-
O
e
(g
(V)
)
-
il

Jennifer Welch (Ed.)

Distributed
Computing

15th International Conference, DISC 2001
Lisbon, Portugal, October 2001
Proceedings

(%@ Springer

Jennifer Welch (Ed.)
Distributed Computing

15th International Conference, DISC 2001
Lisbon, Portugal, October 3-5, 2001
Proceedings

Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Jennifer Welch

Texas A&M University, Department of Computer Science
College Station, TX 77843-3112, USA

E-mail: welch@cs.tamu.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Distributed computing : 15th international conference ; proceedings / DISC
2001, Lisbon, Portugal, October 3 - 5, 2001. Jennifer Welch (ed.). — Berlin ;
Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ;
Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2180)

ISBN 3-540-42605-1

CR Subject Classification (1998): C.2.4,C.2.2, F2.2,D.1.3,F1, D.4.4-5

ISSN 0302-9743
ISBN 3-540-42605-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN: 10840494 06/3142 543210

Preface

DISC, the International Symposium on DIStributed Computing, is an annual
forum for research presentations on all facets of distributed computing. DISC
2001 was held on Oct 3-5, 2001, in Lisbon, Portugal. This volume includes 23
contributed papers. It is expected that these papers will be submitted in more
polished form to fully refereed scientific journals. The extended abstracts of this
year’s invited lectures, by Gerard LeLann and David Peleg, will appear in next
year’s proceedings.

We received 70 regular submissions. These submissions were read and evalua-
ted by the program committee, with the help of external reviewers when needed.
Overall, the quality of the submissions was excellent, and we were unable to ac-
cept many deserving papers.

This year’s Best Student Paper award goes to Yong-Jik Kim for the paper
“A Time Complexity Bound for Adaptive Mutual Exclusion” by Yong-Jik Kim
and James H. Anderson.

October 2001 Jennifer Welch

Organizing Committee

Chair: Luis Rodrigues (University of Lisbon)
Publicity: Paulo Verissimo (University of Lisbon)
Treasurer: Filipe Aratjo (University of Lisbon)
Web: Alexandre Pinto (University of Lisbon)
Registration: Hugo Miranda (University of Lisbon)

Steering Committee

Faith Fich (U. of Toronto) Michel Raynal (vice-chair) (IRISA)
Maurice Herlihy (Brown U.) André Schiper (chair) (EPF Lausanne)
Prasad Jayanti (Dartmouth) Jennifer Welch (Texas A&M U.)

Shay Kutten (Technion)

Program Committee

Marcos K. Aguilera (Compaq SRC)

Mark Moir (Sun Microsystems Laboratories)
Lorenzo Alvisi (U. Texas, Austin)

Stephane Perennes (CNRS U. de Nice INRIA)
Hagit Attiya (Technion)

Benny Pinkas (STAR Lab, Intertrust Technologies)
Shlomi Dolev (Ben-Gurion U.)

Ulrich Schmid (Technical U., Vienna)

Tamar Eilam (IBM T.J. Watson Research Center)
Philippas Tsigas (Chalmers U.)

Amr El-Abbadi (U. California, Santa Barbara)
Jennifer Welch (chair) (Texas A&M U.)

Panagiota Fatourou (Max-Planck Inst. Informatik)
Pierre Wolper (U. Liege)

John Mellor-Crummey (Rice U.)

VIII Organization

Outside Referees

Adnan Agbaria
Fred Annexstein
Ken Arnold
Joshua Auerbach
Zvi Avidor
Sumeer Bhola
Vita Bortnikov
B. Charron-Bost
Wei Chen

Murat Demirbas
J. Durand-Lose
Shimon Even
Alan Fekete
Guillaume Fertin
Faith Fich

Arie Fouren

Roy Friedman
Eli Gafni

Juan Garay

Cyril Gavoille
German Goldszmidt
Abhishek Gupta
Indranil Gupta
Vassos Hadzilacos
Maurice Herlihy

S. T. Huang
Colette Johnen
Michael Kalantar
Idit Keidar

Roger Khazan

Ami Litman

Keith Marzullo
Marios Mavronicolas
Giovanna Melideo
Mikhail Nesterenko
Ronit Nosenson

Rafail Ostrovsky
M. Paramasivam
Boaz Patt-Shamir
Andrzej Pelc

Eric Ruppert
André Schiper
Peter Sewell

Nir Shavit

Alex Shvartsman
Cormac J. Sreenan
Rob Strom

Tami Tamir
Mark Tuttle

John Valois
Roman Vitenberg
Avishai Wool

Lecture Notes in Computer Science

For information about Vols. 1-2091

please contact your bookseller or Springer-Verlag

Vol. 2092: L. Wolf, D. Hutchison, R. Steinmetz (Eds.),
Quality of Service — IWQoS 2001. Proceedings, 2001.
XII, 435 pages. 2001.

Vol. 2093: P. Lorenz (Ed.), Networking — ICN 2001. Pro-
ceedings, 2001. Part I. XXV, 843 pages. 2001.

Vol. 2094: P. Lorenz (Ed.), Networking — ICN 2001. Pro-
ceedings, 2001. Part II. XXV, 899 pages. 2001.

Vol. 2095: B. Schiele, G. Sagerer (Eds.), Computer Vi-
sion Systems. Proceedings, 2001. X, 313 pages. 2001.
Vol. 2096: J. Kittler, F. Roli (Eds.), Multiple Classifier
Systems. Proceedings, 2001. XII, 456 pages. 2001.

Vol. 2097: B. Read (Ed.), Advances in Databases. Pro-
ceedings, 2001. X, 219 pages. 2001.

Vol. 2098: J. Akiyama, M. Kano, M. Urabe (Eds.), Dis-
crete and Computational Geometry. Proceedings, 2000.
X1, 381 pages. 2001.

Vol. 2099: P. de Groote, G. Morrill, C. Retoré (Eds.),
Logical Aspects of Computational Linguistics. Proceed-
ings, 2001. VIII, 311 pages. 2001. (Subseries LNAI).
Vol. 2100: R. Kiisters, Non-Standard Inferences in De-
scription Logocs. X, 250 pages. 2001. (Subseries LNAI).
Vol. 2101: S. Quaglini, P. Barahona, S. Andreassen (Eds.),
Artificial Intelligence in Medicine. Proceedings, 2001.
XIV, 469 pages. 2001. (Subseries LNAI).

Vol. 2102: G. Berry, H. Comon, A. Finkel (Eds.), Com-
puter-Aided Verification. Proceedings, 2001. XIII, 520
pages. 2001.

Vol. 2103: M. Hannebauer, J. Wendler, E. Pagello (Eds.).
Balancing Reactivity and Social Deliberation in Multi-
Agent Systems. VIII, 237 pages. 2001. (Subseries LNAI).
Vol. 2104: R. Eigenmann, M.J. Voss (Eds.), OpenMP
Shared Memory Parallel Programming. Proceedings,
2001. X, 185 pages. 2001.

Vol. 2105: W. Kim, T.-W. Ling, Y-J. Lee, S.-S. Park
(Eds.), The Human Society and the Internet. Proceedings,
2001. XVI, 470 pages. 2001.

Vol. 2106: M. Kerckhove (Ed.), Scale-Space and Mor-
phology in Computer Vision. Proceedings, 2001. XI, 435
pages. 2001.

Vol. 2107: E.T. Chong, C. Kozyrakis, M. Oskin (Eds.),
Intelligent Memory Systems. Proceedings, 2000. VIII, 193
pages. 2001.

Vol. 2108: J. Wang (Ed.), Computing and Combinatorics.
Proceedings, 2001. XIII, 602 pages. 2001.

Vol. 2109: M. Bauer, P.J. Gymtrasiewicz, J. Vassileva
(Eds.), User Modelind 2001. Proceedings, 2001. XIII, 318
pages. 2001. (Subseries LNAI).

Vol. 2110: B. Hertzberger, A. Hoekstra, R. Williams
(Eds.), High-Performance Computing and Networking.
Proceedings, 2001. XVII, 733 pages. 2001.

Vol. 2111: D. Helmbold, B. Williamson (Eds.), Compu-
tational Learning Theory. Proceedings, 2001. IX, 631
pages. 2001. (Subseries LNAI).

Vol. 2116: V. Akman, P. Bouquet, R. Thomason, R.A.
Young (Eds.), Modeling and Using Context. Proceedings.
2001. XII, 472 pages. 2001. (Subseries LNAI).

Vol. 2117: M. Beynon, C.L. Nehaniv, K. Dautenhahn
(Eds.), Cognitive Technology: Instruments of Mind. Pro-
ceedings, 2001. XV, 522 pages. 2001. (Subseries LNAI).

Vol. 2118: X.S. Wang, G. Yu, H. Lu (Eds.), Advances in
Web-Age Information Management. Proceedings, 2001.
XV, 418 pages. 2001.

Vol. 2119: V. Varadharajan, Y. Mu (Eds.), Information
Security and Privacy. Proceedings, 2001. XI, 522 pages.
2001.

Vol. 2120: H.S. Delugach, G. Stumme (Eds.), Concep-
tual Structures: Broadening the Base. Proceedings, 2001.
X, 377 pages. 2001. (Subseries LNAI).

Vol. 2121: C.S. Jensen, M. Schneider, B. Seeger, V.J.
Tsotras (Eds.), Advances in Spatial and Temporal
Databases. Proceedings, 2001. XI, 543 pages. 2001.

Vol. 2123: P. Perner (Ed.), Machine Learning and Data
Mining in Pattern Recognition. Proceedings, 2001. XI,
363 pages. 2001. (Subseries LNAI).

Vol. 2124: W. Skarbek (Ed.), Computer Analysis of Im-
ages and Patterns. Proceedings, 2001. XV, 743 pages.
2001.

Vol. 2125: F. Dehne, J.-R. Sack, R. Tamassia (Eds.), Al-
gorithms and Data Structures. Proceedings, 2001. XII, 484
pages. 2001.

Vol. 2126: P. Cousot (Ed.), Static Analysis. Proceedings,
2001. XI, 439 pages. 2001.

Vol. 2127: V. Malyshkin (Ed.), Parallel Computing Tech-
nologies. Proceedings, 2001. XII, 516 pages. 2001.

Vol. 2129: M. Goemans, K. Jansen, J.D.P. Rolim, L.
Trevisan (Eds.), Approximation, Randomization, and
Combinatorial Optimization. Proceedings, 2001. I1X, 297
pages. 2001.

Vol. 2130: G. Dorffner, H. Bischof, K. Hornik (Eds.),
Artificial Neural Networks — ICANN 2001. Proceedings,
2001. XXII, 1259 pages. 2001.

Vol. 2132: S.-T. Yuan, M. Yokoo (Eds.), Intelligent
Agents. Specification. Modeling, and Application. Pro-
ceedings, 2001. X, 237 pages. 2001. (Subseries LNAI).
Vol. 2133: B. Christianson, B. Crispo, J.A. Malcolm, M.
Roe (Eds.), Security Protocols. Proceedings, 2001. VIII,
257 pages. 2001.

Vol. 2134: M. Figueiredo, J. Zerubia, A K. Jain (Eds.),
Energy Minimization Methods in Computer Vision and
Pattern Recognition. Proceedings, 2001. X, 652 pages.
2001.

Vol. 2136: J. Sgall, A. Pultr, P. Kolman (Eds.), Math-
ematical Foundations of Computer Science 2001. Pro-
ceedings, 2001. XII, 716 pages. 2001.

Vol. 2138: R. Freivalds (Ed.), Fundamentals of Compu-
tation Theory. Proceedings, 2001. XIII, 542 pages. 2001.

Vol. 2139: J. Kilian (Ed.), Advances in Cryptology —
CRYPTO 2001. Proceedings, 2001. XI, 599 pages. 2001.
Vol. 2141: G.S. Brodal, D. Frigioni, A. Marchetti-

Spaccamela (Eds.), Algorithm Engineering. Proceedings,
2001. X, 199 pages. 2001.

Vol. 2142: L. Fribourg (Ed.), Computer Science Logic.
Proceedings, 2001. XII, 615 pages. 2001.

Vol. 2143: S. Benferhat, P. Besnard (Eds.), Symbolic and
Quantitative Approaches to Reasoning with Uncertainty.
Proceedings. 2001. XIV, 818 pages. 2001. (Subseries
LNAI).

Vol. 2144: T. Margaria, T. Melham (Eds.). Correct Hard-
ware Design and Verification Methods. Proceedings,
2001. XTI, 482 pages. 2001.

Vol. 2146: J.H. Silverman (Eds.), Cryptography and Lat-
tices. Proceedings, 2001. VII, 219 pages. 2001.

Vol. 2147: G. Brebner, R. Woods (Eds.), Field-Program-
mable Logic and Applications. Proceedings, 2001. XV,
665 pages. 2001.

Vol. 2149: O. Gascuel, B.M.E. Moret (Eds.), Algorithms
in Bioinformatics. Proceedings, 2001. X, 307 pages. 2001.
Vol. 2150: R. Sakellariou, J. Keane, J. Gurd, L. Freeman
(Eds.), Euro-Par 2001 Parallel Processing. Proceedings,
2001. XXX, 943 pages. 2001.

Vol. 2151: A. Caplinskas, J. Eder (Eds.), Advances in
Databases and Information Systems. Proceedings, 2001.
XIII, 381 pages. 2001.

Vol. 2152: R.J. Boulton, P.B. Jackson (Eds.), Theorem
Proving in Higher Order Logics. Proceedings, 2001. X,
395 pages. 2001.

Vol. 2153: A.L. Buchsbaum, J. Snoeyink (Eds.), Algo-
rithm Engineering and Experimentation. Proceedings,
2001. VIII, 231 pages. 2001.

Vol. 2154: K.G. Larsen, M. Nielsen (Eds.), CONCUR
2001 — Concurrency Theory. Proceedings, 2001. XI, 583
pages. 2001.

Vol. 2157: C. Rouveirol, M. Sebag (Eds.), Inductive Logic
Programming. Proceedings, 2001. X, 261 pages. 2001.
(Subseries LNAI).

Vol. 2158: D. Shepherd, J. Finney, L. Mathy, N. Race
(Eds.), Interactive Distributed Multimedia Systems. Pro-
ceedings, 2001. XIII, 258 pages. 2001.

Vol. 2159: J. Kelemen, P. Sosik (Eds.), Advances in Ar-
tificial Life. Proceedings, 2001. XIX, 724 pages. 2001.
(Subseries LNAI).

Vol. 2161: F. Meyer auf der Heide (Ed.), Algorithms —
ESA 2001. Proceedings, 2001. XII, 538 pages. 2001.
Vol. 2162: C. K. Kog, D. Naccache, C. Paar (Eds.),
Cryptographic Hardware and Embedded Systems - CHES
2001. Proceedings, 2001. XIV, 411 pages. 2001.

Vol. 2164: S. Pierre, R. Glitho (Eds.), Mobile Agents for
Telecommunication Applications. Proceedings, 2001. XI,
292 pages. 2001.

Vol. 2165: L. de Alfaro, S. Gilmore (Eds.), Process Alge-
bra and Probabilistic Methods. Proceedings, 2001. XII,
217 pages. 2001.

Vol. 2166: V. Matousek, P. Mautner, R. Moucek, K.
Tauser (Eds.), Text, Speech and Dialogue. Proceedings,
2001. XIII, 452 pages. 2001. (Subseries LNAT),

Vol. 2167: L. De Raedt, P. Flach (Eds.), Machine Learn-
ing: ECML 2001. Proceedings, 2001. XVII, 618 pages.
2001. (Subseries LNAI).

Vol. 2168: L. De Raedt, A. Siebes (Eds.), Principles of
Data Mining and Knowledge Discovery. Proceedings,
2001. XVII, 510 pages. 2001. (Subseries LNAI).

Vol. 2170: S. Palazzo (Ed.), Evolutionary Trends of the
Internet. Proceedings, 2001. XIII, 722 pages. 2001.

Vol. 2172: C. Batini, F. Giunchiglia, P. Giorgini, M.
Mecella (Eds.), Cooperative Information Systems. Pro-
ceedings, 2001. XI, 450 pages. 2001.

Vol. 2174: F. Baader, G. Brewka, T. Eiter (Eds.), KI 2001:
Advances in Artificial Intelligence. Proceedings, 2001.
XIII, 471 pages. 2001. (Subseries LNAI).

Vol. 2175: F. Esposito (Ed.), AT*IA 2001: Advances in
Artificial Intelligence. Proceedings, 2001. XII, 396 pages.
2001. (Subseries LNAI).

Vol. 2176: K.-D. Althoff, R.L. Feldmann, W. Miiller
(Eds.), Advances in Learning Software Organizations.
Proceedings, 2001. X1, 241 pages. 2001.

Vol. 2177: G. Butler, S. Jarzabek (Eds.), Generative and
Component-Based Software Engineering. Proceedings,
2001. X, 203 pages. 2001.

Vol. 2180: J. Welch (Ed.), Distributed Computing. Pro-
ceedings, 2001. X, 343 pages. 2001.

Vol. 2181: C. Y. Westort (Ed.), Digital Earth Moving.
Proceedings, 2001. XII, 117 pages. 2001.

Vol. 2182: M. Klusch, F. Zambonelli (Eds.), Cooperative
Information Agents V. Proceedings, 2001. XII, 288 pages.
2001. (Subseries LNAI).

Vol. 2184: M. Tucci (Ed.), Multimedia Databases and
Image Communication. Proceedings, 2001. X, 225 pages.
2001.

Vol. 2186: J. Bosch (Ed.), Generative and Component-
Based Software Engineering. Proceedings, 2001. VIII, 177
pages. 2001.

Vol. 2188: F. Bomarius, S. Komi-Sirvié (Eds.), Product
Focused Software Process Improvement. Proceedings,
2001. XI, 382 pages. 2001.

Vol. 2189: F. Hoffmann, D.J. Hand, N. Adams, D. Fisher,
G. Guimaraes (Eds.), Advances in Intelligent Data Analy-
sis. Proceedings, 2001. XII, 384 pages. 2001.

Vol. 2190: A. de Antonio, R. Aylett, D. Ballin (Eds.),
Intelligent Virtual Agents. Proceedings, 2001. VIII, 245
pages. 2001. (Subseries LNAI).

Vol. 2191: B. Radig, S. Florczyk (Eds.), Pattern Recog-
nition. Proceedings, 2001. XVI, 452 pages. 2001.

Vol. 2193: F. Casati, D. Georgakopoulos, M.-C. Shan
(Eds.), Technologies for E-Services. Proceedings, 2001.
X, 213 pages. 2001.

Vol. 2196: W. Taha (Ed.), Semantics, Applications, and
Implementation of Program Generation. Proceedings,
2001. X, 219 pages. 2001.

Aguilera, M.K. 108
Alonso, G. 93
Anderson, J.H. 1
Arévalo, S. 93

Barriere, L. 270
Boldi, P. 33

Chatzigiannakis, I. 285

Delporte-Gallet, C. 108
Dobrev, S. 166
Douceur, J.R. 48
Duflot, M. 240

Fatourou, P. 330
Fauconnier, H. 108
Fich, F.E. 224
Flocchini, P. 166
Fraigniaud, P. 270
Fribourg, L. 240
Fujiwara, H. 123

Garg, VK. 78
Georgiou, C. 151

Harris, T.L. 300
Herlihy, M. 136, 209, 330
Herman, T. 315
Higham, L. 194
Hoepman, J.-H. 180

Inoue, M. 123
Jiménez-Peris, R. 93

Johnen, C. 224
Joung, Y.-J. 16

Author Index

Kim, Y.-J. 1
Kranakis, E. 270
Krizanc, D. 270

Liang, Z. 194

Malkhi, D. 63
Masuzawa, T. 123,315
Mittal, N. 78

Nikoletseas, S. 285

Patino-Martinez, M. 93
Pavlov, E. 63

Peleg, D. 255
Picaronny, C. 240
Pincas, U. 255
Prencipe, G. 166

Rajsbaum, S. 136
Russell, A. 151

Santoro, N. 166
Sella, Y. 63
Shvartsman, A.A. 151
Spirakis, P. 285
Tirthapura, S. 209
Toueg, S. 108

Tuttle, M. 136
Umetani, S. 123
Vigna, S. 33

Wattenhofer, R.P. 48

Table of Contents

A Time Complexity Bound for Adaptive Mutual Exclusion 1
Y.-J. Kim and J.H. Anderson

Quorum-Based Algorithms for Group Mutual Exclusion................. 16
Y.-J. Joung

An Effective Characterization of Computability
in Anonymous Networks 33
P. Boldi and S. Vigna

Competitive Hill-Climbing Strategies for Replica Placement
in a Distributed File System..............., 48
J.R. Douceur and R.P. Wattenhofer

Optimal Unconditional Information Diffusion 63
D. Malkhi, E. Pavlov, and Y. Sella

Computation Slicing: Techniques and Theory 78
N. Mittal and V.K. Garg

A Low-Latency Non-blocking Commit Service 93
R. Jiménez-Peris, M. Patino-Martinez, G. Alonso, and S. Arévalo

Stable Leader Election. 108
M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg

Adaptive Long-Lived O(k?)-Renaming with O(k?) Steps 123
M. Inoue, S. Umetani, T. Masuzawa, and H. Fujiwara

A New Synchronous Lower Bound for Set Agreement 136
M. Herlihy, S. Rajsbaum, and M. Tuttle

The Complexity of Synchronous Iterative Do-All with Crashes........... 151
C. Georgiou, A. Russell, and A.A. Shvartsman

Mobile Search for a Black Hole in an Anonymous Ring 166
S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro

Randomised Mutual Search for k > 2 Agents 180
J.-H. Hoepman

Self-Stabilizing Minimum Spanning Tree Construction
on Message-Passing Networks. i 194
L. Higham and Z. Liang

X Table of Contents

Self Stabilizing Distributed Queuing 209
M. Herlihy and S. Tirthapura

A Space Optimal, Deterministic, Self-Stabilizing, Leader Election
Algorithm for Unidirectional Rings 224
F.E. Fich and C. Johnen

Randomized Finite-State Distributed Algorithms as Markov Chains 240
M. Duflot, L. Fribourg, and C. Picaronny

The Average Hop Count Measure for Virtual Path Layouts.............. 255
D. Peleg and U. Pincas

Efficient Routing in Networks with Long Range Contacts 270
L. Barriére, P. Fraigniaud, E. Kranakis, and D. Krizanc

An Efficient Communication Strategy for Ad-hoc Mobile Networks 285
1. Chatzigiannakis, S. Nikoletseas, and P. Spirakis

A Pragmatic Implementation of Non-blocking Linked-Lists 300
T.L. Harris

Stabilizing Replicated Search Trees.......... ... i, 315

T. Herman and T. Masuzawa

Adding Networks 330
P. Fatourou and M. Herlihy

Author Index e 343

A Time Complexity Bound for Adaptive Mutual
Exclusion*
(Extended Abstract)

Yong-Jik Kim and James H. Anderson

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract. We consider the time complexity of adaptive mutual exclu-
sion algorithms, where “time” is measured by counting the number of
remote memory references required per critical-section access. We estab-
lish a lower bound that precludes a deterministic algorithm with O(log k)
time complexity (in fact, any deterministic o(k) algorithm), where k is
“point contention.” In contrast, we show that expected O(logk) time is
possible using randomization.

1 Introduction

In this paper, we consider the time complexity of adaptive mutual exclusion al-
gorithms. A mutual exclusion algorithm is adaptive if its time complexity is a
function of the number of contending processes [3,6,8,10,11]. Under the time com-
plexity measure considered in this paper, only remote memory references that
cause a traversal of the global processor-to-memory interconnect are counted.
Specifically, we count the number of such references generated by one process p
in a computation that starts when p becomes active (leaves its noncritical sec-
tion) and ends when p once again becomes inactive (returns to its noncritical
section). Unless stated otherwise, we let k£ denote the “point contention” over
such a computation (the point contention over a computation H is the maximum
number of processes that are active at the same state in H [1]). Throughout this
paper, we let N denote the number of processes in the system.

In recent work, we presented an adaptive mutual exclusion algorithm —
henceforth called ALcorITHM AK — with O(min(k,log N)) time complexity
[3]. ALcORITHM AK requires only read/write atomicity and is the only such
algorithm known to us that is adaptive under the remote-memory-references
time complexity measure. In other recent work, we established a worst-case
time bound of £2(log N/ loglog N) for mutual exclusion algorithms (adaptive or
not) based on reads, writes, or comparison primitives such as test-and-set and
compare-and-swap [4]. (A comparison primitive conditionally updates a shared
variable after first testing that its value meets some condition.) This result shows

* Work supported by NSF grants CCR 9732916, CCR 9972211, CCR 9988327, and
ITR 0082866.

J. Welch (Ed.): DISC 2001, LNCS 2180, pp. 1-15, 2001.
(@© Springer-Verlag Berlin Heidelberg 2001

2 Y .-J. Kim and J.H. Anderson

that the O(log N) worst-case time complexity of ALGORITHM AK is close to op-
timal. In fact, we believe it i¢s optimal: we conjecture that 2(log N) is a tight
lower bound for this class of algorithms.

If 2(log N) is a tight lower bound, then presumably a lower bound of 2(log k)
would follow as well. This suggests two interesting possibilities: in all likelihood,
either 2(min(k,log N)) is a tight lower bound (i.e., ALGORITHM AK is optimal),
or it is possible to design an adaptive algorithm with O(log k) time complexity
(i.e., 2(log k) is tight). Indeed, the problem of designing an O(log k) algorithm
using only reads and writes has been mentioned in two recent papers [3,6].

In this paper, we show that an O(log k) algorithm in fact does not exist. In
particular, we prove the following: For any k, there exists some N such that, for
any N -process mutual exclusion algorithm based on reads, writes, or comparison
primitives, a computation exists involving ©(k) processes in which some process
performs (2(k) remote memory references to enter and exit its critical section.

Although this result precludes a deterministic O(logk) algorithm (in fact,
any deterministic o(k) algorithm), we show that a randomized algorithm does
exist with ezpected O(log k) time complexity. This algorithm is obtained through
a simple modification to ALGORITHM AK.

The rest of the paper is organized as follows. In Sec. 2, our system model is
defined. Our lower bound proof is presented in Secs. 3-4. The radomized algo-
rithm mentioned above is sketched in Sec. 5. We conclude in Sec. ?7.

2 Definitions
Our model of a shared-memory system is based on that used in [4,5].

Shared-memory systems. A shared-memory system S = (C, P, V') consists of a set
of computations C, a set of processes P, and a set of variables V. A computation
is a finite sequence of events.

An event e is denoted [R, W, p|, where p € P. The sets R and W consist of
pairs (v, @), where v € V. This notation represents an event of process p that
reads the value « from variable v for each element (v,) € R, and writes the
value « to variable v for each element (v,a) € W. Each variable in R (or W)
is assumed to be distinct. We define Rvar(e), the set of variables read by e,
to be {v | (v,a) € R}, and Wuar(e), the set of variables written by e, to be
{v | (v,a) € W}. We also define var(e), the set of all variables accessed by e, to
be Rvar(e) U Wuvar(e). We say that this event accesses each variable in var(e),
and that process p is the owner of e, denoted owner(e) = p. For brevity, we
sometimes use e, to denote an event owned by process p.

Each variable is local to at most one process and is remote to all other
processes. (Note that we allow variables that are remote to all processes.) An
initial value is associated with each variable. An event is local if it does not
access any remote variable, and is remote otherwise.

We use (e,...) to denote a computation that begins with the event e, and
() to denote the empty computation. We use H o G to denote the computation

A Time Complexity Bound for Adaptive Mutual Exclusion 3

obtained by concatenating computations H and G. The value of variable v at the
end of computation H, denoted value(v, H), is the last value written to v in H
(or the initial value of v if v is not written in H). The last event to write to v in H
is denoted writer_event(v, H), and its owner is denoted writer(v, H). (Although
our definition of an event allows multiple instances of the same event, we assume
that such instances are distinguishable from each other.) If v is not written by
any event in H, then we let writer(v, H) = L and writer_event(v,H) = L.

For a computation H and a set of processes Y, H |Y denotes the subcom-
putation of H that contains all events in H of processes in Y. Computations
H and G are equivalent with respect to Y iff H|Y = G|Y. A computation H
is a Y-computation ifft H = H|Y. For simplicity, we abbreviate the preceding
definitions when applied to a singleton set of processes. For example, if Y = {p},
then we use H | p to mean H | {p} and p-computation to mean {p}-computation.

The following properties apply to any shared-memory system.

(P1) If H € C and G is a prefix of H, then G € C.

(P2) If Ho(ep,) € C, G e C, G|p= H|p, and if value(v,G) = value(v, H)
holds for all v € Rvar(e,), then G o (e,) € C.

(P3)If Ho(ep) € C,GeC,G|p= H|p, then Go(e,) € C for some event e,
such that Rvar(e;,) = Rvar(e,) and Wuar(e},) = Wuar(ep).

(P4) For any H € C, H o (ep) € C implies that a = value(v, H) holds, for all
(v,a) € R, where e, = [R, W, p].

For notational simplicity, we make the following assumption, which requires
each remote event to be either an atomic read or an atomic write.

Atomicity Assumption: Each event of a process p may either read or write
(but not both) at most one variable that is remote to p. O

As explained later, this assumption actually can be relaxed to allow compar-
ison primitives.

Mutual exclusion systems. We now define a special kind of shared-memory sys-
tem, namely mutual exclusion systems, which are our main interest.

A mutual exclusion system S = (C, P,V) is a shared-memory system that
satisfies the following properties. Each process p € P has a local variable stat,
ranging over {ncs, entry, exit} and initially ncs. stat, is accessed only by the
events Enter, = [{}, {(statp,entry)}, p|, CS, = [{}, {(stat,,exit)}, p], and
Exit, = [{}, {(stat,,ncs)}, p|, and is updated only as follows: for all H € C,

H o (Enter,) € C iff walue(stat,, H) = ncs;
Ho(CS,) € C onlyif value(stat,, H) = entry;
H o (Erit,) € C only if wvalue(stat,, H) = exit.

(Note that stat, transits directly from entry to exit.)

In our proof, we only consider computations in which each process enters
and then exits its critical section at most once. Thus, we henceforth assume that
each computation contains at most one Enter, event for each process p. The
remaining requirements of a mutual exclusion system are as follows.

4 Y .-J. Kim and J.H. Anderson

Exclusion: For all H € C, if both H o (CS,) € C and H o (CS,;) € C hold,
then p = q.

Progress (starvation freedom): For all H € C, if value(stat,, H) # ncs, then
there exists an X-computation G such that HoGo(e,) € C, where X = {q €
P | value(staty, H) # ncs} and e, is either CS,, (if value(stat,, H) = entry)
or Exit, (if value(stat,, H) = exit). O

Cache-coherent systems. On cache-coherent shared-memory systems, some re-
mote variable accesses may be handled without causing interconnect traffic. Our
lower-bound proof applies to such systems without modification. This is because
we do not count every remote event, but only critical events, as defined below.

Definition 1. Let S = (C,P,V) be a mutual exclusion system. Let e, be an
event in H € C. Then, we can write H as F o (e,) o G, where F' and G are
subcomputations of H. We say that e, is a critical event in H iff one of the
following conditions holds:

State transition event: e, is one of Enter,, CS,, or Exit,.

Critical read: There exists a variable v, remote to p, such that v € Rvar(ep)
and F'|p does not contain a read from v.

Critical write: There exists a variable v, remote to p, such that v € Wuar(ep)
and writer(v, F') # p. O

Note that state transition events do not actually cause cache misses; these
events are defined as critical events because this allows us to combine certain
cases in the proofs that follow. A process executes only three transition events
per critical-section execution, so this does not affect our asymptotic lower bound.

According to Definition 1, a remote read of v by p is critical if it is the first
read of v by p. A remote write of v by p is critical if (i) it is the first write of v by
p (which implies that either writer(v, F') = g # p holds or writer(v,F) = 1L #p
holds); or (ii) some other process has written v since p’s last write of v (which
also implies that writer(v, F') # p holds).

Note that if p both reads and writes v, then both its first read of v and first
write of v are considered critical. Depending on the system implementation, the
latter of these two events might not generate a cache miss. However, even in such
a case, the first such event will always generate a cache miss, and hence at least
half of all such critical reads and writes will actually incur real global traffic.
Hence, our lower bound remains asymptotically unchanged for such systems.

In a write-through cache scheme, writes always generate a cache miss. With
a write-back scheme, a remote write to a variable v may create a cached copy of
v, so that subsequent writes to v do not cause cache misses. In Definition 1, if e,
is not the first write to v by p, then it is considered critical only if writer(v, F) =
q # p holds, which implies that v is stored in the local cache line of another
process q. (Effectively, we are assuming an idealized cache of infinite size: a
cached variable may be updated or invalidated but it is never replaced by another
variable. Note that writer(v, F') = ¢ implies that ¢’s cached copy of v has not
been invalidated.) In such a case, e, must either invalidate or update the cached
copy of v (depending on the system), thereby generating global traffic.

A Time Complexity Bound for Adaptive Mutual Exclusion 5

Note that the definition of a critical event depends on the particular com-
putation that contains the event, specifically the prefix of the computation pre-
ceding the event. Therefore, when saying that an event is (or is not) critical, the
computation containing the event must be specified.

3 Proof Strategy

In Sec. 4, we show that for any positive k, there exists some N such that, for any
mutual exclusion system S = (C, P, V') with |P| > N, there exists a computation
H such that some process p experiences point contention k& and executes at
least k critical events to enter and exit its critical section. The proof focuses
on a special class of computations called “regular” computations. A regular
computation consists of events of two groups of processes, “active processes”
and “finished processes.” Informally, an active process is a process in its entry
section, competing with other active processes; a finished process is a process
that has executed its critical section once, and is in its noncritical section. (These
properties follow from (R4), given later in this section.)

Definition 2. Let S = (C,P,V) be a mutual exclusion system, and H be a
computation in C. We define Act(H), the set of active processes in H, and
Fin(H), the set of finished processes in H, as follows.

Act(H) = {pe P | H|p# () and (Exit,) is not in H}
Fin(H) = {pe P|H|p# () and (Ezit,) is in H} O

The proof proceeds by inductively constructing longer and longer regular
computations, until the desired lower bound is attained. The regularity condi-
tion defined below ensures that no participating process has knowledge of any
other process that is active. This has two consequences: (i) we can “erase” any
active process (i.e., remove its events from the computation) and still get a valid
computation; (ii) “most” active processes have a “next” critical event. In the
definition that follows, (R1) ensures that active processes have no knowledge
of each other; (R2) and (R3) bound the number of possible conflicts caused by
appending a critical event; (R4) ensures that the active and finished processes
behave as explained above; (R5) ensures that the property of being a critical
write is conserved when considering certain related computations.

Definition 3. Let S = (C, P,V) be a mutual exclusion system, and H be a
computation in C. We say that H is regular iff the following conditions hold.

(R1) For any event e, and f, in H, where p # q, if p writes to a variable v,
and if another process q reads that value from v, then p € Fin(H).

(R2) If a process p accesses a variable that is local to another process q, then
q ¢ Act(H).

(R3) For any variable v, if v is accessed by more than one processes in Act(H),
then either writer(v, H) = L or writer(v, H) € Fin(H) holds.

6 Y .-J. Kim and J.H. Anderson

(R4) For any process p that participates in H (H |p # ()), value(stat,, H) is
entry, if p € Act(H), and ncs otherwise (i.e., p € Fin(H)). Moreover, if
p € Fin(H), then the last event of p in H is Euit,,.

(R5) Consider two events e, and f, such that e, precedes f, in H, both e, and
fp write to a variable v, and f, is a critical write to v in H. In this case,
there exists a write to v by some process v in Fin(H) between e, and f,. O

Proof overview. Initially, we start with a regular computation H,, where Act(H;)
= P, Fin(H,) = {}, and each process has exactly one critical event. We then in-
ductively show that other longer computations exist, the last of which establishes
our lower bound. Each computation is obtained by rolling some process forward
to its noncritical section (NCS) or by erasing some processes — this basic proof
strategy has been used previously to prove several other lower bounds for con-
current systems [2,4,7,12]. We assume that P is large enough to ensure that
enough non-erased processes remain after each induction step for the next step
to be applied. The precise bound on |P| is given in Theorem 2.

At the ;' induction step, we consider a computation Hj such that Act(H;)
consists of n processes that execute j critical events each. We construct a regular
computation Hjy; such that Act(H;;,) consists of 2(y/n/k) processes that
execute j + 1 critical events each. The construction method, formally described
in Lemma 4, is explained below. In constructing H,, from H;, some processes
may be erased and at most one rolled forward. At the end of step k — 1, we have
a regular computation Hy in which each active process executes k critical events
and | Fin(Hy)| < k— 1. Since active processes have no knowledge of each other, a
computation involving at most k processes can be obtained from Hj by erasing
all but one active process; the remaining process performs k critical events.

We now describe how H,; is constructed from H;. We show in Lemma 3
that, among the n processes in Act(H,), at least n — 1 can execute an additional
critical event prior to its critical section. We call these events “future” critical
events, and denote the corresponding set of processes by Y. We consider two
cases, based on the variables remotely accessed by these future critical events.

Erasing strategy. Assume that 2(,/n) distinct variables are remotely accessed
by the future critical events. For each such variable v, we select one process whose
future critical event accesses v, and erase the rest. Let Y’ be the set of selected
processes. We now eliminate any information flow among processes in Y’ by
constructing a “conflict graph” G as follows.

Each process p in Y is considered a vertex in G. By induction, process p has
J critical events in Act(H;) and one future critical event. An edge (p,q), where
p # ¢, is included in G (i) if the future critical event of p remotely accesses a
local variable of process ¢, or (ii) if one of p’s 7 + 1 critical events accesses the
same variable as the future critical event of process ¢.

Since each process in Y’ accesses a distinct remote variable in its future
critical event, it is clear that each process generates at most one edge by rule (i)
and at most j + 1 edges by rule (ii). By applying Turan’s theorem (Theorem 1),
we can find a subset Z of Y’ such that |Z| = 2(\/n/7) and their critical events

