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Preface

During the last two decades the following volumes containing papers pre-
sented at the Israel Seminar in Geometric Aspects of Functional Analysis
appeared

1983-84 Published privately by Tel Aviv University

1985-86 Springer Lecture Notes, Vol. 1267

1986-87 Springer Lecture Notes, Vol. 1317

1987-88 Springer Lecture Notes, Vol. 1376

1989-90 Springer Lecture Notes, Vol. 1469

1992-94 Operator Theory: Advances and Applications, Vol. 77, Birkhauser
1994-96 MSRI Publications, Vol. 34, Cambridge University Press.

The first six were edited by Lindenstrauss and Milman while the last,
which also contains material from the program in Convex Geometry and
Geometric Analysis held at MSRI in 1996, was edited by Ball and Milman.

The current volume reflects some of the new directions in Banach Space
Theory in the last few years. These include the tighter connection with classi-
cal convexity and as a result the added emphasis on convex bodies which are
not necessarily centrally symmetric. Initially, emerging from the functional
analysis point of view, symmetric convex bodies were the natural object of
investigation but, as it becomes more and more clear, a large portion of the
theory carries over to the non-symmetric case and this sometimes sheds new
light even on the symmetric case. A similar situation, which is also reflected in
some of the articles of this volume, is the treatment of bodies which have only
very weak convex-like structure - they are only p-convex for some 0 < p < 1.
Another topic which is represented here is the use of some new probabilistic
tools; in particular transportation of measures methods and new inequalities
emerging from Poincare-like inequalities. Finally, several of the papers here
deal with improving and finding the best, or best order, constants in sev-
eral results. This is another topic which has received considerable attention
recently.

All the papers here are original research papers and were subject to the
usual standards of refereeing.

As in previous volumes of the GAFA Seminar, we also list here all the talks
given in the seminar as well as talks in related workshops and conferences.
We believe this gives a sense of the main directions of research in our area.

We are grateful to Ms. Diana Yellin for taking excellent care of the type-
setting aspects of this volume.

Vitali Milman
Gideon Schechtman
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The Transportation Cost for the Cube

M. Anttila

Department of Mathematics, University College London, Gower Street, London
WCI1E 6BT, UK

Abstract. The transportation method for proving concentration of measure re-
sults works directly for the cube. Here we find the best constant that can be found
using this method which turns out to be better than those obtained by previous
methods and which cannot be far from that which is best possible.

1 Introduction

In this paper we prove a deviation inequality for the cube using a method
developed by K. Marton to show similar results for Markov chains. Talagrand
named this method the transportation method when simplifying Marton’s
arguments for certain product spaces.

Let us consider the cube, [0,1]® C R", and denote by P the n-dimensional
Lebesgue measure on it. If B is any measurable subset of the cube, let B, be
its expansion,

B, = {z €[0,1]" : d(z, B) < t},

where d(z, B) denotes the Euclidean distance from z to B. We shall prove a
deviation inequality of the form

1— P(B) <e ", (1)

provided B does not have too small probability, where ¢ is a constant depen-
dent on P(B).

Concentration results of this form have been known for the cube for some
time. Indeed, it was pointed out in [TIS] that inequality (1), with bound
= IB e~ %‘:, can be obtained directly from concentration in Gauss space via a
measure preserving Lipschitz map. Here our objective is to point out that the
transportation method works directly for the cube and, more importantly,
to ascertain the best constant that can be found using this method. This
constant is better than those previously obtained and cannot be far from
best possible. Finding this constant gives rise to a “text-book example” of a
variational problem which has a surprisingly neat solution.

Marton’s original method uses an inequality bounding the so-called d-
distance by informational divergence to prove a concentration of measure re-
sult for certain Markov chains (see [M] for definitions and a detailed account).

Supported by EPSRC-97409672.



2 M. Anttila

The important thing in her method is that her one-dimensional inequality
can be inducted on dimension and quickly implies a concentration of measure
result. Marton’s method certainly works for product spaces. However, Tala-
grand simplifies it and strengthens the result for certain product spaces in [T],
by considering /3, rather than [;, distance in the inequality. More precisely,
Talagrand’s inequality bounds something called transportation cost, with the
square of the l5-distance as the cost function. The definition of transportation
cost now follows.

Suppose we have two probability measures p; and p; on measurable
spaces §2; and 2, respectively. The basic idea is to look at all bijections
b: £2; — (2, which transport u; to us, i.e. for which

p1(A) = p2(b(A)) whenever A C £2;.

For a given function C : 21 x 23 - R* U{oo}, (C(z, b(z)) measures the cost
of moving a unit mass from z to b(z)), we seek to minimise

/ C(z,b(z)) dpi(z).
2,

If py or py has atoms then there may be no such function b. So, formally,
the transportation cost is defined in terms of an integral over the product
space £2; x {2; with respect to a probability measure with marginals u; and
W2. However, in our case 2, = £2; = [0,1]™ and our measures will be the
Lebesgue measure on the cube itself and a weighted Lebesgue measure on
one of its subsets, so no such formality is needed here.

As already mentioned, we shall use the square of the Euclidean distance
as our “cost function”, C, just as Talagrand did for Gaussian measure. So
now we can define the transportation cost, 7(u1, 42), to be the minimum,
over all functions b as above, of

/ & — b(z)[2 dyur(2).
2,

The main result of this article is the following:

Theorem (Bound on Transportation Cost) If A is a subset of [0,1]™ and p is
the normalised restriction of the Lebesgue measure, P, to A (i.e. has density

14/P(A) with respect to P), then
1

2
m(m P) < FIOEW'

From this it is easy to get a concentration estimate using the following
short argument. Let B C [0, 1]*. The cost of transporting [0, 1]® to the com-
plement of the expanded B, By, is clearly greater than that of transporting B
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(a subset of [0,1]") to Bf. The Theorem gives an upper bound on the former
and the latter is greater than P(B)t%. So

2 1
P(B)t? < = log ———.
(B < 7 18 )

Rearranging this we have

P(BS) < 75 P,

However, this bound can be improved by applying the Theorem to B as
well as to Bf as in [M] and [T]. This gives the slightly better estimate

2
c —7? [ 2 1 )
P(B‘) SCXP '2— (t— FIOgW

As already mentioned, we will see, in the proof of the Theorem, that %
is the best constant that we can find using this method. Before we begin the
proof, however, we observe that our constant is not far from best possible.

The following tells us that ¢ in (1) cannot be greater than 6. Let K be
the cube of volume 1, now centered at zero. We regard K as a probability

space and define on it the random variable Xy : z — (z,6), where § =
(\/L;, ey 71:), so that the density of Xy is obtained by scanning across K
with hyperplanes perpendicular to 8. Since

Xo(z) = \/iﬁ Z Xi(z),

where X; : z— x; € [—%, %] are random variables with zero mean and variance

ot = ﬁ, the Central Limit Theorem tells us that as n — oo

1 ® Ak
PobX>t—>—/ e 2% d
rob (Xp > 1) onn . y
A —dx

e 2
V2rt
const
—e_G':.
t

2

Now we need only notice that the left hand side is precisely P(Hf) for H C
[0,1]™ given by the intersection of the cube with the halfspace through zero
perpendicular to 6:

H={ze€[0,1]":(z,6) <0}. a



4 M. Anttila

2 Proof of the Theorem

We wish to show by induction that

2 1
7(u, P) < = log —— for A C [0,1]",

(4)

where the left hand side is the minimum cost of transporting A to [0, 1]™.
We show in Section 2.1 that a result of the form

7(p, P) < clog

1
for A 1"
P(4) or A C[0,1]", (2)
can be obtained from the following one-dimensional inequality for absolutely
continuous f : [0, 1] — [0, 1],

/0 (F&) - )’ f(t) dt < ¢ /O £'(t)log f'(t) dt, (3)

where c is the same constant in both inequalities.

We continue in the ensuing sections to use the Calculus of Variations to
show that (3) holds for all appropriate f if (and only if) ¢ > -%. More precisely
we show that there is an optimising function satisfying an appropriate Euler-
Lagrange equation and then we analyse the solutions of this equation.

2.1 The Inductive Step

Let us choose one of the n coordinate directions, e; say. We denote by g(t)
the (n — 1)-dimensional volume of A intersected with the “slice of the cube
at t e [0,1):

{o€[0,1]": (=, &)= t}.
The idea is that we transport in the e; direction, the (n — 1)-dimensional
slices via an increasing function, f, such that the proportion of A between
the slices at t and ¢ + § is equal to the proportion of [0, 1]® between f(t) and
f(t+46):

dg(t)

P(4) = f(t+6) - f(t). (4)

The weighted cost of transporting in this way in one dimension is clearly

fo (F(t) - t)z% dt. (5)

We then use the inductive hypothesis, (2), to transport in each (n — 1)-
dimensional slice. The total of the transportation costs in all of the slices is
at most

! 1
A clogm ds.
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After substituting s = f(¢), this is
1
—/ cf'(t)logg(t) dt. (6)
(i

We see from (4) that f'(t) = i((%. So to complete the inductive step we
combine (5) and (6) and ask whether

[ o -0 a- [ ereos[repa)] @ < clog o

When rearranged, this is

1 1 1
/0 (F&) =) F'(t) dt—/0 cf'(t)log f'(t) dt < clogﬁ/o (1-f'(t)) dt,

which simplifies to

/0 (F(&) — ) F(1) dt < e / £(t)log f(2) dt, (1)

since f(0) =0 and f(1) = 1.

The same inequality handles the one-dimensional case because we can
transport in exactly the same way in dimension one, where g(t) = 14(t) and
where clearly we will not be required to transport further within (n — 1)-
dimensional sheets. So the transportation cost is at most (5). Further, since

') = },—’2%)2, we have

1 ! ! !
m:cfo f'(t)log f'(t) dt. O

It is not difficult to find some ¢ for which (7) holds (and hence such that

(2),

clog

1

< ==

7(w, P) < clog @

is true). For example, if we rewrite the left hand side of (7) as below, we see

that (7) holds with ¢ = 2 by using standard methods from information theory

and the Csiszar-Kullback-Pinsker inequality. We mention here also that the

logarithmic Sobolev inequality for the cube implies (2) with ¢ = £, see [OV].
However we wish to find the smallest c.

We begin by rewriting (7). Notice that

/01 (ft) - t)z(f'(t) — 1) dt =0, since f(0) =0 and f(1) = L.

So we can rewrite the left hand side of (7) as

/ () -9 @t
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If we consider instead the deviation of f from ¢, h(t) = f(t) — ¢, then (7)
becomes

/1h2(t) dt < c/1 (1+A'(t)) log (1 + A'(t)) dt. (8)
0 0

Our problem is to find the smallest constant, ¢, such that the functional
in (8),

1
Fe(h) :/ [c(l + h'(t)) log (1 + A'(t)) — hz(t)] dt, (9)
0
is non-negative for all h in the admissible class of functions given by
C = {h absolutely continuous : h(0) = k(1) =0, ' > —1}.

This variational problem is the subject of the following sections.

2.2 The Variational Problem

Recall that our aim is to find the smallest ¢ such that the functional F, is
non-negative for all functions in C. First we will show that for all ¢ > 0, a
minimiser of F. exists and satisfies the Euler-Lagrange equation:

(1+ h'(t)) h(t) + g h'(t) = 0. (10)
Then we will find that if ¢ > -4, the only solution of (10) which satisfies the
boundary conditions of C, is the trivial one, h = 0. Hence F, > 0 for such c.
To show that ¢ = ;2; is the smallest constant for which F. is non-negative,
we will consider specific functions in our admissible class.

A classical theorem of Tonelli on the existence of minimisers of a one-
dimensional variational integral,

F(v) = [F(:z:,v,v') dz,

can be found, for example, in [BGH]. The standard conditions are that the
Lagrangian, F(z,v, p), is continuous, convex in p and has superlinear growth
in p at oo (i.e. is such that there exists a function 6(p) such that

F(z,v,p) > 6(p) forall (z,v,p)e I xR xR
6(p)

and —- — oo as |p| = 00).

|p|

The superlinearity condition clearly does not hold for our Lagrangian,
Fe(z,v,p) = c(1 + p) log(1 + p) — v*,

because the “v” term could make F, very small. However, it is not hard to see
that the standard arguments can be adapted to demonstrate the existence
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of minimisers in our case. In fact, our Lagrangian has certain invariance
properties which, if anything, make our problem easier than the general one.
We include here a very rough explanation.

We wish to show that there exists a function u € C such that

Fe(u) = inf{Fc(v) : v € C}.

Call this infimum A, say. From the boundary conditions on C, we have that
|v|] < 1 for v € C, so F. is bounded below. Hence we can find a minimising
sequence, {uk} C C, such that F.(ug) — A.

The following properties of our Lagrangian allow us to take the functions
in this minimising sequence to be positive and concave. Since F, comprises
only the square of the function, v, and its derivatives, rotating a negative
section of the function by 180° leaves the functional unaltered. Further, if we
approximate any positive function in the minimising sequence by a piecewise
linear function and make this concave in steps, it is clear that in doing so the
functional, F,., decreases. This follows since v increases and since

(14 p)log(l + p) is convex for p > —1.

We can use the Ascoli-Arzela Theorem to show that a subsequence of
{ux} converges uniformly to a continuous function u, say. Equiboundedness
is clear. To prove equicontinuity, we need to show that uj cannot get too
large on [0, 1]. But since we restricted ux to being positive and concave, we
need only show that u} is not too large near zero.

Notice that since ug(0) = ux(1) = 0, we can write F.(z, uk, u}) as

1
/ c[(1 + uf)log[l + ug] — uy| — uf daz.
0

Soif, for € > 0, ux(€) = Le, it is not hard to see, using the restriction |ug| < 1
and that (1 + p)log[l + p] — p > 0 for all positive p, that

Fe(z,uk,uf) > ec[(1+ L)log[l + L] — L] — 1.

This in turn gives us an upper bound on Le which tends to zero as € — 0.
To show that u’ > —1, and hence u € C, requires noticing that (1 +
p)log(1l + p) has infinite derivative at p = —1 and so a minimiser will not
have derivative equal to —1, except possibly at 1. Finally, the concavity of
the functions in the minimising sequence ensures that u, — u' a.e. Then
Fe(uk) = Fc(u) dominatedly. =]

That any minimiser satisfies the Euler-Lagrange equation (10) is standard,
see e.g. [BGH]. The only possible issue in our case is that the functional must
be defined for all functions in a neighbourhood of the minimiser, u. But since
we just saw that our Lagrangian forces u’ > —1, this does not pose a problem.
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2.3 Periodicity Analysis

It remains to show that for ¢ > 1%, the only solution of the Euler-Lagrange

equation is the trivial one (hence F. > 0 for such c¢) and that conversely there
are functions in our admissible class for which F, < 0 if ¢ < 1%
Recall that the Euler-Lagrange equation is given by

(1+K(1) ht) + 5 K"(t) = . (11)

If we rearrange and multiply both sides by A'(t), (11) becomes

¢ h'(t)

h(t)h'(t) = —m h’(t)

and this integrates to
—~h3(t) + M? = c[h'(t) — log (1+ K()], where M =sup [h].  (12)
If we define the function £ : (—1,00) — [0, 00) to be
(s) = s — log(1 + s),

then (12) can be written in terms of 2 as

%(—h2 + M?) = 2(h'). (13)

t 2[T

NN Ws oy

2 4 6 8

Fig. 1. The function §2, (left), and a solution, h, of (12), (right).

It is not difficult to see that a solution of (12) either increases to M or
is periodic. Since we have the restriction that any function in our admissible
class is zero at 1, we need only consider periodic solutions. So if for ¢ > 1%
every non-trivial solution has period greater than 2, then we know that there
is no non-trivial solution in our admissible class for such c. Hence we will
have ¥, > 0 for ¢ > ;2;
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Let 2T denote the period of a solution, h, of (12). Suppose that h attains
its maximum at the point ¢ € (0,7). Then we can express t as an integral

over h between 0 and M:
t M
t:/ ds:/ = dh. (14)
0 0

Similarly, for the second section of the semiperiod, on which kA’ < 0 we have

°1
M
So if we denote the two branches of 271, 9;1 and 2~', using (13), we
can express h' in terms of the inverses .0;1 and 2-', depending on the sign
of h'.
Hence from (14) and (15), we know the semiperiod of a periodic solution
of (12) to be

r= [ emarmy @ - | ey O

We shall see below that

1 B 1
2z 2 (=)

for z > 0. (17)

2

SIS

Applying this to (16) we have

M
TZ/ __‘/_Z—dh_L\/g,
0

SV

Hence for ¢ > 7% the return time, T, is strictly greater than 1 and we are

done.
To prove (17) we fix z € [0, 00) and define s, > 0 by

2;'(z) =t and 0N-'(z)= —s.

Then
z=1t—log(l+1t)=—s—log(l—s) (18)

and we need to show that

| =
-
o |
AV
SIS
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By the AM/GM inequality, the left hand side is at least ﬁ, so it suffices

to show that under (18),
st < 2z.

By (18) this will follow if we show that for any s,t > 0,

st <t—log(l+1t)—s—log(l—s),

log(1+1t)+log(l —s) <t—s— st
But the left hand side is

log (1 +t)(1 —s)) = log(1l +t— s — st)
<t—s—st. a

Finally, to show that 1% is the best constant, we find that there are specific
admissible functions for which the inequality, (8),

/1 R%(t) dt < c/l (1+ R'(2)) log (1 + A'(2)) dt,

does not hold, if ¢ < “_%
Let j(t) = sinmt where, among other things, J is sufficiently small to
ensure that j € C. Substituting this function into (8) we have

1 1
/ §2(sint)? dt < c/ (14 dmcosmt)log(l +dmcosmt) dt.  (19)
0 0

For small §, the right hand side is

1 2
c/ dmcosmt + M dt + 0(8%).
0

So we can rewrite (19) as

1 1 2
/ 82(sin wt)? dt < c/ W—C‘;Sﬂ)— dt +0(8%).
0 0

Dividing both sides by 42 and letting § — 0, we get
1 7r2 1
/ (sint)? dt < c—/ (cos t)? dt
0 2 Jo
which does not hold if ¢ < . a

After this article had already been circulated, M. Ledoux communicated
an alternative method of finding the same constant, c, in (2). His argument
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depends upon a reflection trick to modify the logarithmic Sobolev inequal-
ity on the interval to the periodic case for which it is known that spectral
methods yield the log-Sobolev constant. This can then be transferred to a
transportation constant using the methods of Otto and Villani [OV].

This work will form part of a Ph.D. thesis which is being supervised by
Keith Ball.
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