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PREFACE

These are the Proceedings of the second meeting on Stochastic Partial Differential Equations
and Applications, the first having been in October 1985 (with Proceedings published in the Lecture
Notes in Mathematics n. 1236). It seems that our wishes three years ago — that this occasion for a more
direct communication among the researchers in this area of Mathematics occur every two or three years
— have been satisfied. Evidently two successes do not imply that there will be a third one, but they give
us good hopes ...!

The range of applications of SPDE becomes ever wider: filtering theory, biological models,
control theory, field theory in Physics. They offer new problems and give at the same time hints for the
solution. This time the Applications are better represented, although some lectures do not appear in these
Proceedings because they have been published elsewhere.

We wish to thank all the participants because it is due to them that the meeting has been
successful. Finally we wish to thank the CIRM (Centro Internazionale per la Ricerca Matematica) for its
financial support. Special thanks again go the secretary, Mr. A. Micheletti, for his help (more than help)

before, during and after the meeting.

Giuseppe Da Prato (Scuola Normale Superiore, Pisa)

Luciano Tubaro (University of Trento)
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A COVARIANT FEYNMAN-KAC FORMULA FOR UNITARY
BUNDLES OVER EUCLIDEAN SPACE

Introduction. The purpose of the present article is to derive a kind of covariant
Feynman-Kac formula, and with some more specificity, this refers to a
Euclidean Brownian motion lifted to a unitary bundle. To motivate it, let us first
go back to the Schrodinger equation

d
(1) 10y/dt=-1/20¢+Vy=-1/2 232y +Vy, ¢(-,0)=y,.
j=1

(Here and below, physical constants are all equal to one; also 9,=9/0x")

Regarding the potential V, which expresses interaction, as the electrostatic
potential A,, this equation becomes a special case of

d
(2)  1(d/0t+iAy=-1/2 X (3;+A)%¢, $(-,00=,,
i1

where A=(A1,..,Ad):le—* RY is the magnetic potential. Let x,=t and
(3) D,=9,+iA,, O<p<d.

Then the D, are covariant derivatives on a (trivial) line bundle R%'xC,
associated with the bundle R%*'xS', and (2) can be written

d
(4)  iDoy=-1/2 X D{¢, y(-,0)=y,.
j=1

Replacing t by -it we obtain instead the diffusion equation

d
(5) dp/dt = 1/2 X. D2¢+Vg, ¢(-,00=¢,,
=



which can be solved using stochastic analysis (and then the solution to (4) is
obtained by analytic continuation in t). Indeed, using the Cameron-Martin-
Girsanov and Feynman-Kac formulae for the drift and potential terms respec-
tively, we get

t t t
(6) o(x,t)=E,{exp[i( [A(by)-dbs + [1/2divA(bs)ds) - [V(bs)ds]w(by)},
0 0 0

where by is a Brownian motion in R?, E, denotes its expectation given that b,=x,
and the db-integral 1s taken in the sense of Ito. In Stratonovich notation this is
simply written

t t
(7) o(x,t)=Ey{exp[i[Albg)edbs - [V(bs)ds]w(by)},

0 0

and the first integral actually represents a lifting of b to the bundle R¥xS'. (The
varlable t should be seen as a separate entity here.)

This formula is of course well-known, see eg. Simon (7], Ch. V. 16, or Elworthy
[3], Example VIL.13.F. What we have in mind here is an extension of this
formula to the case when more general unitary groups than S'=U(1) is
considered. In particular will the groups in general be non-abelian.

The derivation we are about to give 1s, we think, elementary and
straight-forward. Another merit is that it gives you an idea of how to extend
non-standard stochastic analysis to geometric settings (see [1]). It 15, however,
probably possible also to derive it from the rather sophisticated machinery
presented in Elworthy’s book [3]. See also Potthoff [5].

Let us mention finally, that the mentioned formula plays an important part in
the construction of so-called Higgs-fields, see [2] (and also [6] and further
references therein). In fact this construction has been our motivation.

We start a bit more generally than is actually needed. We have a Riemannian
manifold N, and consider a trivial principal bundle E=NxG, where G is a compact
Lie group. There is a unitary, irreducible and locally faithful representation p of
G in GL(W) where W is a complex vector space with inner product ¢-,-> and
norm |- |l. The Lie algebra of G will be denoted by §=T,G, where e is the identity
element in G. There is a §-valued one-form w, the connection form, such that
in local co-ordinates

(8) w= XA dx",

where the A, are $-valued functions. The corresponding covariant derivatives
are then

(9) Do=0,0+p(Ae, 1usd,

where 0,=0/2x* and the same letter p 1s used to denote the induced



representation of §.

The covariant energy (Dirichlet) form is, for a function :N—-W,

(10) IIlezdvol,
N

whereas the classical energy form is

(11) J‘Id(plgdvol,
N

with d denoting outer differentiation. If we have a potential, i.e. a real-valued,
and, to avoid complications, non-negative and smooth function V on N, we
obtain the total energy by adding the term

(12) J‘vm? dwell,
N

to (10, 11).

2

Let N be an oriented manifold and denote by CN all curves in N, le. all
equivalence classes up to reparametrisation of plecewise smooth and continuous

maps c: [0,1]-N. We write ¢ =c(0), c*=c(1), and denote by ¢ ! the inverse of c,
l.e. ¢ with reversed orientation. Whenever °1+= C,” we can compose ¢, and ¢, (cy
followed by 02) and we write c,c, for this curve. When defined the composition
is assoclative, so CN is a partia/ group. We will use the notation CyN for the

curves ¢ in CN with ¢"=x.

Let now G and § be as in the introduction, and denote by E the trivial bundle
over N with fibre G, i.e. E=NxG. With a connection T we understand a /4/ting of
curves in N to curves in E, preserving the partial group structures. We therefore
demand

(13) T: CNxG = CE,

(14)  7(-,@): CyN = Cy g)E,

le.

(15)  t(c,g) =(c",g).

Now for some heG we have t(c,g)"=(c* h). We will write h=gm(c):

(16) T(c,g) = (c ,gmlc)).

We want T to be a homomorphism under the partial group structures:

(17) T(c1c2,g)=T(c,,g)'r(c2,gm(c])),



and

(18) 1(c,g) "=1(c™ ,gmlc)).
From (16) and (17) follows

(c,*,gmlc,c,)=((c,c))* . gmlc,c,)=T(c,c,.8)"

=(1(c, g)t(cy,gmlc,)) = 1lc,,gmlc,)*=(c,* gmlc )mlc))).

Similarly (13), (14) and (16) yield

(c”gmlcImlc™ ")) =((c™ ) ,gm(c)m(c™")

=1(c”gm(c)) =(1(c,g) N =1(c,g) =(c",g).
Consequently m must be a homomorphism of CN into G, or - better - a
representation of CN in G:

(19) m: CN —-G.
(20) ml(c,c,)=m(c,)mlc,),

(21)  m(cH=mle)™".

We call m a multiplicative curve integral (MCI). The lifting of ¢ to a curve in E,
given the point geG, is now defined as

(22)  Tle,@t)=T(ct g =(c(t) gm(ch)),
where c! (0<t<1) denotes the curve
(23) ct(s)=c(st), O<s<1.

It 1s not difficult to check that there i1s a one-to-one correspondence between
connections T and MCls m. We have already seen how T gives rise to m.
Conversely, given m, we simply define T by eqn (16). Then (13-18) hold.

Suppose now that we have an MCI which is smooth in the sense that t—ml(c) is
smooth whenever c 1s. Then we can define

1

(24) oc(c)=jm(c‘)" dm(c) € .
0

Then o is in the obvious sense a (smooth) additive curve integral (ACI).
Conversely, given an ACI we obtain an MCI by solving the differential equations



(25) m(ch) ' dm(ch)=da(ct), m(c%)=e.

Hence we have a one-to-one correspondence between smooth ACIs and MCls.
Now, given an ACl o we can write

(26) oc(c)=Iw,
C

where w is a §-valued one form: weQ'(N,3). (If XeT4N is determined by the
curve c, define w(X)=da(c')/dtli=g.) Thus w is a connection form as in section 1.
It is evident that any weQ'(N,$) defines an ACI « by eqn.(26). Summing up, we
see that there is a one-to-one correspondence between (smooth) connections T
defined by eqns. (13-18) and connection forms weQ'(N,3).

3.

From now on N will be [Rd. Then the outer differential can be identified with the
ordinary gradient.
Let us fix some more notation. To start with, we will work on the lattice

(27)  81%={6x:x€2%, 80,

and we write ‘dx’ for Lebesgue measure on 8Z¢ ie. & times the counting
measure. The basic Hilbert space is

(28) L2879 = L2(82%dx;W),

consisting of all functions f: §Z9—W such that (f,f)g<o, where

(29 (£@)s=[ <0 g ax= 68 I <) gx>.
YA xe 879

(Recall that W is the space associated with the representation of G.)
[t is convenient to use the gradient symbol ‘V’ also for discrete quantities. We
define

(30) (vr.Vg)gsf<Vf(x),Vg(x)>dxs 8923 < (x)-f(y) g(x)-g(y)>,
62¢ Cxy?

so that

(31) flvrﬁ dx = 892 X DUf(x)-f(y)I2.
6z¢ s

Here <xy> denotes that we only sum over nearest neighbours, ie. x and y with
Ix-yl=8.



4.

The basic, free, energy form 1s the one in Eq. (30). Define the discrete Laplace
operator by

(32)  Af(x) = Agf(x) =-2d672[f(x) - 1/2d 2. f(y)].
x-yl= &

Then

(33)  -(f,Af)g= 892 2o f(x),2df(x) - 2. fly)
X x-yl= &

= 802 203 K1) fx)-fly)y= 842 D17 If(0)-t(y)R= f!Vﬂ2 dx.

{xy? {xy > Szd

[Here we have used that in a double sum ZZa(b-b;) we have an (i,j)-term:
aj(bj-b;) , and a (j,i)-term: aj(bj-bj)=-a;(b;j-b;). Now their sum is (aj-a;)(bj~b;).]

It follows from general theory, see eg. [4], that Ag can be associated with a
stochastic process. We shall denote it by b=(by)y»0 or b® if we wish to emphasise
the dependence of §. The relation is

(34) lirr(x) , UHE-EIfBS()N)=-Agt(x).
t—

Here Ey is the expectation operator associated with the probability measure Py
governing b when starting at a point x in the lattice. From the translation
invariance of the Laplacian it is clear that b is likewise. In fact

(35) Py[bteM]=xg +(M-x),
where

o 2\n

(2td/8")

(36) As‘tse'm"/szz
n=0 nl

(eg)""= exp[-(2td/62)(1-55)], 120,

is the corresponding convolution semi-group of probability measures. Here (gg)*"
is the n-fold convolution power of the measure

(37)  eg=270 X e(x,).

b= &
with g(x,-) denoting the Dirac measure (unit mass) at the point x. Summing up,
our basic process b is a random walk with continuous time. More precisely is b a
compound Poisson - and therefore a pure jump - process with state space 8Z¢. It
is the continuous time/discrete space analogue of the Brownian motion.

The Fourier transform of (36) is



d
(38) [ tag y(dw)=exp[-(21a/8M1-1/d X cossey],

n=1

which as §—0" tends to

(39) exp[-tl&l2]=J‘e_iX'E’ (amt) exp[-Ix[?/4t]dx.
[Rd

Hence b8(t)=b%t) in law for each t as 6—0%, where b°=(b(t)) is a Brownian
motion in RY (by Levy’s classical theorem). It follows from this that as processes
b8—=10 in law (in the sense of convergence of finite-dimensional distributions).

It will be convenient below to have a notation for the (unnormalised) transition
expectations

(40)  Eyyy=El-Ibp=x, by=y),

so that
(4 Eglibyl= [ By ylibldy=[ By Jli)ldy=] Byl dy,

where 1 is the identity (matrix) on W, and the integrals are over 67¢.

4.
We will now consider the form on L2(8Z% obtained when replacing V by
covariant derivation in (29). Accordingly, let m be an MCI (§1). Then, with D=D™
denoting the covariant derivative given by m, the energy form

(42) (¢,AQ)g IID(pI dx,
57¢

where A=-trD*D, is defined by

(43) (9,A0)5 =692 Dlp(x) plmyy)o(y)I2,
<xy>

and my,, denotes m acting on the directed line segment from x to y.
The following result shows how to obtain the covariant energy form (42) from
its ‘classical’ counterpart (29).

THEOREM 4.1. The kernel of the semi-group associated with A via m is given
by
(44) e (x,y)= Eyyx ylp(mp)ltz

ie.



(45) et f(x)=Ey[p(myp(p)f(b(t))], t20.

Proof. We show first that Ei  [p(my)] defines a semi-group, and write Tyf(x)
for the right-hand side of (45). Then

(46) Ti+sf(x) =I Et+s.x,2lp(mp)lf(z) dz =IE[p(mb)lbo=x, by+s=2lf(z) dz

=IJ‘E[p(mb)lbo=x, b.=vy,bys+s=2lf(z) dydz,

where all integrals are over 8§7°.
Let now p and ¥ denote b restricted to [0,5] and [s,t+s], respectively. By the
multiplicativity of p and m,

(47) p(mp)=p(mgy) =p(mgmy)=p(mg)p(my),

and by the Markov property of b, p(mg) and p(my) are independent given b(s).
Moreover, since b is time homogeneous, ie. has stationary increments, ¥ has the
same law as b restricted to [0,t]. Consequently

(48) Tt+5f(x)=JIE[p(mb)Ibo= X, bs=yIE[p(my)Ibg=y, by=zlf(z) dydz

- [ 4 ylp(mplbg=x, be=yITetly) dy=T,Tef ),

which is the semi-group property.

We will now show that (T}) is symmetric on L2(579%). We have, suppressing all 8s
for simplicity,

(49) (f,Tig) = | | <(x), Ey.4 Ip(mp)lgly)ddxdy
’ ‘y
- [[<Be ey fptmp 10,8655 dxdy
- [ [<Bi ylotmis it0.89) > axay,

where we have used that m is an MCI and p 1s unitary. Now b Is a symmetric
Markov process ([1,4]), so b and b™' are equal in law. Hence
(50)  Epxylpm(b™))]

=Elp(m(b™"))Ib(0)=x, b(t)=y]

=Elp(m(b MIb'(0)=y,b " (t)=x]

=Elp(mp)b(0)=y,b(t)=x] = Et.y x[p(mp)],

whence

(51 (1Tig) =] [<Ery(lplmy)litn,gly) >y -



=II<th(y),g(y))dy = (Tif ).

It now follows that each T; is positive:

(52) (£, Toif) = (£, T4Tyf) = (T4f, Tif)20.

From the obvious ‘diamagnetic’ bound

(53)  Mxylce Bixy),

follows that (Ty) i1s a is strongly continuous semigroup, so by general operator
theory Ty is of the form exp(-tB] for a uniquely defined positive and self-adjoint

operator B on L2(82%). Our next item is to show that B=A.
If N 1s the number of steps needed to reach y from x we can write

The second term is, as one sees from Eq.(38), o(t) as t—0, and in the first term
p(my) can be replaced by p(myy,). Consequently, by eqns. (30) and (32), and using
plmyy)=ple)=1,
(55)  -d/dtl=gE[p(mp4)(b(t))]

--d/dtloo Eqeylpmp)lt(y)dy

- [otma)-d/atho) B 4 10ty) dy

=D plmgy)(-d/dtleg) Eg.x y11(y)

x-yls &

=2d52[p(my,)f(x)-1/2d D, plmgyi(y)]
x-yl= §

=2d621(x) - 1/2d D, plmy)i(y)],

K-yl &
SO

(56)  -d/dtl= | <tx),Exlp(mp(pyf(b(t)]> dx
8§79

= 2020 ), 1(x)-plmy, )f(y)>.

{xy >

To see that the latter term equals (f,Af)s it suffices to show (cf. the reasoning
that led to (33)) that
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(67)  <f(y).f(y)-plmy f(x)> = - <plmyy )(y) f(x)-plmyy)i(y)>,

because then the sum of the (x,y) and the (y,x) term in the sum above is
(58)  <f(x),f(x)-plimyy )(y)>+<E(y), f(y)-p(my ) f(x)D =1 (x)-plmyy ) ()2,
The properties of p and m give

(59)  plmyy)*=plmyy) " =plmyy),

SO

(60) f(y) f(y)-p(my)f(x)>
= =<f(y),p(my)f(x)-f(y)>
== <{pmyy) *{(y),f(x)-plmyy) f(y)d =
= ~<p(myy)f(y) f(x)-p(my N(y)),

as was to be proved. |
From Theorem 4.1 we obtain an expression for the resolvent of A:

COROLLARY 4.2. The resolvent kernel associated with A 1s

L

(61) Guliy)=(actA) ()= [ By lpmyldt, 00,
0

Remarks. (a) Note that b® takes its values in the lattice §7°. When we use m to
lift its trajectories, we have tacitly considered the process as one in RY, and the
curve bs(-), 1s then obtained by connecting the points of successive jumps. In
particular this means that m(b) is really a Stratonovich integral (as it has to be
to conform with eqn (7)).

(b) It is not at all necessary to assume that G is a Lie group. This is merely for
the interpretation with covariant derivation. What is important is that G has a
unitary, etc., and continuous representation.

(c) It should be clear from the proof above that other Markov jump processes,
not necessarily translation invariant, can be lifted using the same ideas.

5.
To complete our investigations, we should now put §=0 in the formulae obtained
above. (This could of course also be handled by using results from non-standard
analysis, and let § be infinitesimal.)
First of all, the proof of Theorem 4.1 shows that the right-hand sides in egns
(44-45) define a strongly continuous contraction semi-aroup also for §=0, i.e. for



