFerMoOS [1970, 1].
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