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preface

This book has its origins in a previous text written by one of the authors, entitled
An Introduction to Digital Computing. The earlier book was published by Addison-
Wesley in 1963 and, as the name implies, it was intended to be a general intro-
duction to digital computing. In the intervening years there has been an enormous
increase in the subject matter of computing with the result that, increasingly, the
four general topics of computers, programming, numerical algorithms, and
nonnumerical algorithms are introduced separately. As always, such specialization
has both benefits and detriments. On the positive side, it permits the production
of books in which it can reasonably be assumed that the reader has already been
introduced to machines and programming. On the negative side, the specialization
may result in deemphasizing the need for a detailed consideration of algorithms, by
setting it apart from the highly motivating material associated with programming.

This book, while it assumes a minimal computing background, attempts to
retain a connection between the development and formulation of numerical
algorithms and their programmed implementation. Also, for additional motiva-
tion many of the methods are introduced by the statement of a physical problem.
In effect, the book is intermediate between a “FORTRAN Computing Course”
and a formal book on numerical analysis. As such, it should be helpful for upper-
class undergraduates and first-year graduate students in science, engineering, and
computing. The authors strongly believe that anyone, regardless of discipline,
who wishes to be regarded as educated in computing should recognize the essen-
tiality of the necessary-number and function approximation (indeed, finitude in
general) in the development and use of algorithms for numerical computation.
Hopefully, this book will be useful in the acquisition of such understanding, as
well as in providing factual knowledge about a carefully selected variety of useful
numerical algorithms. It would be gratifying if, in addition, some readers achieve
sufficient motivation to study in even more analytic detail the relationships of the
concept of infinitude to numerical algorithms.

The prerequisites for a course using this book would include integral calculus,
some differential equations, and the ability to program for a digital computer.
While the emphasis is on numerical methods, it should be recognized that normally
the ultimate objective in formulating a numerical solution is to carry it out on a
digital computer. Consequently empbhasis is given to program development.
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In the typical pursuit of this course, one would expect that a student would
program and execute four to eight problems on the computer in the course of a
semester. With these objectives in mind, the text contains a liberal sprinkling of
examples requiring the development of programs to solve problems with the
methods being treated. Each program is written in FORTRAN IV language, and
each is normally accompanied by a flow chart. In the actual formulation, the
program was developed directly from the flow chart. Flow charts are a convenient
mechanism for translating the mathematical problems into programs, and they
represent a useful way for scientists and engineers to communicate their problems
to professional programmers. Symbols used in the flow charts are defined in
Appendix A. The manner in which the information flows is evident from the
inspection of one or two flow charts, and students quickly develop skill in inter-
preting and developing flow charts if they do not already have this facility.

All of the FORTRAN programs included are complete in the sense that they
have been compiled and run with sample data. Where an independent test
program is required, it is included with the program. The input and output lines
shown with the programs are those actually used and produced by the programs.
The various FORTRAN languages do differ in small details. These programs were
run on an IBM System/360, Model 67, at The University of Michigan under the
MTS operating system. To the best of the authors’ knowledge the programs are
“standard” in form, with the single exception that a free-format input was often
used. In such cases input values could be arbitrarily spaced, separated by commas,
as long as each number occupied a field the same size as (or smaller than) the field
description in the associated format statement.

The authors would like to express thanks to Mrs. Arthur Wallace and Mrs.
Thomas Steel for their help in typing the manuscript, and to Mr. Joseph Paster
for his help in preparing some of the programs.
October, 1969 B. W. A.
K. N. A.

In the realm of acknowledgments it is probably unusual for an author to comment
on the efforts of a co-author. Considering the current pace of academic life, a
joint effort of this type might easily be frustrated by the difficulties of distance
and demanding schedules. That such frustrations did not arise is due largely to
my colleague in this work who completely undertook the pressing and often tedious
task of final editing and proofreading. Without his willingness to overcome delays
by additional personal effort, this book would not be a reality at this time.

Ann Arbor, Michigan B. W. A.
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chapter one

computational error

The solution of problems through numerical computation often entails many
repeated arithmetic operations. Small errors arising from input numbers or
approximations in computer operations can propagate in the process to magni-
tudes which are unacceptable in the result. In this section we shall examine some
of the sources of errors and how they accumulate.

Real numbers, with their infinite string of digits, cannot be represented in the
finite number of storage locations in a digital computer; they must be approxi-
mated by rational numbers, for example,

31415926
This inability to represent real numbers is not the only source of error in a com-
putational problem. The four categories listed below are in the realm of con-
scious error as opposed to mistakes. Since these errors are known to exist, the
assumption is that they cannot be eliminated but that, hopefully, their magnitudes
may be estimated.

1. The equations and expressions which are used to describe physical processes
are, in general, approximations or idealizations which at the outset introduce a
disparity between the physical problem and its computational analog. Such
errors could be called formulation errors.

2. In actual fact, a digital computer is limited to performing the arithmetic
operations on a limited set of rational numbers. Or, stated differently, only
rational functions can be evaluated, where rational function is defined to mean any
function that can be evaluated by operating on numbers using only addition,
subtraction, multiplication, and division. The function

4x2 + 3
gx) = 3 o3l

x3 —2x2 4+ x — 8

is an example. Functions which are defined by limiting processes, such as

/Idt
Inx = —>
1 !



2 Computational Error

must somehow be represented by a rational function, and thus an error is intro-
duced. This error is called a fruncation error since the rational function is often
obtained by truncating (i.e., terminating) an infinite series after a specified number
of terms.

3. The already mentioned fact that an infinite number of digits cannot be used to
represent a number gives rise to what is called round-off errors. Remembering
that a number is a polynomial, one sees that this type of error arises from the
truncation of terms in this polynomial. However, it should be kept in mind that
the term “truncation error” refers to the error arising from functional approxima-
tion, not number approximation.

4. Physical quantities can be measured only to a limited accuracy. When such
values are used in computations, their indefinite value, or error, is frequently more
restrictive than the limited number of digits available to express these measures.
Such errors could be called measurement errors.

There is no way to estimate formulation error other than to check by observa-
tion how well the mathematical expression predicts the physical case. When the
formulation error is admittedly large, then, occasionally, a great deal of effort is
expended to reduce the other types of error. It would seem that the following
corruption of an old adage would apply in such cases: “A thing not worth doing at
all is not worth doing well.”

Estimation of truncation errors is one of the main tasks of numerical analysis.
Examples of such estimation are given in later sections.

Round-off and measurement errors have a similar effect even though the
causes differ. The precision with which a number can be expressed is limited.
The magnitude of the error caused by this imprecision is relatively simply de-
termined in detail for individual operations and is the principal concern of this
chapter. However, the determination of the error in the result of a complicated
calculation (even though the error in the original quantities is known) is a vexing
problem which cannot always be solved. As the last statement implies, error is
propagated; that is, if one or both operands in an operation are approximate, then
the result of the operation is approximate or in error. If this result is then used as
an operand, the error is propagated to the value of another expression, etc. In
addition to the error propagated at each step of a calculation, an error may also
be generated because the operations themselves (not the operands) are only
approximations. The most obvious example of an inexact operation is division,
where, unless the divisor divides evenly into the dividend, the quotient will have an
infinite number of digits. Restricting the number of quotient digits makes the
operation an approximation. One also uses approximate multiplication, i.e., one
retains not all the product digits but only a specified number of the most significant
digits (generally, as many digits as the word size permits). In floating-point
arithmetic, even addition and subtraction are often approximated. When numbers
with different scale factors (or possibly even with the same scale factor) are added,
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not all the sum digits can be accommodated in the basic number size of the
machine, and hence the least significant sum digits are dropped. In the following
discussion such generated errors are not considered; the discussion is limited to the
propagation of errors due to inaccurate operands.

Significant numbers

The most common way of indicating the degree of precision of a number is to
write only those digits which are known accurately or, in other words, are sig-
nificant. The rightmost digit that is written can be in error by at most half a unit
because a greater error would mean that rounding would produce a different
final digit. Writing the significant number 1.2932 implies that the “true” value
represented by this number is less than or equal to 1.293249999 ... and greater
than or equal to 1.29315. If these extreme values are rounded or “half-adjusted™
to four decimal places by adding .00005 and then dropping the digits from the fifth
decimal place on, the result is 1.2932. Alternatively, this range can be indicated by
writing 1.2932 4 0.00005, which in turn can be written 1.2932 (.5), where the
number enclosed in parentheses is understood to be in units of the rightmost
place. Another alternative expression which allows the error amount to be written
as an integer is 1.29320 (5). The shortcomings of significant number notation be-
come apparent if one now supposes that the example number is not known quite
so accurately and the range of indefiniteness is, say, 7 units in the first place
dropped, i.e. 1.29320 (7). But this representation is no longer a significant number,
and the next larger significant number which includes this range (1.29313 to
1.29327) is 1.2930 (5) = 1.29300 (50), whose range is 1.29250 to 1.29350. This
notation forces one to designate more variation than is known to exist in the given
approximation. An alternative approach is to deal directly with the range of the
numbers, as was done above, rather than use the significant number notation.
Before the discussion turns to range numbers, it should be noted that when an
integer with trailing zeros, say 92600, is written, it is not clear how many of the
digits are significant. To clear up this ambiguity one must either explicitly state the
significance or adopt some writing convention, such as 9260 X 10", which indi-
cates, in this example, that the rightmost zero is not significant.

Range numbers

In range-number form, a number N is replaced by a pair, the largest and smallest
possible values in its range. These high and low values are bracketed and dis-
played one above the other as shown below.

v



4 Computational Error
The significant number 1.2932 becomes
1.29325
[1.29315] .

If a number is known exactly, the extremes of the range are the same:

6.375
- [6.375]
The arithmetic operations expressed in terms of range numbers and some numerical
examples are shown below.

XH Y Xu + yu
xX+y= + = ,
XL YL X, + yL
1.35 7.85 9.20
1.29(6) + 7.81(4) = + - :
1.23 7.77 9.00

If the signs are considered to be a part of the numbers, the problem becomes one

of addition.
1.35 —17.77 —6.42
1.29(6) — 7.81(4) = + =
1.23 —7.85 —6.62

XH YH XH " VH

XL yL XL VL

3.53 2.125 7.50125
3.46(7) X 2.120(5) = X = t

3.39 2.115 7.16985

In this instance negative signs, if any, should precede the brackets since the
objective is to produce the products that are largest and smallest in absolute value.
As an example consider

—3.39 3.53
to be — .
—3.53 3.39

{XH:I [y}I] liXII - yL}
X +y= =+ = -
XL, Vi, XL = Y

6

eI}

Addition

Subtraction

Multiplication

Division
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Here again signs should be placed outside the brackets so that the values
within are highest and lowest in absolute value.
[4.254} [0.125] [
4.246(8) + 0.120(5) = =
4.238 0.115

The quotients should be truncated so that no possible quotients are excluded
from the range. Thus the quotient 4.254 + 0.115 = 36.9913 . .. was adjusted to
36.992 to be included in the range 36.9913 ... (Note that 36.991 would have ex-
cluded this value.)

If the extremes of the range are of different sign, zero is included in the range.
This inclusion is not permissible if the range number is a divisor, and will require
adjustments in the rules above for the other cases. However, all the rules given can
be subsumed under one general rule prescribing the procedure of obtaining the
range number of the result of an operation: Of the four possible combinations of
the range number pairs which are operands, select the two giving the largest range
to designate the resulting range number.

Range numbers are useful to demonstrate the propagation of errors. The
following evaluation employing significant numbers illustrates this point.

36.992
33.904

= 0.12 X 236.4 — (63.8 X 2.01) + 25

Pl

y

[63.85
163.75

[0.125
10.115

236.45
236.35

2.015
2.005

25.5
24.5

N

J

[29.55625 [128.65775 (255
B _27.18025] h _127.81875} N [24.5}
29.55625 5.251336
B _27.18025} B _5.012500}
[24.543750
B _21.928914].

If this result is adjusted to two decimal places, it becomes

].

As a significant number this range is represented by 2 X 10!, i.e., by only one
significant figure. Except for limited hand calculation, the utility of range numbers
is restricted to such demonstrations. For the determination of error bounds, it is
desirable to express the amount of the error explicitly. Moreover, the error from

24.55
21.92
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the approximation of infinite decimal numbers does not appear in range numbers,
ie.,

0.3333
1~ 03333 = :

0.3333

Since the error is known, there is no range; the approximation-error form corrects
these deficiencies.

Approximation-error numbers

As the name implies, numbers in approximation-error form consist of two parts,
the approximation and the error. For instance, 3 = 0.3333 + % X 1075 and,
in general, x = X 4+ e. More often than not the actual error is not known; only
the range is known. Hence, the 1.2932, the significant number previously used as
an example, is in this form:

1.2932 + ¢, —0.00005 < e < 0.00005.

Thus a complete statement is x = X 4 €, where —»n < € < 5. The basic arith-
metic operations are expressed in this form as follows.

Addition
x+y=F+e)+ FTt+e)=F+7T)+ (€1 + €2).
The errors are additive. If n numbers are added,

X1+ xo+ x5+ 0+ Xp

the error of the sum will be
€+ €+ €3+ -+ €

If, in addition, the individual errors have a common range, that is, —9 < €; < g
fori=1,2,...,n,then

n
e+ &+t e =2 & <nn
=1

As a simple example, suppose that the significant numbers 11, 12, 13, ..., 20 are
added. The error for each number is less than 0.5, and the total error for the sum
of the ten numbers is less than ten times that upper bound:

€total < 10-0.5 = 5.

Subtraction

x—y=F+e)— F+e)=F—7) + (e1 — ¢€3).
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Since the values of €; and e, may be positive or negative, the determination of
the maximum error is the same as in addition.

Multiplication
=X+ )T+ €)= (X 7)+ (2% + €17 + €,€2)

Since the errors are usually small compared to the approximation numbers, the
€1€x-term is very often neglected. As before, to determine the maximum error
that can be made in a multiplication, the positive upper bounds for the errors are
used, together with the absolute values of the approximating numbers. Assuming
that —n; < €; < n;and —59 < €5 < 75, One has

€2X + €7 < 72[%| + 1|7
Division

This operation is a little more complicated.

x X+ e %+ /%) x( e1> < 62>_1
AP o = e 1 = 1 —
y T¥e dt+em s\UTT)\ITS

The rightmost term can be expanded by means of the binomial theorem to yield
the common series
1
1+:z

e 2
I+ g) (-2 g
y Y X Yy y

If all second- and higher-order terms are neglected, i.e., those involving products

of the ¢€’s, then
5%@(1 5 5_-2—) - <§>+ <6—1y~"2 62")
y Y X y y y

The maximum error can be obtained by replacing the errors with their upper
bounds and using the absolute values of the approximations:

=1l—z422-22+...
Then

€1 — €X 7]1])" £ "I2IX,
72 »?

where
—n1 < €1 < and —7n2 < €3 < 72.

To 1llustrate this kind of analysis, the error in evaluating a second-degree poly-
nomial, asx? + a;x + a,, will be computed. This error estimation will be carried



