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Preface

The calculus of variations is a subject with a long history
stretching back to classical times, with its origins lying in natural
questions which arose from problems of maximum areas, minimum times
and shortest paths in geometry and mechanics. Most of these
applications lead to integrals and, as a consequence, the calculus of
variations has been concerned to a large extent with the maximum and
minimum properties of integrals. The realization that convexity was
an important concept in variational calculus was a more recent
development. If the convexity of an integral can be established then
it usually also implies a minimum principle. Of course not all
variational problems are convex, but it does happen to be so in a
large number of important cases. Whilst many standard and classical
applications lead to integrals of real functions, there is no reason
why the space of real functions cannot be generalized to vector
spaces and the mapping developed into a functional instead of an
integral. In these terms a variational principle follows when at
least one element in the vector space can be found which makes the
functional stationary, and an extremum principle is obtained when
some assertion can be made about the minimum, maximum or saddle
behaviour of the functional at its stationary value.

Any approach to this subject along the iines indicated in the
previous paragraph, inevitably requires a background in elementary

applied functional analysis. The first chapter attempts to supply
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this need within the requirements dictated by the other two chapters.
This chapter contains sections on vector spaces, norms, inner
products, various properties of linear and nonlinear operators and
functionals and convexity, together with a brief description of the
Lebesgue integral. In the second chapter the calculus of operators
is introduced, including the Gateaux, Fréchet and gradient operators.
For differentiable functionals, convexity can be defined in terms of
these generalized derivatives, and minimum principles follow from the
resulting inequality. In chapter 3 the functionals are defined over
the product space of two inner product spaces. If it can be shown
that such functionals have a global saddle structure then dual
extremum principles follow, and these provide upper and lower bounds
for the stationary values of the functionals.

The material presented in this book arose from the author's
interests in extremum principles and nonlinear differential
equations, and from the teaching, over a number of years, of final
year courses in these subjects at the University of Keele. The book
is intended as an introduction to various techniques which can be
applied to those differentiable convex functionals which arise from
operator equations in applied mathematics. The approach is intended
to be fairly informal and deliberately limited in length and depth;
it is mainly directed to those whose interests lie in the
applications of these methods. The treatment is kept at a reasonably
intuitive level so that the reader will have results and techniques
readily available. To this end there are 65 worked examples in the
text and about 90 problems and applications at the ends of the
chapters together with brief answers at the end of the book. Most of
the specific applications are taken from differential equations which
are usually presented in reduced or simplified form; the actual
derivation of equations from their original physical or engineering
context is not attempted here.

My thanks are due to Peter Kendall for inviting me to contribute
this book to the series, and also for his valuable comments on an

earlier draft of the book. I am particularly grateful to
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Olwen Brindley for her skill and accuracy in the difficult task of
setting out the final typescript.

Keele, Staffordshire

1984 Peter Smith
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CHAPTER 1
Spaces, Operators
and Convexity

1.1 Introduction

Many of the ideas presented in this book have their origins in
concepts in real function theory. It will be instructive to briefly
formulate such problems in this context. Let f(x) be a real function
of the real variable x defined in the open interval x e (a, b) on the
real line R. 1If the interval is denoted by I, then the function may
be represented by the mapping notation f : I - F. Here I denotes the
domain of the function f, that is, the set of values of x over which
f is defined, and the range of f, which is the set of values taken by
f+ lies in R. This notation is used extensively in this book and
will be discussed in more detail in the next section. 1In addition
suppose that f is differentiable on I, so that f' : I -~ R where f'(x)
is the usual ordinary derivative of f(x) at x. At any particular

value of x for which f'(x) vanishes, the function f(x) is said to be

stationary. Thus if z¢ € I and f'(xy) = O then f(x) has the
stationary value f(xo). Such a statement expresses a variational
principle.

It might be possible to obtain more information about the nature of
the stationary value: is it a maximum or minimum value or a point of
inflection? For real functions, for example, f"(xq) > 0 is a
sufficient condition for a minimum value of f(x) at & = Xo. A more
general condition for a minimum can be expressed in terms of the sign
of f’(w) in a neighbourhood of x = Xy: there should exist an

interval |x - Zo| € § such that f'(x) < 0 for = ¢ [xo - §, xo) and
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f'(x) >0 for x € (xy, &y + 8]. This minimum value of the function
gives a local extremum principle. At least for @ e [xy - §, xg + §]

and x # xy, we can say that
Ffilx) > fizyg) (1.1)

that is, the function value is greater than its stationary value. 1In
this instance we have a local minimum principle. There might also
exist further local minimum or maximum values on the interval . If,
however, (1.1) holds for all x € I then the statement illustrates
what is known as a global extremum principle, which, of course, does
not preclude the existence of other local extremum principles.

There is a particular set of functions for which any minimum value
is automatically a global minimum. These are functions which are
convex. Twice differentiable convex real functions can be
characterised by the inequality f"(x) > O for £ € I. If the equality
is missing from the previous inequality then the function is said to
be strictly convex and any stationary minimum value is then unique.

This real function analysis can be extended to include functions of
more than one variable in which case the stationary value can include
the saddle point in addition to the maximum and the minimum. The
location of stationary values for real functions is probably the
simplest example of a variational principle.

The calculus of variations in its more general context is concerned
with the problem of finding the stationary or extreme values of real
quantities which are not necessarily real functions of real variables.
These quantities or functionals as they are known may be integrals,
scalar products, series, etc, which themselves contain unknown
functions. The’classical calculus of variations problem typically

involves the construction of the stationary value of integrals of the

form
as
J(Y) = ( Fx, y, y") dz, y' = dy/dx, (1.2)
Ja
1
subject to boundary conditions on y(x) at * = a; and ©x = a;. If the

integral J(y) is stationary for the extremal Yy = 2(x), then



variations of J(y) are constructed by letting y = z(x) + en(x) where
€ 1s a real parameter and n(x) is a real twice-differentiable
function which vanishes at x = @; and * = a». After the expansion of
F(x, z(x) + en(x), 2'(x) + en'(x)) in powers of € using a Taylor

expansion, the integral becomes
J(z + en) = J(z) + 8 + O(e?) (1.3)

where 8J is the so-called first variation of J given by

an \

9F d [ 3F

8J = ¢ Ja {_BZ = {TZ'J} dog's (1.4)
1

Stationary values occur, by definition, where the first variation
vanishes. The argument proceeds by a proof that &8/ = 0 for all n if

7z satisfies the Euler-Lagrange equation

dz  dx

or_ dfor)
Full descriptions of the Euler-Lagrange theory and its many
generalisations can be found in standard texts on the calculus of
variations (see, for example, Akhiezer (1962), Cesari (1983), Clegg
(1968), Pars (1962), Weinstock (1952) and Smith (1974)).
Investigations concerning the status of the stationary value usually
depend on the behaviour of the second variation in the expansion of
(1.3).

The right side of (1.3) is really a generalised Taylor expansion in
which the first variation can be considered as the generalised 'first
derivative' of the functional which defines J. It is the vanishing
of this derivative which leads to the Euler-Lagrange equations. The
aim of this text is to emphasize, as far as possible, this particular
approach to variational problems. The application of convexity to
the calculus of variations has received considerable attention during
the past twenty years. Much of the theory is now well-established,
and it seems an appropriate time to record a broad view of the
current state of the subject. Also there does exist in the
literature a large body of applications, illustrations and examples

which can be drawn on to develop the theoretical ideas. However many
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of the examples will be given in reduced or simplified form; it is
not possible in a book of this length to fill in the necessary
background theory or the physical meaning or interpretation of many
of the extremum principles. In many areas the physical principles
lead directly to the appropriate variational problem. But this is
not always the case. The link between nonlinear equations and an
underlying variational principle can be often not intuitively obvious,
nor, for that matter, need it be a unique principle. This text is
specifically directed towards a study of the stationary values of
those functionals which possess some additional property such as
convexity or saddle structure.

A broad account of variational methods with applications in
classical physics can be found in the book by Mikhlin (1964). The
works of Arthurs (1970, second edition 1981) and Robinson (1971) are
concerned with dual or complementary variational principles,
functional differential and the canonical formulation of physical
problems and are relevant to the account presented here. A modern
treatment of the variational method based on functional analytic
techniques has been given by Oden and Reddy (1976), and an account
using the ideas of Giteaux differentiation and monotone operators can
be found in the work of Vainberg (1973). Early work on dual extremum
principles was initiated by Noble (1964) and Sewell (1969). a
complete study of dual extremum principles and associated Legendre
transformations up to 1972 can be found in the survey article by
Noble and Sewell (1972). This survey also shows the particular links
between extremum principles and Lagrangian and Hamiltonian methods in
applied mathematics. This work has been updated in more recent
surveys by Sewell (1979, 1982), which also develop new connections
with bifurcation theory.

The applications of dual extremum methods are now varied, ranging
from the traditional variational problems in solid and fluid
mechanics to network theory, optimization and nonlinear pProgramming.
Recent research interest has concentrated on the areas of dissipative
systems, initial-value problems for ordinary and partial differential

equations and nonlinear applications in general. As we remarked



previously, nonlinear problems (and some linear ones also) may have
no 'natural' variational context. The inverse variational question
pecomes the following: given a set of equations which arise, say, in
some physical setting, can we design a functional such that the
stationary value of the functional occurs where the equations are
satisfied? Obviously there is no question of this functional being
unique. However further constraints may be necessary or desirable.
For extremum principles we may require convexity and we may demand
that the stationary value takes a prescribed form which is of some
physical or practical interest.

Any modern treatment of this subject must draw heavily on the ideas
of applied functional analysis. The development of functional
analysis in the early part of this century created a natural setting
for the abstraction and generalisation of classical calculus of
variations. Real variables are replaced by elements of vector spaces
integrals become functionals and the Euler-Lagrange form becomes the
gradient of the functional. This chapter continues with an
introduction to these parts of applied functional analysis which are
necessary for variational principles. Inevitably it has to be of
limited scope. More detailed treatments can be found in the books of
Griffel (1981), Hutson and Pym (1980), Milne (1980), Wouk (1979),
Stakgold (1979) and Hille (1972).

1.2 Vector spaces

We are interested in mappings between sets of elements. Suppose
that U and V are two sets of elements. We say that a function f maps
U into V if to each element u & U there corresponds exactly one
element v in V. We write v = f(u) or f : U > V to emphasise the
mapping. In the latter notation U is called the domain of f and is
sometimes denoted by Df instead of U to emphasise the function
dependence. Frequently we shall assume that u € Df < U that is Df is
a subset of U which can occur, for example, if additional conditions
are required of the elements in U. The set of elements given by f(w)
is called the range of f and denoted by R,.. Since the range is often

b

not precisely or conveniently defined it is often assumed to be part



of a larger set V. For example we may know that f(x) is a real
function but not precisely the range of its values. If Rf = V we say
that the mapping is onto V, and if Rf = V we say that the mapping is

into V. Strictly the mapping should be written

fiDpsU>R. eV

i
as illustrated in figure 1.1. The mapping is said to be injective if
uy # up implies f(u1) # f(uz) for every ui, up. The mapping is said
to be surjective (or a mapping onto V) if Rf = V. Finally the
mapping is said to be bijective if it is both injective and

surjective. We can associate inverse mappings with bijective ones as

0

we shall see later. For any given u, v is called its image .

PIG. 1.1

Example 1.1 1f U = {u|(-», =)}, then U is the real line or the set
of real numbers which we shall denote by R. In particular, if
f(u) = cos u, then we can put V = R with the range given by

Rp = {v|[-1, 1]}. Hence f : R > Rp = R.

The Cartesian product of two non-empty sets U; and U; is denoted by
U1 x U and represents the set of all ordered pairs (u#1, uz) with

u1 € Uy and up € U,.



Example 1.2 Let U be the set of all n-tuples of real numbers. We
wEite W = (Ule Bds =oey un) where u; € R((z=1,2, ..., n). Each
component can be chosen independently from the real numbers. The set
U is the product space R x R x ... X R (n times) which we write as R

It is known as Euclidean n-space.

Example 1.3 We denote the set of real functions which are continuous
on the closed interval [a, b] by Cla, b]l. 1If they are n times
continuously differentiable the set will be represented by Cn[a, B -
Let u € CY[a, b] be a particular element. Then the mapping v = du/dt
maps elements from Cl[a, b] into the space of continuous functions
Cla, b]. 1If the mapping is represented symbolically by v = Du then
the operation is given by D : C'[a, b] > Cla, bl. 1In this example
the elements are themselves functions so that the function is an
element in some larger set. For this reason (C[a, b] is an example of

a function set or space.

The terms operator and transformation are also used as alternatives
to function, although operator is sometimes restricted to mappings
between function spaces (rather than real numbers) but the usage is
by no means firm. However one particular mapping has a special name.
If the range of the mapping is a subset of the real numbers then the
mapping is known as a functional (the term is also used if the range
is a subset of the complex numbers but we are almost exclusively

interested in real functionals in this context).

Example 1.4 1If wu(t) € C*la, b], then

v - [ [+ (2]

is a functional. 1In this case the mapping can be represented by
N : C'la, b] > R, that is the operator N maps real functions which

have continuous first derivatives onto the real line.

We require an algebraic structure for the elements of the set, and

this is provided by assuming that the elements form a vector or



8

linear space. To some extent this allows elements in the space to be
added and multiplied by constants in a conventional way. For this
reason the elements are often referred to as vectors.

Let u, v, w, ... be elements of a set U. Then U is called a vector
space if vector addition u + v € U of any two elements u and ¥ can be
defined which satisfies the axioms

(1) u+v =09+ u,

(i1) u+ (v +w = (U +v) +w,

(iii) there exists a unique zero vector 0 such that u + 0 =y for
every u £ U,

(iv) for every vector u there exists a unique vector -u such that
u+ (-u) =0,
and scalar multiplication aw e U for any vector u can be defined
which satisfies the axioms

(v) a(Bu) = (aBlu,

(vi) 1l.u = u,

(vii) o(u + V) = oau + av,

(viii) (o + Blu ou + PBu.
If the scalars are real (complex) numbers then [ is called a real
(complex) vector space.

As we stated previously the Cartesian product Uy x U, of two non-
empty vector spaces U; and U, is the set of all ordered pairs
(U1, uz) where u; e U; and up ¢ U,. 1In the axioms of the vector

space, vector addition is a mapping U X U » U whilst for a real

vector space scalar multiplication is a mapping R x U - [.

Example 1.5 The space B" with vector addition and scalar

multiplication defined by the operations

U+ V= (U + V1, ..., u, +v),
au = (oU1, ..., aun),
for any vectors u = (U1, Uz, ..., un) and U = (U1, Vos «xey Un)
; no, . . ;
belonging to R is a vector space. It is easy to verify that axioms
(1) - (viii) are satisfied by these vectors.

Example 1.6 the space ("[a, b] is a vector space. If u(x) and v(x)



are any two functions belonging to Cn[a, bl then u(x) + v(x) and
au (x) are both n times continuously differentiable on the interval.

The remaining axioms are easily confirmed.
Example 1.7 Let Rp be the set of all of all real sequences

[u:]?
1 e

converges. Define the algebraic operations of vector addition and

®
u = (ui) = (41, Uz, -...) such that for p 2 1 the series Zi—

scalar multiplication by
u+ v = (U, Uz, ---) + (V1, V2, -..) = (Uy + V1, Uz + V2, .-.),
ou = o(uy, U2, ...) = (U1, OUZ, «..)-

Then this set forms a vector space.

The proof requires the Minkowski inequality

= 1 1

| p|p p|p
_z ‘uii } # [ii ‘Uil } ’
1=1 =1

to establish the convergence of

{.z lui H vi‘p]p b3 ‘
1=1

—

Voolw. + v, |P,
. 7 7
=1
(see Kreysig (1978) for a proof of this result; some hints are also

given in Problem 1.7).

A subspace U' of a vector space U is a nonempty subset U' € U such
that for all u;, #, € U' and all scalars o and B, au; + Bup, € U' and
U' is itself a vector space. On the other hand a subset of U is
simply a collection of elements drawn from U which may not

necessarily satisfy the axioms of a vector space.

Example 1.8 consider the set of real functions which are continuous
for x € [a, b] but which vanish at * = @ and x = b. Clearly any
linear combination of any two elements of this set must alsoc belong
to the set, say U', and U' also satisfies the axioms of a vector

space. It is a subspace of (Cla, b] and we can write U' = Cla, b].

On the other hand, the subset of functions which take values of 1 and



