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Preface

Combinatorics and graph theory have mushroomed in recent years. Many
overlapping or equivalent results have been produced. Some of these are
special cases of unformulated or unrecognized general theorems. The body
of knowledge has now reached a stage where approaches toward unification
are overdue. To paraphrase Professor Gian-Carlo Rota (Toronto, 1967),
“Combinatorics needs fewer theorems and more theory.”

In this book we are doing two things at the same time:

A. We are presenting a unified treatment of much of combinatorics
and graph theory. We have constructed a concise algebraically-
based, but otherwise self-contained theory, which at one time
embraces the basic theorems that one normally wishes to prove
while giving a common terminology and framework for the develop-
ment of further more specialized results.

B. We are writing a textbook whereby a student of mathematics or a
mathematician with another specialty can learn combinatorics and
graph theory. We want this learning to be done in a much more
unified way than has generally been possible from the existing
literature.

Our most difficult problem in the course of writing this book has been to
keep A and B in balance. On the one hand, this book would be useless as a
textbook if certain intuitively appealing, classical combinatorial results were
either overlooked or were treated only at a lev 1 of abstraction rendering
them beyond all recognition. On the other hand, we maintain our position
that such results can all find a home as part of a larger, more general structure.

To convey more explicitly what this text is accomplishing, let us compare
combinatorics with another mathematical area which, like combinatorics, has
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Preiace

bq:ngmliﬂ,as a field in the present century, namcly topology. The basic
unification of topology occurred with the acceptance of what we now call a.
“topology™ as the underlying object. This goncept was general enough to
encompass most of the objects which people wished to study, strong enough
to include many of the basic theorems, and simple enough so that additional
conditions could be added without undue complications or repetition.

We believe that in this sense the concept of a *“system ™ is the right unifying
choice for combinatorics and graph theory. A system consists of a finite set
of objects called “vertices,” another finite set of objects called “blocks,” and
an “incidence™ function assigning to each block a subset of the set of vertices.
Thus graphs are systems with blocksize two; designs are systems with con-
stant blocksize satisfying certain conditions; matroids are also systems; and
a system is the natural setting for matchings and inclusion-exclusion. Some
important notions are studied in this most general setting, such as connectivity

and orthoponlit as well 23 the pa rameters and vector spaces of a system.
Connectivity i« :oportant i both graph theory and mafroid theory, and
parailel theorem:© are now avoided. The vector spaces i a svstem have
impur}ant appi _»‘..J'mns in all of thuse toplcs, and ag.m much ‘uplicaﬁun is

1 TemooHiaain v LR \ gLl SpAe:

avoldsd =

/O other “wying techniqu= cniployed T a sﬁ1gie fbtation Ansictent
theB Hout 87 = UL T gtum-}* HE'to Ednstrict sich A e 0 one must
fage riaty difit o Tevels 147 the il efﬁmhv of gefs (elv*m‘cnfs ﬂj’ﬁf‘ eletnents,
colle tions of 1 <, Tdmitlen of ek ”ik&"mr\ c.c'} ds*v.ell q¢ other ob;ect‘s
(systems, functi set:. 88 b al MY W e T Al TS 45 poks sible
to use different ( /ve8 of Ffters fir ".\Iftf"‘rl types’ B o“,t'""‘\mu’ ¢Hch topic
coverad-usually o voives Bn'y @idow-iypes ol o bicvis, these is @ s reng tempta-
tion.to adept o« aplenaplationdor that section regardiess of how it fits in
vmh ihe rest afsiae beah. Wa havesesisted this lempiatio Conseqx.ently,
onee: L he n@iniie i sysici 48anasigrea;the reader villba abieto flip from
chapter 1o ichapies, undersyianding al glance the divers reles played in the
middie and lat - chapters byitheconcepts iniraoduced imthaearlier chapters.
s An undesgragate; epurse in-Jinear- algebra is, prergquisiie to, theicom-
prehension of ost of this book. Basic.group theory is needed. for sections
1iEand XIC. A deeper appreciation of sections #IE, JIIG, VHC, and VIID
will be gained by the reader who has had a year of topology. All of these
sections may be omitted, however, without destroying the continuity of the
rest of the text.

The level of exposlt!o‘n is set for the Bcgmnmg graduafc smdent in the
mathematical sclences. It is also appropnate for the’ specxallst in another
mathematical fie'd who vﬁshes to Iearn combmatorlcs from scratch but from
.d'sdphxsttcated pomt of view.

‘Tt has been our cxpenence while teachmg from the notes that have evolved
into this text, that it would take approxnmately ‘three semesters of three
hours classroom contact week to cover all of the maier:a] that we have
presented. A perusal of thpﬁ'abie of Contents and of the “Flow Chart of the

e
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Preface

Sections” following this Preface will suggest, the numerous ways in which a
subset of the sections can be covered in a subset of three semesters. A List of
Symbols a,nd an Index of Terms are prov' ded to assist the reader who may have
sk1pped over the section in which a symbol or term was defined.

As indicated in the figure below, a one-semester course_can be formed
from Chapters I, II, IX, and Xl Howcver, the instructor must provlde some
elementary graph theory ina few instances. The dashed lines in the ﬁgure
below as well as in the Flow Chart of the Sectlons mdxcate a rather weak
dependcncy W 1
= — IlI o

L == o o

7
l;

IX X1 Vll e Vlll

If a two-semester sequence is desired, we urge that :Chapters L 11, and I11
be treated in sequence in the first semester, since they comprise the theoretical
core of the book. The reader should not be dlscouraged by the appareat
dryness of Chapter 11. There is a dividend wluch is compounded and paid
back chapter by chapter. We recommend also that Chapters 1V, Y, and VI
be studied in sequence; they are variations on a theme, a kind of minin:= . or
maximin principle, which is an important combinatorial notion. >ince
Chapter X brings together notions from the first six chapters with ailus:».5 o
Chapters VII and 1X, it would be a suitable finale.

There has been no attempt on our part to be encyclopedic. We ha' o even
slighted topics dear to our respective hearts, such as integer progriing
and automorphism groups of graphs. We apologize to our colleagues whose
favorite topics have been similarly slighted.

There has been a concerted effort to keep the technical vocabulary lean.
Formal definitions are not allotted to terms which are used for only » litle
while and then never again. Such terms are often written between quo ation
marks. Quotation marks are also used in intuitive discussions for terms which
have yet to be defined precisely.

The terms which do form part of our technical vocabulary appcar in
bold-face type when they are formally defined, and they are listed in the 'ndex.

There are two kinds of exercises. When the term “Exercise” apy« 15 in
bold-face type, then those assertions in italics following it will be in in
subsequent arguments in the text. They almost always consist of ight-
forward proofs with which we prefer not to get bogged down and (/- rehy
lose too much momentum. The word “Exercise” (in italics) gouerally
indicates a specific application of a principle, or it may represent a digression
which the limitations of time and space have forced us not to purue. In
principle, all of the exercises are important for a deeper understanding /[ and
insight into the theory.

Chapters are numbered with Roman numerals; the sections withii cach
chapter are denoted by capital letters; and items (theorems, exercises, figures,

ix



etc.) are num consecutively regardless of type within each section. If
an item has morg¢ han one part, then the parts are denoted by lower case
Latin letters. For reférénces. -within a chapter the chapter number will be
suppressed, while in refererices tq cms in other chapters, the chapter number
will be italicized. For exampl? mthm Chapter III, Euler’s Formula is
referred to as F2b, but whenlt is mvoﬁbd m Chaptcr VII, it is denoted by
IITF2b.

Relatively few of the results in this text are mtftgly new, although many
represent new formulations or syntheses of published mg_bew ¢ have also
given many new proofs of old results and some new exercises Wit "w any
special indication to this effect. We have done our best to give crédlﬁ-wé

it is due, except in the case of what are generally considered to be resuha:_x

D

“from the folklore”.

A special acknowledgement is due our typist, Mrs. Louise Capra, and to
three of our former graduate students who have given generously of their time
and personal care for the well-being of this book: John Kevin Doyle, Clare
Heidema, and Charles J. Leska. Thanks are also due to the students we have
had in class, who have learned from and taught us from our notes. Finally,
we express our gratitude to our families, who may be glad to see us again.

Syracuse, N.Y. Jack E. Graver -
April, 1977 Mark E. Watkins
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CHAPTER 1
Finite Sets

IA Conventions and Basic Notation

The symbols N, Z, Q, R, K will always denote, respectively, the natural num-
bers (including 0), the integers, the rational numbers, the real numbers, and
the field of order 2. In each of these systems, 0 and 1 denote, respectively, the
additive and multiplicative identities. -

If U is a set, Z(U) will denote the collection of all subsets of U. It is called
the power set of U. In general, the more common, conventional terminology
and notation of set theory will be used throughout except occasionally as
noted. One such instance is the following usage: while “U < W™ will con-
tinue to mean that U is a subset of W, we shall write “U < W™ when
U< Wand U # W.(Thus U can be empty if W is not empty.) The cardi-
nality of the set U will be denoted by |U|, and Z,(U) will denote the collec-
tion of all subsets of U with cardinality m. A set of cardinality m is called
an m-set.

The binary operation of sum (Boolean sum) of sets § and T in Z(U) is
denoted by S + T, where

S+ T={xixeSuUT;x¢SNT}

In particular, § + U is the complement of S in U, and no other notation for
complementation will be required. Since the sum is the most frequently used
set-operation in this text, we include a list of properties which can be easily

verified.
For R, S, Te Z(U),

Al S+ T=T+§
A2 (R+S)+T=R+(S+7T)



I Finite Sets

A3 . ST =SoT=9g
Ad S+T=0<S=T

AS  SiT= BUD+@EnT)

A6 RUEB+T)2RUS)+RuUT)

A7 RN(§+T)=RNnS)+(RnT)

A8 R+(SnT)2(R+S)n\(R+T)

A9 R+HNR+TDDSR+BUDNDCSR+S)VURET)

Al0 Exercise. Show that the inclusions in A6, A8, and A9 cannot, in general,
be reversed.

Because of Al and A2, the sum > o S where & © P(U)is well-defined
if ¥ # 2. If ¥ = @, we understand this sum to be 2.

As usual, the cartesian product of sets X,..., X, will be denoted by
X3 % o 06 X, Thus

X el o X Xy = {(xl,...,x,.):.x‘eX,fori-—; 1 s

A function / from X into Y is a subset of X x Y such that
[f0@x} x Y)| =1 for all xeX. Following established convention,
Jf: X— Y will mean that fis a function from X into Y. For each x € X,
J(x) is the second component of the unique element of /N ({x} x ¥). We'
shall adhere to the terms injection if |/ (X x {y})| < 1 for all ye ¥;
surjection if | /N (X x {y})[ > 1forallye Y; andbuecnoulflfn X x Ol
= 1forall ye Y.

We say sets X and Y are isomorphic if there exists a bijection b: X — ¥,
and we note that X and Y are isomorphic if and only if |X| = | Y|.

A (binary) relation on U is a subset of U x U. Let R, be a relation on U,
for i = 1, 2. We say that (U,, R,) is isomerphic to (U,. R,) if there exists a
bijection b: U, — U, such that (x, y) € R, if and only if (b(x), 5(»)) € R,.
A binary relation R on U is reflexive if (u, «) € R for all u € U; R is symmetric
if (4, v) € R implies (v, ) € R for all u, v € U; R is transitive if (&, v) € R and
(v, w) € R together imply (4, w) € R for all u,v, we U. R is an equivalence
relation if it is reflexive, symmetric, and transitive.

Problems involving categories being outside the scope of this book, we
find it best to ignore them, and we shall freely use such terms as “equivalent”
and “equivalence relation™ in regard to objects from various categories
and not only to elements of some given set. Such disregard for categorical
problems will be particularly flagrant as we ireat in turn various notions of
“isomorphism.” For example, the “relation™ of “is isomorphic to” is
clearly an “equivalence relation’ on the category of sets.

We denote the set of all functions from Xinto Yby Y*.Since@ x ¥ = &,
Y? consists of a single function @ which is an injection; in case ¥ = 3,

2



IA Conventions and Basic Notation

itisa bijection, of course. If § < X, then the restriction of / te S, denoted by
fis, belongs to Y* and satisfies /j5(x) = f(x) for all xe S.

A bijection b: U —> U is called a permutatior of U. The set of all permuta-
tions of U is denoted by II(U). The identity on U is the function 1, € Ti{(U)
given by 1y(x) = x for all xe U. .

The function f: X — Y induces two corresponding functions between
Z(X) and Z(Y)..One of these is also denoted by f; and f: #(X) — #(Y) is
given by

fI8] = {f(x): xe.8}, -forall §eZ(X).

(Note that the choice of parentheses or brackets to surround the argument
determines which of the two functions denoted by the symbol f is intended.)
The set f[S] is the image of S under f. In particular, f[X] is the image of f.
The other function induced by f is the function f~*: Z(Y) — #(X) given by

fUT] = {x:f(x)e T}, forall TeZ(Y).

If f is a bijection, its inverse, also denoted by /-2, is a function f~1: ¥ — X.
By our convention, if y € Y, f~*[y] (= f[{»}]) denotes a subset of X, but
if f is a bijection, /'~ () denotes an element of X. fmaps Sinte Tif /[S] < T
and omto T'if f[S] = T. We say f is a constant fenction if |/[X]| < 1.

Let f: X — ¥; S, Te P(X);, U, We #(Y). The following basic proper-
ties of functions and sets are readily verified: .

ALl  fISUT] = fIS]USIT]
A2  ISATISAISINAT)
Al3 SHUVU W] = fUVf3W]
AN LUN W)= UL 0L W)
AlS FIS + T] 2 F[S} + FIT]
AlS U + W] =f"[U]_+f_“[W]

AL7 Exercise. Show that the inclusions in A12 and A15 cannot in general,
be reversed,

. Let X, Y, and Z be sets. Let fe Y* and g € Z¥. The composite of f by g
will be denoted by gf. Clearly gf'e Z*. We conclude the present section with
a rapid review of some elementary properties of functions and some termi-
nology.

A18 If both fand g are injections (respectively, surjections, bijections), then
80 is gf.

A19 @D =/ e 2P,

A20 g is an injection if and only if there exists # € YZ such that ig = 1y.



I Finite Sets

A21 Let g be an injection. If gfy, = gf; for f, /€ Y%, then f, = f;. The
converse holds if | X| > 2.

A22 fis a surjection if and only if there exists j€ XY such that fj = ly.

A23 Let f be a surjection. If g,/ = g,f for g,,g,€ Z¥, then g, = g,. The
converse holds if |Z| > 2.

A24 f'is a bijectign if and only if there exists b € X7 such that bf = 1; and
fb = 1y. In this case b = 2, and so b is unique.

A25 If X is finite and h e X, then A is a surjection if and only if A is an
injection.

If S < X and he X*, we say h fixes S if A[S] = S. If hs = 15, we say
h fixes S pointwise.

If * is a binary operation on Y, then * induces a binary operation on ¥Y*
which is also denoted by . Thus

(fi * fo)(x) = fi(x) * fo(x), forallf;, fo€ Y* xe X.

Note that if * on Y enjoys any of the properties of associativity, commu-
tativity, or existence of an identity, then that property is also enjoyed by =
on YX

One final important convention: henceforth, all arbitrarily chosen sets
will be finite unless explicitly stated otherwise.

A26 Exercise. Let f: X— Y. Show that if f is an injection (respectively,
surjection, bijection), then so is the induced function f: 2(X) — #(Y), and
conversely.

A27 Exercise. Let-f: X — Y. Show that if f is an injection (respectively,
surjection, bijection), then f~1: Z(Y) — Z(X) is a surjection (respectively,
injection, bijection), and conversely.

IB Selections and Partitions

Let U be a set and let S € #(U). The characteristic function of S is the func-
tion

Cs: U—)K
given by
1 fxes;
- ‘5(")’{0 ifxeU + §.

B2 Proposition. The function o: KY-— P(U) given by
a(c) = {xeU:elx) # 0} foralice K"
is a bijection. Moreover, o~ *(S) = ¢ for all § € Z(U).



IB Selections and Partitions

Proor. Clearlv o is an injection. If .S € Z(U), then o(cs) = S. Hence o is a
surjection. O

B3 Exercise. Let S, T'e Z(U). Prove that
¢s+ €r = Csyr and CsCr = Csars

and express ¢s r in terms of ¢s and cr.

For a set U, a function s € NY is called a selection from U. If x € U, the
number s(x) is the “number of times x is selected by s°. The number
ls| = 2 s(x)
xeU
is the cardinality (weight) of the selection s. If |s| = m, we say that s is an
m-selection. The set of all m-selections from U is denoted by S,(U), and we
let

sW) = | ) SuU) = NV,

m=0

If S € Z(U), we define the characteristic selection of S by

1 ifxes;

e $s(x) = {o ifxel+S.

The difference between Bl and B4 is subtle but important. In B4, the
symbols 0 and 1 denote elements of N rather than K. Of course, cs and s5
are closely related, but since 1 + 1 gives a different “answer” in N than
in €, the characteristic function and characteristic selection are not the same
thing. In particular, the correspondence S — s gives a natural injection of
P(U) into S(U) under which § + T is not necessarily mapped onto sg + sy,
even though S N T is always mapped onto sgs7 for all S, T'e Z(U). (Cf. B3.)

A subcollection 2 < Z(U) of nonempty subsets of U is called a partition
of U if

Se-v
Qe2
and
OQNnR=g, forall Q,Re2;Q # R.
The elements of 2 are called the cells of 2.If |2| = m, we call 2
an m-partition of U. The collection of all m-partitions of U is denoted

by P.(U); P(U) denotes the collection of all partitions of U. A
fundamental identity satisfied by any partition 2 € P(U) is

BS vl =2 1ol
Qe2
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There is-a natural multiplication on P(U). Let 2, % e P(U) and let
22 be the collection of nonempty subsets of the form Q N R where Q€ 2
and Re Z. , '

B6 Exercise. Prove that if 2e P, (U) and Z € P;,(U), then IR € P, (U) for‘
some p < mn. Show, moreover, that this multiplication is commutative and
associative and admits an identity in P(U).

The next result delineates-the fnndamental relatlonshlp between pam
tions and equivalence relations.

B7 Proposition. A necessary and sufficient condition that a relation R on a
set U be an equivalence relation is that there exist a partition 2 € P(U)
such that (x,y) e R if and only z_'f x and A are elements of the same cell
of 2.

PrOOF. Let R be an equivalence relation on U. For each xe U let S, =
{we U:(x,w)e R}. Since R is reflexive, x€ S, and so S, # & for each
xeU. Let x,ye U and suppose we S, N S,. Thus (x, w) and (p, w)€ R.
Since R is symmetric, (w,.») € R, and since R is transitive,(x, y) € R. Now
let ze S,; hence (y, z) € R. Again by transitivity, (x, z) € R and z € §,. This
proves that S, = S,. By a symmetrical argument we see that S, < §,. Thus
exactly one of the following holds for any x, ye U: S, = S,or S, N S, = 2.
If 2 ={S: § = §, for some x € U}, then 2 € P(U).

Conversely, let 2 € P(U). Define the relation R on U by: (x,»)eR
if x,y e Q for some Q € 2, One readily verifies that R is an equivalence
relation. _ O

B8 Proposition. Let [: B— U. Then {f*[x]: x € f[B]} is a If [B]I-parmwn
of B.

Proor. For ‘each be B, bef [x] if and only if x = f(b) Hence
Seerm S 2x] = Band f[x] nf~*[y] = & for x # y. Finally, f~*[x] # &
if and only if x € f[B]. _ O

B9 Proposition. Let f: B— U. Let s: U— N be defined by s(x) = |f~*[x]|.
Then s is a |B|-selection from U.

Froor. Clearly s € S(U). We have that
|s| = Z =] = Z £ 1[xn = |B).

The first equality here is the definition -of |s|; the 'second follows from the
fact that |@| = 0 and /'~ *[x] = @ for x ¢ f[B]; the third equality follows
from BS and BS. (]

6



IB Selections and Parfitions

1F¥:' B> U, then the pamuon of £ is {r-l[x] X e f[B]), and the selection
of fis the function s U= N gwen by s(x) = |f "[x]l '

B0 Exércise: Prove that the functions f*'B— Uand g: C— U have the
samhe ‘$election if and only'if’ the‘re isa bl_]et:uon b:B —C such that /"= gb.

Bil Exercise. Prove that the funcnons f B—> U and h: B—> W have the
sanie pdrﬁr!oh tf ami anly {f thereisa bijecrfon b f [B] - h{B] such that bf = h

B12. Exercise:-Let.f2 Xi—s ¥, Define fs: S0¥)—>S(X) by fi(s) = sf for all -
s€ S(Y). Show that f is an injection (respectively, surjection, bijection) if
and only if j; is a suqectlon (respectxvely, m]ectmn buectxon)

B13 Exercise. Let f: X - Y Deﬁne J2: P(Y)— P(X) as follows: if .Q e P(Y), .
thenyfy(2) consists of the nanempty members of the collection{f~*[Q): Q€ 2}.
First venfy that /,(2) € 'P(X); then show that f is an injection (respectively,
surjection, bijection) if and only if /7 is a surjection (respectively, injection,
bijeetion). . oo o

The remainder of this'section is concerned with the notion of “isomor-
phism* between objects of the kinds we have been considering.

Functions /* B— U and g: C'— W are isomorphic if there exist bijections
p: B— C and ¢: U — W such that f = g~ 'gp. The pair (p, q) is called &
function-isomorphism. The selections s.€ S(U) and r.€ S(W) are isomorphic
if there exists a bgectlon q: U —> W such that s = 7¢. Such a bijection is
called a selecﬁon-lsoxﬂorphlsm (These two definitions are illustrated by the
connﬁuta‘tiVe diagrams' B14. In this'and other such diagrams bijections are "
indicated by the symbol = .) Partitions 2 € P(B) and # € P(C) are isomorphic
if there exists a bijection p: B — C such that p[Q] € % for all Q€ 2. The
bijection p is a partition-isomorphism.

B14

B~

e o et gy it b
pl:‘ ;lq \
C —— W

&

B15 Exercise. Prove that in each of lhe above definitions, * isomorphism™ is
an equtvalence reIcmon

lll

B16 Proposition. Let f: B— Uandg: C— W.Letp: B—Candg: U—> W
be bijections.
() If (p,q) is a function-isomorphism from f to g, then p is a partition-
isomorphism from the partition of f to the partition of g and q is a selection-
isomorphism from the selection of f to the selection of g.



