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Editors' Preface

This issue of Lecture Notes in Physics is the first of two volumes
constituting the Proceedings of the Third International Conference on
Numerical Methods in Fluid Mechanics, which was held at the University
of Paris VI, from July 3 to 7, 1972. Three general lectures and forty
eight short individual communications were presented at this conference;
the complete proceedings are published here. The general lectures

were given by Professor A. DORODNICYN, Director of the Computing Center
" of the Academy of Sciences of the Soviet Uhlon, who presented the
Soviet works dealing with the solution of Navier-Stokes equations; by
P. MOREL, professor at the University of Paris VI and Director at the
Laboratory of Dynamical Meteorology of the National Center of scienti-
fic research (C.N.R.S.), who presented the Problems of numerical simu-
lation of geophysical flows; by Professor R.D. RICHTMYER of tlLe Uni-
versity of Colorado, U.S.A., who spoke on Methods for (generally
unsteady) Flows with Shocks.

The individual communications have been separated into two groups:
Fundamental Numerical Techniques and Problems of Fluid Mechanics; in
each group they are published in the alphabetic order of the author,
or of the first of the authors.

Volume I contains the three general lectures and the thirteen commu-
nications on Fundamental Numerical Techniques. Volume II contains the
thirty five communications on Problems of Fluid Mechanics.

This Conference follows the conferences with the same topic hold at
Novossibirsk, U.S.S.R. in 1969, and at Berkeley, U.S.A. in 1970 (the
proceedings of which appeared in Lecture Notes in Physics, Vol. 8).
The French Organizing Committee was sponsored by Commissariat a
1'Energie Atomique, Electricité de France, Union des Chambres Syndi-
cales des Industries de Pétrole, in France, and also by the Office of
Naval Research and Air Force Office of Scientific Research, in the
U.S.A. The Universities of Paris VI and Paris XI, and the Centre
National de la Recherche Scientifique also helped the Committee in a

much appreciated manner.
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We wish to thank all the persons who contributed to the success of the
Conference, the participants for their scientific contributions, our
colleagues and younger researchers for their help in the organization
and Mrs. M.T. CARTIER and Miss S. DELABEYE for their excellent secre-
tarial work.

Finally we wish to express our appreciation to Dr. W. BEIGLBOCK and
the Springer-Verlag Company for the rapid publication of these pro-
ceedings in the series of Lecture Notes in Physics.
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REVIEW OF METHODS FOR SOLVING THE NAVIER-STOKES EQUATIONS

A. A. Dorodnicyn

During the lagt 10 - 12 years the numerical solution of the complete equations
of motion of a viscous fluid - the Navier-Stokes equations - has been investigated
intensively.

Of course, interest in the Navier-Stokes equations arose much earlier. Al-
though the theory of the boundary layer permits us to estimate the influence of
viscosity in many practically important cases (perhaps in most of them), neverthe-
less some phenomena, important in practice, are not described by boundary layer
theory. Among them must firstly be mentioned flow with separation. This phenomenon
occurs sometimes in flows around ships, planes, or rockets in spite of all possible
means being used to avoid it.

It is to be noted that in many complicated cases we cannot imagine the picture
of viscous flow even qualitatively and numerical calculatlons sometimes reveal quite
unexpected features of motion.

Finally there is the problem of turbulence. I don't think that complete in-
formation on the structure of the turbulence - one which will permit us to construct
an adequate theory of turbulance - can ever be derived from experimental observa-
tions.

The main difficulty here consists in the non-local character of the relations
between the stress—-tensor and the deformation tensor. The non-linearity of this
relation seems to introduce less complication.

.

I think the numerical solution of the Navier-Stokes equations is the only way
to obtain sufficient information and the application of the methods of mathematical
simulation to this information will possibly bring us to some mathematical models
of turbulence with good precision.

- In fact, modern computers are not yet sufficiently effective for solving the
Navier-Stokes equations with values of Reynolds numbers corresponding to fully
developed turbulence.

But even ''pessimistic' forecasts of progress in computers gives us the hope
that in some 10 - 15 years such a possibility will become quite real.

The beginning of the work on the numerical calculations of the viscous fluid
motion was. caused by the state of computers which just 10 or 12 years ago achieved
the level permitting a start to the solution of the problem.

Nevertheless the problem of solution of the Navier-Stokes equations continues
to be one of the most difficult problems in the mechanics of a continuous medium
and it always requires the fullest possible use of computers.

I. The Methods of Solution

Two properties of the Navier-Stokes equations are the main source of diffi-
culty in their numerical solution: 1. high order of the system (order 4 in the
simplest case of an incompressible fluid), and 2. the unbounded domain of the
solution (for the most practically interesting cases), together with the elliptical
character of the equations.



When the Reynolds number is large a third difficulty appears - strong irregu-
larity in the distribution of physical values (velocity, temperature, etc.).

As the system of Navier-Stokes equations is nonlinear its solution can be
found only by means of some iterational procedure. It is well known in numerical
analysis that it is advantageous to work with differential equations of the second
order - since to solve them the numerical procedure can be reduced to the solution
of a three-diagonal algebraic system of equations, and this means the number of
necessary arithmetical operations falls from an order O(n3) to an order O0(n),
where n 1is the number of unknown values.

It is quite «natural, therefore, to try to construct the iterational procedure
in such a way that a sequence of separated second-ordered differential equations
has to be solved at each step of the iteration. For this purpose we always used
the modification of boundary conditions on solid surfaces which gives the values
of the stream-function and vorticity on boundaries at each step of the iteration.

To make the idea clear we consider the plane motion of an incompressible
fluid.

For the solution of steady-flow problems three methods were used; to each of
them a different computational procedure can be applied.

1. Method of successive approximations

In this method the steady system of Navier-Stokes equations is solved

directly.
The system’can be written in the form
w 3¢ ., ow _ 9¢ , Jw
=t _— = 2 ¢ — - gt T
=2 e (30 "3 "3 " on kR
A¢ = F(E;n)w
where &,n - are some ''canonical" coordinates (usually, the potential and stream-
function in ideal flow), w - dimensionless vorticity, ¢ - dimensionless addi-

tional stream-function (the full stream-function VY = ¢+n).

On solid surfaces, the equations of which in canonical coordinates have the
form: n = const, the real boundary conditions are

L an

¢ = const, an

>

For reducing the system (I) to a sequence of second-order equations we modify the
second boundary condition from (II) '

w = a<e>[1+%%1+w

and construct successive approximations in the following way

A -2 Efﬂil = 21 Efﬂ . EEE = Efﬂ,. EEE ]
“n+1 3 an 3% 3 o
= 111
8o 1 F(E,mw (I11)
3¢n
¢ ,, = const, Wy = a(g) (1 + N ) tw,

So we see that at each step of the iteration two separated equations of the second
order are to be solved.



The coefficient o (£) 1in the boundary conditions (we call it the '"relaxation
parameter') is introduced to secure the convergence of successive approximations.

If these approximations are convergent the real boundary condition (second in
(I1)) will automatically be satisfied.

2. "Real'stabilization method

The solution of the steady motion problem is obtained in this method as
the limit of the unsteady Navier-Stokes equations when time t -+ o,

The system of equations in canonical coordinates can be written

oy, W,
an

w
F(E,n) 77 = bw- 2 ( AT T
(1v)

Aw = F(E’n)w
(with corresponding choice of time unit).

This system is used naturally for the solution of real unsteady problems,
but when we are interested only in finding the final steady solution, the boundary
conditions on the solid surface can be modified in such a way that for each time-
step the values of vorticity (w) and stream function (Y) will be known and
equations for w and Y become separated. '

This modified boundary condition is

- 9
s¢ = Ot 3‘#— (n = const) W)

Obviously, the real condition 9Yy/dn = 0 will be satisfied when the
process tends to a steady state.

The real nonstationary system of Navier-Stokes equations is mot convenient
for numerical calculation, as it is a combinatior of parabolical and elliptical
equations. When the steady state only is of interest we are not obliged to use
this real system. Any nonstationary system can be used with the same steady part
although perhaps it has no physical sense. So to avoid the bad properties of the
real system we use the third method called:

3. "Artificial" stabilization method

In this method the solution of the steady problem is obtained as the limit
(t > ©) of the solution of the system of parabolic equations:

ow I W U AW

— = Aw - 2 ( 2X e X2 Y g B

ot an  9&  3E an 1)
W _

3t Ay - F(E,Muw

The boundary condition on a solid wall has the same form (V).

II. The Computational Procedure

In the methods of successive approximation, as we have seen, the problem is
reduced to successive solutions of the Helmholz and Poisson equations. There are
many effective methods for the numerical solution of these classical equations,
especially taking into account that the forms of the domains in canonical coordi-
nates are very simple (strips or planes with sections).

In our calculation we usually used the matrix factorization method. This is
well known too, so it is not necessary to describe it here.



As the most interesting problems connected with the Navier-Stokes equations
deal with flow in an infinite domain, the question arises how to transmit the con-
dition from infinity to some finite distance.

In the case of the flow in a channel with parallel walls at infinity the
boundary conditions for sufficiently large & can be written in the form:

3 a
— = = = >>

3E 0 s 3E 0 when |&| XO 1

As the flow in this case tends to Poiseuille flow the comparison with it can serve
as some kind of control of accuracy.

When the asymptotic expression for the solution can be established (as, for
instance, in the case of a semi-infinite flat plate), the boundary conditions at a
large but finite distance can be deduced from these expressions. For example, in
the flow around the flat plate the asymptotic expressions are:

for £ >> 1
w o = : o~ x
VX
Hence
w o W % x 9
9x 2x ? 9x 2x

and the boundary condition taken for calculation was:
when & = Xé > 1

dw o ___w % _ _¢
9x 2 X 2 93x 2 X
o o

Again the well known Blasius solution for the boundary layer flow past a flat plate
could be used as a control of the accuracy of the calculations.

In the problems of external flow around some finite body, far from this body
the solution of the Navier-Stokes equations asymptotically tends to the solution of
the Oseen equations. This asymptotic equation gives the relation between the values
of normal derivatives w or ¢ and these functions themselves. In finite-—
difference approximation this relation will have the form:

% A £ B + Cu

on > 9n w
Here by the "vector" 8$/Bn we understand the set of values of dw/9n, ® - the set
of values of w on the boundary, chosen far enough from the body. The matrices
A, B, and C are calculated from the general solution of the Oseen equations for the
outer domain.

These approaches to the approximation of conditions at infinity are, of course,
applicable to any of the methods described.-

The "artificial stabilization method" provides the greatest 'freedom'" in the
choice of computational procedures. Just as for systems of parabolic equations the’
latest methods of decomposition of computational operator can be applied in the most
natural way. More precisely, these are the methods which reduce the solution of a
algebraic linear system of high order to the solution of some set of systems of
lower order.

For the system (VI) we used several methods; two of them deserve to be men-
tioned here.

Alternating directions method in which the space derivativatives in & and
n directions are written in turn in implicit form.




The first time "half step":

2. 2
¢n+1 B q)n a wn+1 . wn
Y: - 7 * 7 - Fmuy,
3 an
W, -w 3% 22w 3y o e 30
n+1 n n+1 + L n+l | n+l ntl . ""n ]
At - 352 an . oan El3 9 an
w - w 3\!)
n+l n n+1 _
S a(E,tn+l) N (n const)
The second time "half step':
2 2
1;)n-+-2 B l‘bn+l ? wn+l 8 wn+2
At - z T 7 - P&,
’ o0& an
2 .
! _ 0 “n+l . o “n+2 -2 BYn+2 . awn+l B Bwn+2 . aw11+2 ]
At B 352 an an 9E 9E an
w -w oY
n+2 n+l n+2 _
— G(E,tn+2) I (n = const)

For simplicity we write here the space derivatives in differential form. In calcu-
lations they are, of course, replaced by corresponding finite-difference expres-
sions. It is important to note that the three-point approximation is used, for
instance,
Bzw w e 2w . + w -1
n n n n

ge? BE*

e

Just this three-point scheme reduces the problem to the solution of a three-diagonal
system of algebraic linear equations.

Locally onedimensional method. Here the following sequence of systems is
solved:

The first half-step

2 -
u"r1+1 - wn d wn+l
At = & 2
g
2
“ar1 T Y 30 41 W1 Moy
At = 2 R e T
3g
The second half-step.
Yot2 = Von az‘L’n+z
g . "~ T p C G
an
. 22 3 3
wn+2 wn+l n+2 n+2 wn+2
SLLLLN L s + 4 !
At an2 & an

The boundary conditions are approximated as in previous cases.



We see in this method there is no approximation of differential equatiomns at
each half-step. But two half-steps together give

N 2 2
Yot2 = ¥n - W1 + (AT - FEarSi
2 At ag2 an2 nt+l
w_ - w % 2% W 3w 3 w
n+2 n o _ n+l % nt+2 2 [ nt+l | o+l  “'nt2 | nt2 ]
2 At - 352 an2 an EIS & an

which is the approximation of the differential system.

To give "equal weight" to both variables £ and n the alternating of them
is used at successive full steps, let us say: first full siep - a first the
derivatives with respect to & remain in the equations and at the second half step
the derivatives with respect to n remain; second full step - first hakf-step,
derivatives in n remain, second half-step, derivatives in & remain and so on:

E, n; &, n; &, n....

In the real stabilization method the procedures described can be applied only
to the equation for the vorticity. For the stream-function some other method must
be used, which gives for each time step the solution of the elliptical Poisson
equation, by the matrix-factorization method, for instance.

This method is not good enough for large Reynolds numbers, because it requires
a large computer memory. Therefore some other methods must be used (for instance,
based on Fourier expansions) which permit some economy of memory, although requiring
many more arithmetical operations.

Finally I shall mention one important computational procedure which permits us
to simplify calculations in the case of a flow domain of complicated shape.

The simple shapes of domain (for example - rectangles) permit us to reduce the
amount of calculation and the logic of the computer program also. If some compli-
cated domain can be subdivided in a set of simple sub-domains, it is reasonable to
carry out the solution for each sub-domain connecting them on the boundaries. For
illustration of the idea let us consider the flow in Borda's mouthpiece (Fig. 1).

We construct the solution of the Navier-Stokes system in sub-domains 1 and 2 (SD1
and SD2 on Fig. 1). On the common border (dotted line) the following conditions
must be fulfilled:

dw.

i S S _ . o Wy e
an  9n ? W = Wy > 3an  9n > 1 2

@

Instead of this system of four conditions we write two conditions for each sub-
domain:

SD1
Y Y
1 _ 1
5 B(wl - wz) + T
ow dw
1 1
o - YT w)
SD2
Y Y
Eﬁz = B(wl - ¢2) + gﬁg
dw sz

M - Y(wl - wz) o



Using successive approximations we have

3y oy
l,n+l _ _ l,n
an & B(wl,n wZ,n) * an

dw dw
1,n+l _ _ 1,n
an ol TP T i ™

and similarly for the second sub-domain. If the initial approximation ensures
that

W0 o M0 3‘*’1,0 _ Mp
an - on ’ an - 9n

then the equality between dw,/dn and dw,/3dn will always be fulfilled (the same
for 9y./dn and 3y, /3n). I% the successive approximations converge then auto-
matical}y the conditIon w) = wp, Y; = Yp will be satisfied. We see that at each
step of the iteration the equations for each sub-domain are solved separately.

The convergence of the method (by proper choice of the relaxation parameters
B or Yy) 1is easily proved for Laplace's equation. For the Navier-Stokes system
the convergence was verified only by calculations.

Quite naturally the question can arise: which method is better?

I answer quit® definitely - the stationary method of successive approximation
(if convergent, of course). Its most satisfying property is that the rate of con-
vergence does not depend on the accuracy of the approximation (upon the number of
nodal points in finite-difference grid). In any stabilization method the time-step
decreases when the finite-difference grid becomes denser.

Nevertheless the application of different methods gives some possibility for
better understanding of the processes in viscous fluids. I will make some further

remarks on this.

III. Some Results of Calculation

Now the number of different cases calculated is already so huge all over the
world that there is no reason to show many '"picturesque images'". I limit myself’
therefore to a few results which I selected, considering them to be "suggestive'
in some respect.

As the first example consider the motion in an expanding channel (Fig. 2).
The flow picture here has no surprises.

At small Reynolds numbers separation does not occur. When the Reynolds number
increases the separation appears, the point of detachment very soon stabilizes, while
the reattachment point moves off roughly proportionally to Reynolds number (Fig. 3).

I give this example because it was a test case in our calculations for which
different methods were tried out. In Fig. 4, for example, the comparison of calcu-
lations by the method of successive approximation and by artificial stabilization
method (using locally one-dimensional procedure) is represented. Here Re ~ 100
(32 m).

This use of different methods disclosed one interesting phenomenon: all the
methods fail when Re is close to 200.

The properties of the methods are very different, and the easiest way to
explain their simultaneous failure is to suppose that the solution of the steady



flow equations does not exist for such large Reynolds numbers.

Of course, numerical methods can never give the proof of some mathematical
fact, but they are suggestive at least.

In connection with this we intend to undertake wide numerical experiments
with the use of different methods for the same cases of flow with separation. All
the calculations for this case were made by Miss N. Meller - the senior scientific
collaborator of the Computing Center.

Figures 4 and 5 show the flow around fixed and rotating cylinders (the example
is taken from the work of Dr. V. Lulka).

The separation vanishes when the rotation speed is large enough.

The third example illustrates the motion in a "pit" - in the channel with
local expansion. Here the method of subdividing of domain was used (dotted lines
on Fig. 6). The results of the calculation were kindly put at my disposal by the
Bulgarian postgraduate Miss E. Mateyeva.

The picture of flow itself is interesting here. It shows how careful one must
be when trying to use the integral conservation laws (mass, impulse, energy) on the
basis of some flow picture suggested a priori.

I am not showing here any examples of compressible flow calculations, for
although they include some interesting results, we are still in the initial stage

of investigating methods in this case.

IV. The Problem of Large Reynolds Numbers

In assessing the possibility of the numerical solution of the Navier-Stokes
equations in the present state of computer capacity, we can say that this is
realizable for an incompressible fluid in plane or axisymmetrical flow, and perhaps
even easy for practical calculations when Reynolds numbers are not too large (of the
order one hundred, approximately). Unfortunately, the most interesting problems in
practice relate to much larger Reynolds numbers.

The difficulties here, I would say, are purely computational. 1In a finite -
difference approximation to the nonlinear term of equations the truncation error
is in general of the order Re*h (h = Ax or Ay), when the order of main viscous
term is supposed to be of the order 1. Obviously, an approach to the real solution
can be reached when Re*h < € << 1, otherwise the mathematical viscosity -exceeds
the real one and we don't know what the numerical solution means.

It seems that by using central-difference expressions for derivatives we can
reduce the error to the order Re‘*h and the condition of approximation will be
Re*h® < € << 1, which is much more favorable than the previous one. However, the
truncation error in this case contains the third derivatives of vorticity, and we
can't be sure that € is independent of Re. To imagine what it means, let us
evaluate, for example, the work for solution of an unsteady problem in the case of
Poiseuille motion between two plates. According to C. C. Lin's calculation the
breakdown of stability of Poiseuille motion occurs when Re > 6000. Bearing in
mind that we wish to obtain the picture of development of turbulence by numerical
caloulations, we need to satisfy the condition, let us say, Re*h“ = 0.1, that is,
h = 1/250. The length of channel must be at least 20 times more than the width.
So our finite - difference grid must have at least 5000 nodal points.

Even with all the achievements of modern computer technology this is a horrible
problem. And it must be noted that the main obstacle now is the volume of fast
memory — not the speed of computers. Even with the speeds which are already attain-
able in a good computer, the problem would have been attacked, if the fast memory
contained something like 107 words.



These estimates, unfavorable as they are for the time being, nevertheless show
a good prospect for the future (and even the near future). Computers will soon have
such a memory, together with an increase of speed.

In conclusion I would like to make a remark. For practical application of
numerical solutions of the Navier-Stokes equations it is not always necessary to
apply them over the whole domain of flow. We have to learn to combine the solutions
of this system in different approximations: boundary layer, ideal fluid approxima-
tions. To use "dogmatically" the complete Navier-Stokes equations for the whole
field of flow is not only difficult, but even unreasonable: the accuracy of results

can deteriorate instead of increasing.
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