Lecture Notes In

Mathematics

Edited by A. Dold and B. Eckmann

1383

D.V. Chudnovsky G.V. Chudnovsky
H. Cohn M.B. Nathanson (Eds.)

Number Theory

New York 1985—88

@ SpringerVerlag




Lecture Notes In
Mathematics

Edited by A. Dold and B. Eckmann

1383

D.V. Chudnovsky G.V. Chudnovsky
H. Cohn M.B. Nathanson (Eds.)

Number Theory

A Seminar held at the Graduate School and
University Center of the City University
of New York 1985—88

Berlin Heidelberg New York London Paris Tokyo Hong Kong



Editors

David V. Chudnovsky

Gregory V. Chudnovsky

Department of Mathematics, Columbia University
New York, NY 10027, USA

Harvey Cohn
Department of Mathematics, (CUNY), City College
New York, NY 10031, USA

Melvyn B. Nathanson

Provost and Vice President for Academic Affairs
Lehman College (CUNY)

Bronx, NY 10468, USA

Mathematics Subject Classification (1980): 10-06

ISBN 3-540-51549-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-51549-6 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1989
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2146/3140-543210 — Printed on acid-free paper



Lecture Notes in Mathematics

For information about Vols. 1-1173 please contact your bookseller
or Springer-Verlag

Vol. 1174: Categories in Continuum Physics, Buffalo 1982. Seminar.
Edited by F.W. Lawvere and S.H. Schanuel. V, 126 pages. 1986.

Vol. 1175: K. Mathiak, Valuations of Skew Fields and Projective
Hijelmslev Spaces. VII, 116 pages. 1986.

Vol. 1176: R.R. Bruner, J.P. May, J.E. McClure, M. Steinberger,
H. Ring Spectra and their Applications. VIl, 388 pages. 1986.

Vol. 1177: Representation Theory |. Finite Dimensional Algebras.
Proceedings, 1984. Edited by V. Dlab, P. Gabriel and G. Michler. XV,
340 pages. 1986.

Vol. 1178: Representation Theory Il. Groups and Orders. Proceed-
ings, 1984. Edited by V. Dlab, P. Gabriel and G. Michler. XV, 370
pages. 1986.

Vol. 1179: Shi J.-Y. The Kazhdan-Lusztig Cells in Certain Affine Weyl
Groups. X, 307 pages. 1986.

Vol. 1180: R. Carmona, H. Kesten, J.B. Walsh, Ecole d'Eté de
Probabilités de Saint-Flour XIV — 1984. Edité par P.L. Hennequin. X,
438 pages. 1986.

Vol. 1181: Buildings and the Geometry of Diagrams, Como 1984.
Seminar. Edited by L. Rosati. VI, 277 pages. 1986.

Vol. 1182; S. Shelah, Around Classification Theory of Models. VII, 279
pages. 1986.

Vol. 1183: Algebra, Algebraic Topology and their Interactions. Procee-
dings, 1983. Edited by J.-E. Roos. XI, 396 pages. 1986.

Vol. 1184: W. Arendt, A. Grabosch, G. Greiner, U. Groh, H.P. Lotz,
U. Moustakas, R. Nagel, F. Neubrander, U. Schiotterbeck, One-
parameter Semigroups of Positive Operators. Edited by R. Nagel.
X, 460 pages. 1986.

Vol. 1185: Group Theory, Beijing 1984. Proceedings. Edited by Tuan
H.F. V, 403 pages. 1986.

Vol. 1186: Lyapunov Exponents. Proceedings, 1984. Edited by L.
Arnold and V. Wihstutz. VI, 374 pages. 1986.

Vol. 1187: Y. Diers, Categories of Boolean Sheaves of Simple
Algebras. VI, 168 pages. 1986.

Vol. 1188: Fonctions de Plusieurs Variables Complexes V. Séminaire,
1979-85. Edité par Frangois Norguet. VI, 306 pages. 1986.

Vol. 1189: J. Lukes, J. Maly, L. Zajicek, Fine Topology Methods in Real
Analysis and Potential Theory. X, 472 pages. 1986.

Vol. 1190: Optimization and Related Fields. Proceedings, 1984.
Edited by R. Conti, E. De Giorgi and F. Giannessi. VIll, 419 pages.
1986.

Vol. 1191: A.R. lts, V.Yu. Novokshenov, The Isomonodromic Defor-
mation Method in the Theory of Painlevé Equations. IV, 313 pages.
1986.

Vol. 1192: Equadiff 6. Proceedings, 1985. Edited by J. Vosmansky and
M. Zlamal. XXIII, 404 pages. 1986.

Vol. 1193: Geometrical and Statistical Aspects of Probability in
Banach Spaces. Proceedings, 1985. Edited by X. Femique, B.
Heinkel, M.B. Marcus and P.A. Meyer. IV, 128 pages. 1986.

Vol. 1194: Complex Analysis and Algebraic Geometry. Proceedings,
1985. Edited by H. Grauert. VI, 235 pages. 1986.

Vol.1195: J.M. Barbosa, A.G. Colares, Minimal Surfaces in IR%. X, 124
pages. 1986.

Vol. 1196: E. Casas-Alvero, S. Xambo-Descamps, The Enumerative
Theory of Conics after Halphen. IX, 130 pages. 1986.

Vol. 1197: Ring Theory. Proceedings, 1985. Edited by F.M.J. van
Oystaeyen. V, 231 pages. 1986.

Vol. 1198: Séminaire d'Analyse, P. Lelong — P. Dolbeault — H. Skoda.
Seminar 1983/84. X, 260 pages. 1986.

Vol. 1199: Analytic Theory of Continued Fractions Il. Proceedings,
1985. Edited by W.J. Thron. VI, 299 pages. 1986.

Vol. 1200: V.D. Milman, G. Schechtman, Asymptotic Theory of Finite
Dimensional Normed Spaces. With an Appendix by M. Gromov. VIII,
166 pages. 1986.

Vol. 1201: Curvature and Topology of Riemannian Manifolds. Pro-
ceedings, 19856. Edited by K. Shiohama, T. Sakai and T. Sunada. VI,
336 pages. 1986.

Vol. 1202: A. Dur, Mobius Functions, Incidence Algebras and Power
Series Representations. XI, 134 pages. 1986.

Vol. 1203: Stochastic Processes and Their Applications. Proceedings,
1985. Edited by K. Itd and T. Hida. VI, 222 pages. 1986.

Vol. 1204: Séminaire de Probabilités XX, 1984/85. Proceedings. Edité
par J. Azéma et M. Yor. V, 639 pages. 1986.

Vol. 1205: B.Z. Moroz, Analytic Arithmetic in Algebraic Number Fields.
VIl, 177 pages. 1986.

Vol. 1206: Probability and Analysis, Varenna (Como) 1985. Seminar.
Edited by G. Letta and M. Pratelli. VIIl, 280 pages. 1986.

Vol. 1207: P.H. Bérard, Spectral Geometry: Direct and Inverse
Problems. With an Appendix by G. Besson. X, 272 pages. 1986.

Vol. 1208: S. Kaiser, J.W. Pelletier, Interpolation Functors and
Duality. IV, 167 pages. 1986.

Vol. 1209: Differential Geometry, Peniscola 1985. Proceedings.
Edited by A.M. Naveira, A. Ferrandez and F. Mascaré. VI, 306 pages.
1986.

Vol. 1210: Probability Measures on Groups VIIl. Proceedings, 1985.
Edited by H. Heyer. X, 386 pages. 1986.

Vol. 1211: M.B. Sevryuk, Reversible Systems. V, 319 pages. 1986.
Vol. 1212: Stochastic Spatial Processes. Proceedings, 1984. Edited
by P. Tautu. VIll, 311 pages. 1986.

Vol. 1213: L.G. Lewis, Jr., J.P. May, M. Steinberger, Equivariant
Stable Homotopy Theory. IX, 538 pages. 1986.

Vol. 1214: Global Analysis — Studies and Applications II. Edited by
Yu.G. Borisovich and Yu.E. Gliklikh. V, 275 pages. 1986.

Vol. 1215: Lectures in Probability and Statistics. Edited by G. del Pino
and R. Rebolledo. V, 491 pages. 1986.

Vol. 1216: J. Kogan, Bifurcation of Extremals in Optimal Control. VIil,
106 pages. 1986.

Vol. 1217: Transformation Groups. Proceedings, 1986. Edited by S.
Jackowski and K. Pawalowski. X, 396 pages. 1986.

Vol. 1218: Schradinger Operators, Aarhus 1985. Seminar. Edited by
E. Balslev. V, 222 pages. 1986.

Vol. 1219: R. Weissauer, Stabile Modulformen und Eisensteinreihen.
I, 147 Seiten. 1986.

Vol. 1220: Séminaire d'Algebre Paul Dubreil et Marie-Paule Malliavin.
Proceedings, 1985. Edité par M.-P. Malliavin. IV, 200 pages. 1986.

Vol. 1221: Probability and Banach Spaces. Proceedings, 1985. Edited
by J. Bastero and M. San Miguel. XI, 222 pages. 1986.

Vol. 1222: A. Katok, J.-M. Strelcyn, with the collaboration of
F. Ledrappier and F. Przytycki, Invariant Manifolds, Entropy and
Billiards; Smooth Maps with Singularities. ViIl, 283 pages. 1986.

Vol. 1223:; Differential Equations in Banach Spaces. Proceedings,
1985. Edited by A. Favini and E. Obrecht. VIIl, 299 pages. 1986.

Vol. 1224: Nonlinear Diffusion Problems, Montecatini Terme 1985.
Seminar. Edited by A. Fasano and M. Primicerio. VIIl, 188 pages.
1986.

Vol. 1225: Inverse Problems, Montecatini Terme 1986. Seminar.
Edited by G. Talenti. VIIl, 204 pages. 1986.

Vol. 1226: A. Buum, Differential Function Fields and Moduli of
Algebraic Varieties. IX, 146 pages. 1986.

Vol. 1227: H. Helson, The Spectral Theorem. VI, 104 pages. 1986.
Vol. 1228: Multigrid Methods Il. Proceedings, 1985. Edited by
W. Hackbusch and U. Trottenberg. VI, 336 pages. 1986.

Vol. 1229: O. Bratteli, Derivations, Dissipations and Group Actions on
C*-algebras. IV, 277 pages. 1986.

Vol. 1230: Numerical Analysis. Proceedings, 1984. Edited by J.-P.
Hennart. X, 234 pages. 1986.

Vol. 1231: E.-U. Gekeler, Drinfeld Modular Curves. XIV, 107 pages.
1986.

continued on page 257



INTROOUCT ION

This is the fourth volume of papers presented at the New
York Number Theory Seminar. Since 1982 the Seminar has been
meeting every Tuesday afternoon during the academic year at the
Graduate School and University Center of the City University of
New York. The goal of the Seminar is to provide a forum for the

exposure of new results in number theory and allied fields in the
New York metropolitan area. Mathematicians who plan to be in New
York and would |l ike to attend or lecture in the Seminar are

encouraged to contact the organizers.
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SOME CONJECTURED RELATIONSHIPS BETWEEN THETA FUNCTIONS
AND EISENSTEIN SERIES ON THE METAPLECTIC GROUP

BY DANIEL BUMP AND JEFFREY HOFFSTEIN

This research was supported by NSF Grants # DMS 8612896 and # DMS 8519916. We would like to

express our thanks to S. J. Patterson for many helpful discussions.

Suzuki [6] considered the Fourier coefficients of a theta function on the four-fold cover
of GL(2). Despite courageous efforts, he was only able to obtain partial information about
these coefficients. This failure was explained by the work of Kazhdan and Patterson [2],
who showed that if r < n — 1, the methods of Hecke theory only yield partial information
about the Fourier coefficients of theta functions on the n-fold cover of GL(r), owing to the
fact that the local representations do not have unique Whittaker models. Nevertheless, in
the special case r = 2, n = 4, Patterson [4], [5] was able to formulate a conjecture which
would specify the unknown coefficients up to sign, as square roots of Gauss sums. This
work inspired a further paper of Suzuki [7], but unfortunately it is not clear to us precisely
what is proved in this latter paper.

We shall review the evidence of Patterson, and develop further evidence of our own.
Essentially, our theme is that if Patterson’s conjecture is true, there are identities between
various Dirichlet series which arise as Fourier coefficients of Eisenstein series or as Rankin-
Selberg convolutions. By comparing the functional equations and the locations of the poles
of these Dirichlet series, we become convinced that the conjecture must be true. Indeed,
in some sense the conjecture must be true “on average” owing to the locations of these
poles.

We shall finally state a very general conjecture asserting the equality of two Rankin-
Selberg convolutions of theta functions. These convolutions may also be interpreted (con-
jecturally) as a Fourier coefficient of an Eisenstein series on the metaplectic group, gener-
alizing a key relation in our discussion of Patterson’s conjecture. This conjecture allows
us to predict many values of (and relations between values of) Fourier coefficients of theta
functions beyond what is predicted by the theory of Kazhdan and Patterson. We also
conjecture that the Rankin-Selberg convolution of a metaplectic cusp form with a theta
function may be interpreted as the Fourier coefficient of an Eisenstein series.

Because the forms which we shall consider are automorphic with respect to congruence
subgroups, which have multiple cusps, the various Dirichlet series which we shall consider
will need congruence conditions. These congruence conditions also complicate the func-
tional equations of these Dirichlet series. As one sees for example in [6], keeping track
of these nuances involves some rather tedious bookkeeping. We shall not state these con-
gruence conditions explicitly, because they are a distraction, and because we have not
worked out all the details arising from them. Nor shall we state the functional equations
precisely, or compute the Gamma factors which go with them. Thus many of the formulas
contained herein should be taken as suggestive rather than strictly truthful. We hope that



this transgression will be excused on the grounds that it allows us to tell our story more
freely.

Let F be a number field which, for simplicity, we assume to be totally complex. Let
n be a fixed positive integer, and assume that the group p, of n-th roots of unity in C
is contained in F. Let (%) be the n-th power residue symbol for the field F, which is
defined for coprime a, b in the ring O of integers in F', and takes values in u,. Among the

properties of this symbol which we shall need, it satisfies

(5)=G)E) G-66)
(5)=(5) re=emoas

=

and the reciprocity law

where (b,a) is a “Hilbert symbol”.

We shall eventually be concerned with the particular case where F = Q(z). In this case,
any ideal which is prime to A = 1 + 7 has a unique generator which is congruent to 1
mod A3. We shall always use that generator. Thus if p is a prime, we always assume that
p =1 mod A3. In this case (for such a and b), the Hilbert symbol

(a,b) = (~1) (Na=1) §(No-1),

Kubota proved that

(2 2)-(3)

defines a character of the congruence subgroup I'(n?) of SL(2,0). Furthermore, if we
embed SL(2,0) into SL(r,0) by sending a 2 X 2 matrix into the upper right hand corner
of an r X r matrix (with ones elsewhere on the diagonal), then the Kubota character «
extends to a character x of a congruence subgroup of SL(r, 0). We shall be concerned with
metaplectic forms, which are automorphic forms on such a congruence subgroup, formed
with the Kubota character.

Firstly, let us consider automorphic forms on SL(2) which satisfy

for « in the congruence subgroup I'(n?) and 7 in the homogeneous space, which is product of
hyperbolic 3-spaces. As was noted by Hecke, Wohlfahrt and Shimura, the theory of Hecke

operators for such forms is different from the theory of Hecke operators for nonmetaplectic



forms. Let us review such a theory (a more careful treatment may be found in Bump and

Hoffstein [1]). We assume that ¢ has a Fourier expansion

o(r) = Z a(m) Nm~1/? W (mr),

m

where W is a “Whittaker function” (essentially a product of K-Bessel functions).
The Hecke operators are double cosets whose elementary divisors are n-th powers. If p
is a prime of O which does not divide n, decompose the double coset

I¢r = U &, &=k,

where

1
£:< pn>’ ’7{,6{€F.

Then define

(Tpnd)(r) = D k(w) 6(8:) b(&i7).

1
As in Bump and Hoffstein [1], one may explicitly compute the decomposition of the double
coset, and consequently, the effect of the Hecke operators on the Fourier coefficients. In

the case n = 4, the m-th Fourier coefficient of Tp«¢ is (to oversimplify somewhat)

A(m) = Np?a (;n—4> + Np (m,p) 93(1%,17) a(m/p*))

+ Np (m,p?) g2 (%,p) a(m) + Np (m,p®) g1(m, p) a(mp?) + Np? a(mp?).

Here the Gauss sums are defined by

= 5 ()

k mod p

in terms of the fourth power residue symbol, where e is a certain fixed character of F' mod
0. We interpret a(m) = 0 and g,(m,p) = 0 if m is not integral.

The theta function 6 is a residue of a certain Eisenstein series, which is automorphic with
respect to the fourth power Kubota symbol. It is an eigenfunction of the Hecke operators
with Tpe8 = Np? X, 0, where A\, = Np'/2 + Np~'/2, and so its Fourier coefficients 7(m)
satisfy



:T<g—> +Np~! (m,p) gs(%»?) T(g)

+ Np~! (m,p?) g, (—p—,p) 7(m) 4+ Np~! (m,p*) gi(m,p) 7(mp?) + 7(mp*).

Furthermore, we have the following Periodicity Theorem, a simple but rather deeper fact,
which was proved in complete generality by Kazhdan and Patterson [2]. This is the fact
that 7(m) depends only on m modulo fourth powers:

(2) 7(h*m) = Nh'? 1(m).

These relations tell us quite a bit about 7(m). If the theta function is normalized so
that 7(1) = 1, with m = 1, (1) and (2) imply that

Np~ /2 4 Npl/? = Np~tgi(1,p)r(p?) + Np'/2,

and so
7(p®) = Np~'/?1(1,p).
Similarly, taking m = p% in (1) gives

r(p*) = 0.

On the other hand, taking m = p in (1) reduces to a tautology, since the quadratic Gauss
sum g3(1,p) = Np'/2. The relations (1) and (2) do not imply anything about the values
of a(p). Still, we may sometimes show that a(m) = 0 for squarefree m (the coefficients
are not expected to be multiplicative!) For example, taking m = pq, where ¢ is a different

prime from p, we have

(Np'/? + Np='/%)7(pq) = Np~' g2(q,p) 7(pg) + Np"/*7(pq).

Since the quadratic Gauss sum

2
q
92(g,p) = (;) Np'/2,



this implies that 7(pg) = 0 if p is a quadratic nonresidue modulo ¢, and more generally, it

may be shown that if m is squarefree, then

for any factorization m = myms.

These relations are essentially those found by Suzuki. To go beyond this, Patterson
considered the Rankin-Selberg convolution of # with itself. This is an integral of 82 against
a (quadratic metaplectic) Eisenstein series. This integral represents the Dirichlet series

¢(4s — 1) 2:1'(m)2 Nm™?,

where ¢ is the Dedekind zeta function of the field. This Dirichlet series has a functional
equation under s — 1 — s, and a pole at s = %. On the other hand, the Dirichlet series
(first considered by Kubota)

YP(s) = Zgl(l,m) Nm™*

occurs in the Fourier coefficients of the quartic metaplectic Eisenstein series on G L(2)—the
precise coefficient, which has a functional equation under s — 1 — s, is ¢(8s — 3) ¥(2s),
with a pole at s = %. Consequently, ¢(4s—1) (s + %) also has a functional equation under
s+ 1—s,and a pole at s = %. Now Patterson made the remarkable observation that the

assumption that

(3) Zr(m)sz_”: ¢(4s — 1) (s + %)2

is consistent with everything which is known about 7(m). For example, after multiplying
both sides by ¢(4s — 1), both sides have the same pole and functional equation (Patterson
checked that the Gamma factors are the same). Moreover, the properties of 7 which
were found by Suzuki are consistent with this conjecture: the factor ¢(4s — 1) causes the
coefficients on the right to be periodic, as predicted by the Periodicity Theorem (2), and,
for example, if m is square-free and admits a factorization m = m;m, with

o N 2
()
ma

then cancellations cause the coefficient of Nm™° on the right to vanish. On the other
hand, the other squarefree coefficients will not vanish—if the squarefree m admits no such
factorization into m;m,, the conjecture implies that

7(m)? = 25 Nm~12 g, (1,m).



Here k is the number of prime factors of m. Thus Patterson’s conjecture determines all
the Fourier coeffients of 6, at least up to sign.

Furthermore, Patterson considered the convolution of 8 with its complez conjugate. This
is the integral of |0|? against a nonmetaplectic Eisenstein series. It represents the Dirichlet

series

(4) ¢(25) Y Ir(m)|* Nm~,

which has analytic continuation and a functional equation with respect to s +— 1 —s. There
is a pole at s = 1 (there are also poles at s = 0, % and %) The location of the pole is
consistent with the magnitude of 7(m)? predicted by the conjecture—for squarefree m,
the conjecture predicts that |7(m)| would be 2* with probability 2!~ and otherwise zero,
where k is the number of prime factors of m. We shall see later that if the conjecture is
true, (4) is equal to a Dirichlet series which comes up in another context, and which does
in fact have a functional equation and a simple pole at s = 1.

To go beyond this evidence of Patterson, let us consider an Eisenstein series on GL(4).
Specifically, let us define a function I(r,s), where 7 lies in GL(4,C)/ZU(4) (Z being
the center of GL(4,C)), and s is a complex parameter. Namely, any element of this

homogeneous space has a representative of the form

Y1Y2Y3 Y2Y3Ti Y3Ts4 Te
Y2Yys3 Y3Tz ITs

Y3 z3

1

Then we let

I(T,S):ﬂ(yl le> 0(!/2 3;2) 1y1y§y3|2’,

where the y; are positive real numbers. Let I'o(4) be the subgroup of matrices in I'(4) such
that 2 x 2 block in the lower left hand corner consists of zeros. Then we have the following

Eisenstein series:

E*(r,s) = ¢(8s — T7) ¢(8s — 6) E(r,s),

E(r,s) = Z k() I(~7, ).

Lo (4)\T(4)

This Eisenstein series has a functional equation with respect to s +— 2 — s, with poles at
s = %, —g—, 1, %, and %. Let us consider the Fourier coefficients. Specifically, let

wy =

1



The Fourier coefficients D(s;ny,n2,n3) are defined by

1 z z4 z6
1 zo x5

E| w, 1 =z 7| e(—n1z1 — nezs — naz3)dz - - - dze
3
c/o c/o 1
ninang
—-3/2 _ =Y nan
= D(s;n1,nz,n3) Nn| / Nn;? Nn, 12y g |,

Where D(s;ny,n2,n3) is a certain Dirichlet series involving the coefficients 7(m). Full
details of the determination of these Dirichlet series will be given elsewhere, but here we
recapitulate the basic idea. (Indeed, it is necessary to do this simply in order to state the
definition of D(s,n1,n2,n3).) A coset in I'o\I' is given by the following data: If v is a
matrix with the ¢, j-th entry being equal to ¢;;, let A;;, for 1 <2 < j < 4 be the minor
caic4j — c3jcqi. Then the coset of v in I'o\I' is associated with the six numbers Ayz, A;3,
Aj4, A2z, A24 and Agay4, which are coprime, and which satisfy

(5) A12A34 — A13Agq + A14A23 = 0.

Conversely, given six coprime integers subject to the condition (5), there exists a coset
having those numbers as minors. In computing the Fourier coefficients of the Eisenstein
series, it is important to chose the coset representatives in a particular way. Specifically,
let the A;; be given. The coefficients ¢;; are to be reconstructed as follow: let A4 be
the greatest common divisor of Az4, A24 and A;4. Find r, s and t so that Ay = rAas +
SAqgq +tA14, and let Az = sAg3 +tA13, Ay = —TAg3 +tA19, Ay = —TA13 — sA12. Also,
let Az34 be the greatest common divisor of Az4, A24 and As3. Find R, S and T so that
Ag3q = RA3z4 + SAzq + TAgz, and let Ajzqy = SA14 + TA1a, A124 = —RA14 + TAq2

and Aj23 = —RA;3 — SA;,. It may be shown that A,, Ay, A; and A4 are coprime,
and that Ajq3, Aj4, A134 and Asz4 are coprime. Furthermore, we may choose the coset
representative y so as to have bottom row (A1, A2, A3, A4), and so that the bottom row

1

of the involute *y = wy *y~! w; has bottom row (—Aj23, A124, —A134, A234). This done,

we may now describe D(s;ny,n2,n3): In fact, this is the Dirichlet series

Z niA nzA
1 1434 3As34
(6) E {K‘,("Y)N(A4A234A34 ) T( A2 ) T( A2 )
Asa A24,A14,A23,A13 mod Az, 234 4
Asa|A13Aza—A1aA2s
Ai2,A13,A14,A23,A24,A34 coprime
A2 In1Ase,A2|naAss

Al3q Azg Az _2
eln +ng—— +ng— NAZS®.
( ' Agza ?Aaq 3A4) } 3



For the moment, we are only concerned with the coefficient where ny = ny = nzg =1. We
see that

¢(8s —1T7)¢(8s —6) D(s;1,1,1)

has a functional equation with respect to s — 2 — s, with a simple pole at s = %.

We have shown how Patterson deduced from the location of the pole of the Dirichlet
series (4) that, on the average, the 7(m) have the same magnitude as predicted by his
conjecture. Now let us show that the location of the pole of (6), with n; = ny, = ng =1,
shows that on the average, the 7(m) have the right arguments. Thus, we seek to show that
7(p)%g1(1, p) is, on the average, about Np'/2. Indeed, we may calculate the coefficients in
(6) more explicitly, and interestingly enough, like the series (4) and the left side of (3),
they only involve the squares of the 7(p). Let us restrict ourselves to describing the p-part
of the series (6) (with ny = ny = ng = 1), in other words, the sum of the coefficients of
Np~Fks. Of course, one must compute all the coefficients, which we have done, but for
the moment considering just the p-part will be sufficient to show what is happening. It is

convenient to make the following change of variables: let w = 2s — % Then the p-part is

L..

1 L —4w
1+g1(1,p) 7(p)* Np~ 2 =% + 291 (1,p) 7(p*) Np~2 7% + g1(1,p) 7(p)* Np~ 2 >¥ + Np~**.

This is to have a functional equation with respect to w +— 1 — w, and a simple pole at
w = 1. Since |7(p)| is, on the average, constant (from the location of the pole of (4)), if the
argument of 7(p)? was not approximately the same as g; (1, p), the pole of (6) would be to

the left of w = 1. Thus the location of the pole shows that on the average, the argument of
the 7(m)? is consistent with the conjecture. Actually if m is squarefree, and one assumes
the conjecture, then the coefficient of Nm~* would be 2% with probability 2!~ *, where k
is the number of prime factors of m, and zero otherwise.

Now let us show that, if the conjecture is true, then the Dirichlet series (4) and (6) may
actually be identified with known Dirichlet series having the correct functional equations
and poles. Firstly, assuming the conjecture, the following identity may be established:

(7) (4w — 1) ¢(4w) D(4(w + 2 1,1,1) = ¢(2w) 3 [r(m) [ Nm .

It follows from the general theory of Eisenstein series that the left hand side has simple
poles at s =0 and 1, and at s = %, and %. (The Eisenstein series itself also has a pole at
s = 1, but only the degenerate Fourier coefficients have poles—the left hand side of (7)
has no pole at s = %) The right hand side has the same poles.

We shall further show that assuming Patterson’s conjecture, the above two Dirichlet
series may be realized as the Fourier coefficient of an Eisenstein series on the two-fold
cover of GL(3). Specifically, if

Y1Y2 Y271 I3
T = y2 T2 |, y: > 0,
1



let us define

_ . Avi+2v 2v) +4va
IVI;VZ (T) =Y ! ? Ya ' s

E(r,v1,v2) = ¢(6v; — 1) ¢(6ry — 1) ¢(6vy + 6y — 3) Z fc('y)2 Ty g0 (HT)s
Fe (4)\I(4)

The Kubota symbol is squared to indicate that this Dirichlet series is made with quadratic
symbols. The Eisenstein series E(7,v1, v2) has functional equations with respect to

(U17U2)H (%WVZ)%_Vl)v

('/1,’/2) = (Ul bty — %a% - UZ)’
(v1,v2) = (% — Vvt — %),
(v1,v2) = (1 — vy —va, 1),

(v1,v2) = (V2,1 — vy — v2).

The leading n, ny-th Fourier coefficient is the Dirichlet series

R(v1,v2) = ¢(6v1 — 1) ¢(6r2 — 1)¢ (61 + 602 —3) Y H(Cy,Co)NCT* NC, 2,
C1,Ca

niBy | nyB;
H(C.,C) = Z k(y)%e + i
Cy Cq
A,,B, mod C,
A2,B2 mod Cy
A;,B,,C, coprime
A2,B,,C,; coprime
A1C2+ B B2+C,A=0
where 7 is a matrix having the bottom row (A4, By,C}), and whose involute has bottom
row (Az, By, C5). Incidentally, it is possible to realize this Dirichlet series also as the Mellin
transform of the quadratic Eisenstein series on GL(2), but the GL(3) interpretation seems
to give more information.
We shall only be concerned here with the case n; = ny = 1. Then, assuming Patterson’s

conjecture, we may show that

+

’

¢(2w) Y |r(m)P Nm™v = R(% +

wlg

o=
o=
~—

By (7), this identifies both Dirichlet series (4) and (6). This equation is consistent with
the functional equations and the locations of the poles.
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Now let us present an identity which is closely related to Patterson’s conjecture, and
which may be the key to both proving the conjecture, and to generalizing it. There exists
a theta series 63 on the 4-fold cover of GL(3) with known Fourier coefficients. Restricting
ourselves strictly to those coefficients parametrized by powers of a prime, it is sufficient
to describe the coefficients 7(p*',p*2) where 0 < k;,k; < 4, because of the periodicity
theorem. The only nonvanishing such coefficients are

7(1,1) =1, 7(1,p) =7(p,1) = Np~ 2 g1(1,p),

_ —_—2
(p,p?) =7(p%p) =91 (1,p),  7(p*,p%) = Np~/?g,(1,p) .

Now, denoting the theta function on the 4-fold cover of GL(2) for definiteness as 5, the
Rankin-Selberg convolution of 6, with 05 is the Dirichlet series

L(s, 02 xga) = Z ‘r(ml)‘r(ml,mg)N(mlmg)_".

m;,ma

It has a functional equation with respect to s — 1 — s. Patterson’s conjecture is closely
related to the formula

(8) L(s,0; x 03) = ¢(4s — 2) L(s,0,),

where L(s,03) is the “Mellin transform” 3" 7(m) Nm~°.

In this form, there seems to be some hope of proving the conjecture, by a variation of the
method originally used by Patterson [3] to determine the Fourier coefficients of the cubic
theta function on GL(2). For the left-hand side automatically has a functional equation by
the theory of Rankin-Selberg convolutions. One might hope to show then by the converse
theorem that there exists an automorphic form ¢ on the four-fold cover of GL(2) such that

L(s,0, x 03) = ¢(4s — 3) L(s, ¢).

Then, by the method used by Patterson in [3] or otherwise, one would hope to show that
é=40.

Now let us propose a very general conjecture which includes both (7) and (8) as special
cases. Let f, denote a theta function on the n-fold cover of GL(r), where n is fixed
throughout the following discussion. If r’ < r < n — 1, then we conjecture that

(9) L(s,0, x O,_,)

= g‘(ns - "_'2+") g(ns ~ #) ---g(ns — ’”"%'l_ﬂ L(s,0, x 0,_,).

Moreover, we conjecture that (9) may be identified as the Fourier coefficient of an Eisenstein
series of parabolic type r,r’ on GL(r + r').
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This conjecture is consistent with everything which we know, and seems almost cer-
tainly true, although we have no idea how it should be proved. It implies a great deal
about the Fourier coefficients of the theta functions, and when the Fourier coefficients
of the Eisenstein series are further investigated (work in progress in collaboration with
Solomon Friedberg), we believe that a complete and satisfactory generalization of Patter-
son’s conjecture will be at hand. What is lacking at this time is the generalization of (6)
to the case where r or r’ is greater than 2.

Finally, it should be mentioned that this conjecture has an analog for cusp forms. If
¢ is a cusp form on the n-fold cover of GL(r), we conjecture that the Rankin-Selberg
convolution L(s,¢ x 0,_,) is equal to the Fourier coefficient of an Eisenstein series on the
n-fold cover of GL(r + ') involving ¢. Since the Fourier coefficients of §,,_; are essentially
known, if ' = 1, this conjecture is probably provable with the present state of knowledge.

For this, it is not necessary to assume that r < n — 1.
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