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preface

This book presents a first course in calculus and analytic geometry. The author has
tried to write it in a simple and straightforward style, with ample explanations, an
abundance of illystrative examples, and carefully graded exercise sets, so that it will
be unusually suitable for a reader of average ability to study alone or with minimum
help from a teacher. There is enough material for three semesters.

Starting with simple first principles, each new concept is motivated by a natural,
intuitive introduction. Seven basic concepts are stressed: function, limit of a func-
tion, continuity, derivative, antiderivative, definite integral, and infinite series. Effort
is made to impress on the reader that a mastery of these ideas is indispensable in
acquiring a genuine understanding of calculus.

At the same time, there is an abundance of material dealing with the degree of
accuracy of computed results and with other aspects of the computational work that
is so important for progress in science and technology.

Since €, 6 methods are necessary for a proper definition of the limit of a function,
a very thorough treatment of inequalities and absolute values precedes it. However,
the use of €, d methods is minimized in later work by utilizing limit theorems wherever
possible.

Set notation is introduced early. It is employed when clearly advantageous, but
not slavishly.

Vectors in two- and three-dimensional space are presented with a firm mathe-
matical basis and are applied widely. Vectors do not supplant a sound foundation in
Cartesian plane analytic geometry but complement it and make possible a more
concise formulation of some of the theorems that were first derived in the classical

xiii
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Cartesian manner. In three-dimensional analytic geometry, vectors are used from the
outset. This avoids duplication of effort and contributes to a better understanding
of both subjects.

To make this third edition more readable for the increasing numbers of students
with less preparation for calculus than formerly, the following improvements have
been made.

Many new illustrative examples with complete solutions clarify the theorems,
definitions, and techniques. Students who study them should be able to do most of
the exercises.

The exercise sets have been reworked and excessive algebraic manipulation has
been eliminated. Each set now starts with easy variations of the illustrative examples,
progresses through exercises of increasing difficulty, and concludes with some to
challenge the stronger students.

Each chapter begins with an intuitive preview of the main ideas to be discussed
and their relation to what has gone before. This helps the reader to see the developing
calculus as a whole rather than as a series of isolated processes.

At the end of each chapter there is a set of review exercises. A student often finds
it easy to work the exercises in a particular section because the method has just been
explained. But a set of miscellaneous review exercises based on the material of an entire
chapter causes the student to review the chapter and gain a better understanding of it.

Many proofs have been simplified and some of the more tedious ones have been
moved to the appendix.

Stronger students will find that the logical development of this third edition and
the careful statement of its theorems maintain the integrity of earlier editions. The
organization has been improved by moving infinite series forward to Chapter 14, so
that the first fifteen chapters now constitute a two semester course in single variable
calculus. Chapters 16 to 19 treat the calculus of two or more variables.

The preliminary material has been shortened in order to start the actual calculus
sooner, The chapter on the definite integral has been rewritten; it is simpler, more
direct, and easier to understand. The treatment of trigonometric functions has been
much improved.

There are new sections on Lagrange multipliers and on surface area.

Throughout this book the principal definitions and theorems are prominently
labeled, numbered, and displayed, both for easy reference and to keep the main struc-
ture of the material before the reader’s eyes. The number 7.3.4, for example, refers to
the fourth numbered definition or theorem in Section 3 or Chapter 7. The number
14.6 refers to Section 6 of Chapter 14. Fig. 11-5 indicates the fifth figure in Chapter 11.

The most used theorems and definitions are printed in color to enable the stu-
dent to concentrate his efforts to advantage.

I wish to thank many users of the earlier editions, both faculty and students, for
their comments, criticism and encouragement. My thanks are also due to my wife,
Bernice Lee Purcell, who made the index and typed the manuscript.

EDWIN J. PURCELL
University of Arizona
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preliiminaries

For students who are familiar with the preliminary concepts discussed in this
chapter, a careful reading of most of it will suffice. However, inequalities and absolute
value are so important in calculus that a mastery of Sections 1.5 and 1.6 is indispens-
able for success in studying this book. These topics are seldom covered adequately in
high school, and a large proportion of the exercises in Sections 1.5 and 1.6 should be
worked.

11 INTRODUCTION

Prior to the seventeenth century, algebra and geometry were studied as separate,
unconnected subjects. The Greeks had perfected elementary geometry two thousand
years ago, and in the centuries that followed the Hindus and Arabs cultivated algebra.
Their algebra dealt with numbers, whereas Euclidian geometry was concerned with
points, lines, planes, and the like.

There seemed little connection between algebra and geometry until the seventeenth
century when two French mathematicians, René Descartes (1596-1650), who was
also a philosopher, and Pierre de Fermat (1601-1655), invented a method, now called
analytic geometry, that uses algebraic operations and equations to solve geometric
problems; their method also shed new light on algebra by exhibiting its equations as
geometric curves.

The basis for analytic geometry was Descartes’ coordinate system, which associ-
ated the numbers of algebra with the points of geometry. By means of Cartesian

1
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coordinates, large parts of algebra and geometry were seen to be two aspects of the
same thing, somewhat as two different lJanguages may express the same meaning.
For instance the algebraic statement “Two distinct equations of the first degree in two
variables have a single common solution or none” is equivalent to the geometric the-
orem “Two distinct lines in the same plane intersect in a single point or are parallel.”

The names generally associated with the invention of calculus are Isaac Newton
(1642-1727) and Gottfried Wilhelm Leibniz (1646-1716). Newton, an Englishman,
developed calculus as a tool for his investigations in physics and astronomy. The Ger-
man, Leibniz, was a universal genius who, independently of Newton and almost simul-
taneously, also developed calculus.

Calculus is based on the properties of numbers, and by using a Cartesian coordi-
nate system, much of calculus can be presented in geometric terms. Thus the recently
discovered analytic geometry was an ideal prelude to the invention of calculus.

Calculus, unlike the mathematics that preceded it, is the study of change and
growth. The two basic processes of calculus are differentiation and integration. Differ-
entiation gives the instantaneous rate of change of a varying quantity, and integration
measures the total effect of continuous change. The key to Newton’s and Leibniz’s
success in developing the calculus was their insight into the intimate relation between
differentiation and integration as inverse processes, somewhat as multiplication and
division of numbers are inverse operations.

Many scattered ideas from calculus were known to predecessors of Newton and
Leibniz, even as far back as Archimedes (287-212 8.c.), who, without any algebra,
succeeded in finding the areas of circles and regions under a parabola. For circles,
he computed the areas of inscribed regular polygons of more and more sides. As the
number of sides increased, the areas of the polygons increased and approached the
area of the circle as a limit (Fig. 1-1). This is an example of integration.

The area of a circle is the limit of the area of an inscribed regular polygon
of n sides as the number of sides, n, increases indefinitely

/\ e —

v N\

n=

It
o

S

N A

(
|

Figure 1-1
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In the generation just before Newton, the problem of finding maximum and mini-
mum values of a function was solved for some individual cases by finding the points
on its graph where the tangent line is horizontal (Fig. 1-2). This led to a method for
determining the direction of the tangent line to a curve at any point on the curve.

Let P be an arbitrarily chosen point on a curve and draw the secant line through
P and a neighboring point Q on the curve (Fig. 1-3). Draw the vertical and horizontal

+— The graph of
afunction

{—_minimum

Figure 1-2 Figure 1-3

line segments, RQ and PR; the ratio of their lengths, RQ/PR, is a measure of the steep-
ness of ascent of a point on the secant and hence of the direction of the secant. Keeping
P fixed on the curve, allow Q to approach P along the curve. This causes the secant
PQ to rotate about P and approach the position of the tangent line at P. The limit of
the ratio RQ/PR as Q approaches P along the curve gives the direction of the tangent
line at P. This is an example in differentiation.

Notice that in both examples the word Zimit was used. Limit is the most important
concept in calculus and is what distinguishes calculus from all previous mathematics.

Thus Newton and Leibniz were not the first to differentiate or integrate. In parti-
cular, Isaac Barrow, Newton’s teacher at Cambridge, understood the area problem
and the tangent problem and probably knew that they were inverse to each other.
The importance of Newton and Leibniz in calculus resulted from their consolidation
of the known fragments into a general method, incorporating what is now known as
the fundamental theorem, which is applicable to very large classes of functions, both
algebraic and transcendental. Leibniz also devised a good notation, much of which is
still being used.

Today calculus is essential in engineering and the physical sciences, and is being
used more and more in biology and such social sciences as economics, sociology, and
psychology. Without calculus, one could not design radar systems or cyclotrons, to
name just a few. Calculus is used to determine the orbits of earth satellites and the
paths for space travel.
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Calculus is generally considered to be one of the greatest intellectual achievements
of mankind.

A setis a collection of things. Some examples of sets are the letters in our alphabet,
all American citizens, the positive integers, and the positions on a baseball team.

The elements of a set are the objects belonging to the set; they may or may not be
material. In this book we shall be chiefly concerned with sets of real numbers and sets
of points. The statement a is an element of the set S is symbolized by

ac S,

and a is not an element of S is symbolized by a ¢ S.

A set is defined when its description is sufficient to enable us to determine whether
any arbitrary object belongs to the set. For instance, if .S is the set of all integers
greater than ¢, then 7 € S, § ¢ S, and —3 ¢ S. It is essential that if 4 is any object
whatever, the definition of a set will enable us to give the unqualified answer “Yes”
or “No” to the question “Does g belong to the set?” Thus “all beautiful women” fails
to define a set because the decision of membership would be a matter of opinion.

When the number of elements of a set is finite, we can define the set by listing its
elements. For example, the set consisting of the numbers z, ./ 2, and 8 can be written
{r, /2, 8}. Other sets are {a, b, ¢, d} and {2, 3, 5, 7, 11}.

A different kind of set is

S = {{_ls 6}a {8, 16, 24}’ {Z: W}}'

This is a set of sets (or a collection of sets) whose three elements are the sets {—1, 6},
{8, 16, 24}, and {z, w}. Notice that —1 ¢ S, although {—1, 6} € S.

If the number of elements of a set is not finite, or if it is not convenient to list all
the elements of a set, some rule that enables us to determine whether any given object
belongs to the set will suffice. To illustrate, “the set of all numbers that can be ex-
pressed in the form 2n, where # is an integer” defines the set of even integers.

The symbol

{xj--}

means “the set of elements x such that”; the three dots here stand for some statement
or statements about the elements of the set that clearly define the set. For example,
{x]x is a real number and 2x2 — 5x — 3 = 0} is the set of real numbers x such that
2x% — 5x — 3 = 0 is true; in other words, it is the set consisting of the real roots of
2x2 — 5x — 3 = 0, which is the set {3, —4}. Again, {x|x is a positive integer and x
is less then 10} is the set {1, 2, 3, 4, 5, 6, 7, 8, 9}. Another example is {x| x is a negative
integer and x2 — x — 6 = 0}, which is the set {—2}.

Notice that {x|x is a real number and x2 + 1 = 0} contains no elements at all.
It is the empty set and is represented by &. Thus & = {x|x is a real number, x2 + 1
=0}, @ = {#|sinf = 1.5}, and @ = {y|yis a living person and y signed the Decla-
ration of Independence}.



