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Preface

DISC, the International Symposium on DIStributed Computing, is an annual
forum for research presentations on all facets of distributed computing. DISC
2001 was held on Oct 3-5, 2001, in Lisbon, Portugal. This volume includes 23
contributed papers. It is expected that these papers will be submitted in more
polished form to fully refereed scientific journals. The extended abstracts of this
year’s invited lectures, by Gerard LeLann and David Peleg, will appear in next
year’s proceedings.

We received 70 regular submissions. These submissions were read and evalua-
ted by the program committee, with the help of external reviewers when needed.
Overall, the quality of the submissions was excellent, and we were unable to ac-
cept many deserving papers.

This year’s Best Student Paper award goes to Yong-Jik Kim for the paper
“A Time Complexity Bound for Adaptive Mutual Exclusion” by Yong-Jik Kim
and James H. Anderson.

October 2001 Jennifer Welch
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A Time Complexity Bound for Adaptive Mutual
Exclusion*
(Extended Abstract)

Yong-Jik Kim and James H. Anderson

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract. We consider the time complexity of adaptive mutual exclu-
sion algorithms, where “time” is measured by counting the number of
remote memory references required per critical-section access. We estab-
lish a lower bound that precludes a deterministic algorithm with O(log k)
time complexity (in fact, any deterministic o(k) algorithm), where k is
“point contention.” In contrast, we show that expected O(logk) time is
possible using randomization.

1 Introduction

In this paper, we consider the time complexity of adaptive mutual exclusion al-
gorithms. A mutual exclusion algorithm is adaptive if its time complexity is a
function of the number of contending processes [3,6,8,10,11]. Under the time com-
plexity measure considered in this paper, only remote memory references that
cause a traversal of the global processor-to-memory interconnect are counted.
Specifically, we count the number of such references generated by one process p
in a computation that starts when p becomes active (leaves its noncritical sec-
tion) and ends when p once again becomes inactive (returns to its noncritical
section). Unless stated otherwise, we let k£ denote the “point contention” over
such a computation (the point contention over a computation H is the maximum
number of processes that are active at the same state in H [1]). Throughout this
paper, we let N denote the number of processes in the system.

In recent work, we presented an adaptive mutual exclusion algorithm —
henceforth called ALcorITHM AK — with O(min(k,log N)) time complexity
[3]. ALcORITHM AK requires only read/write atomicity and is the only such
algorithm known to us that is adaptive under the remote-memory-references
time complexity measure. In other recent work, we established a worst-case
time bound of £2(log N/ loglog N) for mutual exclusion algorithms (adaptive or
not) based on reads, writes, or comparison primitives such as test-and-set and
compare-and-swap [4]. (A comparison primitive conditionally updates a shared
variable after first testing that its value meets some condition.) This result shows

* Work supported by NSF grants CCR 9732916, CCR 9972211, CCR 9988327, and
ITR 0082866.

J. Welch (Ed.): DISC 2001, LNCS 2180, pp. 1-15, 2001.
(@© Springer-Verlag Berlin Heidelberg 2001



2 Y .-J. Kim and J.H. Anderson

that the O(log N) worst-case time complexity of ALGORITHM AK is close to op-
timal. In fact, we believe it i¢s optimal: we conjecture that 2(log N) is a tight
lower bound for this class of algorithms.

If 2(log N) is a tight lower bound, then presumably a lower bound of 2(log k)
would follow as well. This suggests two interesting possibilities: in all likelihood,
either 2(min(k,log N)) is a tight lower bound (i.e., ALGORITHM AK is optimal),
or it is possible to design an adaptive algorithm with O(log k) time complexity
(i.e., 2(log k) is tight). Indeed, the problem of designing an O(log k) algorithm
using only reads and writes has been mentioned in two recent papers [3,6].

In this paper, we show that an O(log k) algorithm in fact does not exist. In
particular, we prove the following: For any k, there exists some N such that, for
any N -process mutual exclusion algorithm based on reads, writes, or comparison
primitives, a computation exists involving ©(k) processes in which some process
performs (2(k) remote memory references to enter and exit its critical section.

Although this result precludes a deterministic O(logk) algorithm (in fact,
any deterministic o(k) algorithm), we show that a randomized algorithm does
exist with ezpected O(log k) time complexity. This algorithm is obtained through
a simple modification to ALGORITHM AK.

The rest of the paper is organized as follows. In Sec. 2, our system model is
defined. Our lower bound proof is presented in Secs. 3-4. The radomized algo-
rithm mentioned above is sketched in Sec. 5. We conclude in Sec. ?7.

2 Definitions
Our model of a shared-memory system is based on that used in [4,5].

Shared-memory systems. A shared-memory system S = (C, P, V') consists of a set
of computations C, a set of processes P, and a set of variables V. A computation
is a finite sequence of events.

An event e is denoted [R, W, p|, where p € P. The sets R and W consist of
pairs (v, @), where v € V. This notation represents an event of process p that
reads the value « from variable v for each element (v, ) € R, and writes the
value « to variable v for each element (v,a) € W. Each variable in R (or W)
is assumed to be distinct. We define Rvar(e), the set of variables read by e,
to be {v | (v,a) € R}, and Wuar(e), the set of variables written by e, to be
{v | (v,a) € W}. We also define var(e), the set of all variables accessed by e, to
be Rvar(e) U Wuvar(e). We say that this event accesses each variable in var(e),
and that process p is the owner of e, denoted owner(e) = p. For brevity, we
sometimes use e, to denote an event owned by process p.

Each variable is local to at most one process and is remote to all other
processes. (Note that we allow variables that are remote to all processes.) An
initial value is associated with each variable. An event is local if it does not
access any remote variable, and is remote otherwise.

We use (e,...) to denote a computation that begins with the event e, and
() to denote the empty computation. We use H o G to denote the computation
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obtained by concatenating computations H and G. The value of variable v at the
end of computation H, denoted value(v, H), is the last value written to v in H
(or the initial value of v if v is not written in H). The last event to write to v in H
is denoted writer_event(v, H), and its owner is denoted writer(v, H). (Although
our definition of an event allows multiple instances of the same event, we assume
that such instances are distinguishable from each other.) If v is not written by
any event in H, then we let writer(v, H) = L and writer_event(v,H) = L.

For a computation H and a set of processes Y, H |Y denotes the subcom-
putation of H that contains all events in H of processes in Y. Computations
H and G are equivalent with respect to Y iff H|Y = G|Y. A computation H
is a Y-computation ifft H = H|Y. For simplicity, we abbreviate the preceding
definitions when applied to a singleton set of processes. For example, if Y = {p},
then we use H | p to mean H | {p} and p-computation to mean {p}-computation.

The following properties apply to any shared-memory system.

(P1) If H € C and G is a prefix of H, then G € C.

(P2) If Ho(ep,) € C, G e C, G|p= H|p, and if value(v,G) = value(v, H)
holds for all v € Rvar(e,), then G o (e,) € C.

(P3)If Ho(ep) € C,GeC,G|p= H|p, then Go(e,) € C for some event e,
such that Rvar(e;,) = Rvar(e,) and Wuar(e},) = Wuar(ep).

(P4) For any H € C, H o (ep) € C implies that a = value(v, H) holds, for all
(v,a) € R, where e, = [R, W, p].

For notational simplicity, we make the following assumption, which requires
each remote event to be either an atomic read or an atomic write.

Atomicity Assumption: Each event of a process p may either read or write
(but not both) at most one variable that is remote to p. O

As explained later, this assumption actually can be relaxed to allow compar-
ison primitives.

Mutual exclusion systems. We now define a special kind of shared-memory sys-
tem, namely mutual exclusion systems, which are our main interest.

A mutual exclusion system S = (C, P,V) is a shared-memory system that
satisfies the following properties. Each process p € P has a local variable stat,
ranging over {ncs, entry, exit} and initially ncs. stat, is accessed only by the
events Enter, = [{}, {(statp,entry)}, p|, CS, = [{}, {(stat,,exit)}, p], and
Exit, = [{}, {(stat,,ncs)}, p|, and is updated only as follows: for all H € C,

H o (Enter,) € C iff walue(stat,, H) = ncs;
Ho(CS,) € C onlyif value(stat,, H) = entry;
H o (Erit,) € C only if wvalue(stat,, H) = exit.

(Note that stat, transits directly from entry to exit.)

In our proof, we only consider computations in which each process enters
and then exits its critical section at most once. Thus, we henceforth assume that
each computation contains at most one Enter, event for each process p. The
remaining requirements of a mutual exclusion system are as follows.
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Exclusion: For all H € C, if both H o (CS,) € C and H o (CS,;) € C hold,
then p = q.

Progress (starvation freedom): For all H € C, if value(stat,, H) # ncs, then
there exists an X-computation G such that HoGo(e,) € C, where X = {q €
P | value(staty, H) # ncs} and e, is either CS,, (if value(stat,, H) = entry)
or Exit, (if value(stat,, H) = exit). O

Cache-coherent systems. On cache-coherent shared-memory systems, some re-
mote variable accesses may be handled without causing interconnect traffic. Our
lower-bound proof applies to such systems without modification. This is because
we do not count every remote event, but only critical events, as defined below.

Definition 1. Let S = (C,P,V) be a mutual exclusion system. Let e, be an
event in H € C. Then, we can write H as F o (e,) o G, where F' and G are
subcomputations of H. We say that e, is a critical event in H iff one of the
following conditions holds:

State transition event: e, is one of Enter,, CS,, or Exit,.

Critical read: There exists a variable v, remote to p, such that v € Rvar(ep)
and F'|p does not contain a read from v.

Critical write: There exists a variable v, remote to p, such that v € Wuar(ep)
and writer(v, F') # p. O

Note that state transition events do not actually cause cache misses; these
events are defined as critical events because this allows us to combine certain
cases in the proofs that follow. A process executes only three transition events
per critical-section execution, so this does not affect our asymptotic lower bound.

According to Definition 1, a remote read of v by p is critical if it is the first
read of v by p. A remote write of v by p is critical if (i) it is the first write of v by
p (which implies that either writer(v, F') = g # p holds or writer(v,F) = 1L #p
holds); or (ii) some other process has written v since p’s last write of v (which
also implies that writer(v, F') # p holds).

Note that if p both reads and writes v, then both its first read of v and first
write of v are considered critical. Depending on the system implementation, the
latter of these two events might not generate a cache miss. However, even in such
a case, the first such event will always generate a cache miss, and hence at least
half of all such critical reads and writes will actually incur real global traffic.
Hence, our lower bound remains asymptotically unchanged for such systems.

In a write-through cache scheme, writes always generate a cache miss. With
a write-back scheme, a remote write to a variable v may create a cached copy of
v, so that subsequent writes to v do not cause cache misses. In Definition 1, if e,
is not the first write to v by p, then it is considered critical only if writer(v, F) =
q # p holds, which implies that v is stored in the local cache line of another
process q. (Effectively, we are assuming an idealized cache of infinite size: a
cached variable may be updated or invalidated but it is never replaced by another
variable. Note that writer(v, F') = ¢ implies that ¢’s cached copy of v has not
been invalidated.) In such a case, e, must either invalidate or update the cached
copy of v (depending on the system), thereby generating global traffic.
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Note that the definition of a critical event depends on the particular com-
putation that contains the event, specifically the prefix of the computation pre-
ceding the event. Therefore, when saying that an event is (or is not) critical, the
computation containing the event must be specified.

3 Proof Strategy

In Sec. 4, we show that for any positive k, there exists some N such that, for any
mutual exclusion system S = (C, P, V') with |P| > N, there exists a computation
H such that some process p experiences point contention k& and executes at
least k critical events to enter and exit its critical section. The proof focuses
on a special class of computations called “regular” computations. A regular
computation consists of events of two groups of processes, “active processes”
and “finished processes.” Informally, an active process is a process in its entry
section, competing with other active processes; a finished process is a process
that has executed its critical section once, and is in its noncritical section. (These
properties follow from (R4), given later in this section.)

Definition 2. Let S = (C,P,V) be a mutual exclusion system, and H be a
computation in C. We define Act(H), the set of active processes in H, and
Fin(H), the set of finished processes in H, as follows.

Act(H) = {pe P | H|p# () and (Exit,) is not in H}
Fin(H) = {pe P|H|p# () and (Ezit,) is in H} O

The proof proceeds by inductively constructing longer and longer regular
computations, until the desired lower bound is attained. The regularity condi-
tion defined below ensures that no participating process has knowledge of any
other process that is active. This has two consequences: (i) we can “erase” any
active process (i.e., remove its events from the computation) and still get a valid
computation; (ii) “most” active processes have a “next” critical event. In the
definition that follows, (R1) ensures that active processes have no knowledge
of each other; (R2) and (R3) bound the number of possible conflicts caused by
appending a critical event; (R4) ensures that the active and finished processes
behave as explained above; (R5) ensures that the property of being a critical
write is conserved when considering certain related computations.

Definition 3. Let S = (C, P,V) be a mutual exclusion system, and H be a
computation in C. We say that H is regular iff the following conditions hold.

(R1) For any event e, and f, in H, where p # q, if p writes to a variable v,
and if another process q reads that value from v, then p € Fin(H).

(R2) If a process p accesses a variable that is local to another process q, then
q ¢ Act(H).

(R3) For any variable v, if v is accessed by more than one processes in Act(H),
then either writer(v, H) = L or writer(v, H) € Fin(H) holds.
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(R4) For any process p that participates in H (H |p # ()), value(stat,, H) is
entry, if p € Act(H), and ncs otherwise (i.e., p € Fin(H)). Moreover, if
p € Fin(H), then the last event of p in H is Euit,,.

(R5) Consider two events e, and f, such that e, precedes f, in H, both e, and
fp write to a variable v, and f, is a critical write to v in H. In this case,
there exists a write to v by some process v in Fin(H) between e, and f,. O

Proof overview. Initially, we start with a regular computation H,, where Act(H;)
= P, Fin(H,) = {}, and each process has exactly one critical event. We then in-
ductively show that other longer computations exist, the last of which establishes
our lower bound. Each computation is obtained by rolling some process forward
to its noncritical section (NCS) or by erasing some processes — this basic proof
strategy has been used previously to prove several other lower bounds for con-
current systems [2,4,7,12]. We assume that P is large enough to ensure that
enough non-erased processes remain after each induction step for the next step
to be applied. The precise bound on |P| is given in Theorem 2.

At the ;' induction step, we consider a computation Hj such that Act(H;)
consists of n processes that execute j critical events each. We construct a regular
computation Hjy; such that Act(H;;,) consists of 2(y/n/k) processes that
execute j + 1 critical events each. The construction method, formally described
in Lemma 4, is explained below. In constructing H,, from H;, some processes
may be erased and at most one rolled forward. At the end of step k — 1, we have
a regular computation Hy in which each active process executes k critical events
and | Fin(Hy)| < k— 1. Since active processes have no knowledge of each other, a
computation involving at most k processes can be obtained from Hj by erasing
all but one active process; the remaining process performs k critical events.

We now describe how H,; is constructed from H;. We show in Lemma 3
that, among the n processes in Act(H,), at least n — 1 can execute an additional
critical event prior to its critical section. We call these events “future” critical
events, and denote the corresponding set of processes by Y. We consider two
cases, based on the variables remotely accessed by these future critical events.

Erasing strategy. Assume that 2(,/n) distinct variables are remotely accessed
by the future critical events. For each such variable v, we select one process whose
future critical event accesses v, and erase the rest. Let Y’ be the set of selected
processes. We now eliminate any information flow among processes in Y’ by
constructing a “conflict graph” G as follows.

Each process p in Y is considered a vertex in G. By induction, process p has
J critical events in Act(H;) and one future critical event. An edge (p,q), where
p # ¢, is included in G (i) if the future critical event of p remotely accesses a
local variable of process ¢, or (ii) if one of p’s 7 + 1 critical events accesses the
same variable as the future critical event of process ¢.

Since each process in Y’ accesses a distinct remote variable in its future
critical event, it is clear that each process generates at most one edge by rule (i)
and at most j + 1 edges by rule (ii). By applying Turan’s theorem (Theorem 1),
we can find a subset Z of Y’ such that |Z| = 2(\/n/7) and their critical events



