Transactions on

Aspect-Oriented
Software

Development IV

Awais Rashid - Mehmet Aksi
Editors-in-Chief

Awais Rashid Mehmet Aksit (Eds.)

Transactions on
Aspect-Oriented
Software Development IV

@ Springer

Volume Editors

Awais Rashid

Lancaster University

Computing Department
Lancaster LA1 4WA, UK
E-mail: awais@comp.lancs.ac.uk

Mehmet Aksit

University of Twente
Department of Computer Science
Enschede, The Netherlands
E-mail: aksit@ewi.utwente.nl

Library of Congress Control Number: 2007939971

CR Subject Classification (1998): D.2, D.3, 1.6, H4, K.6
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 1861-3027
ISBN-10 3-540-77041-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77041-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use.must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12197705 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4640

Editorial

Volume IV of Transactions on Aspect-Oriented Software Development continues the
special issue on Early Aspects from volume III. The special issue was guest edited by
Jodo Aradjo and Elisa Baniassad and handled by one of the co-editors-in-chief,
Mehmet Aksit. The papers in volume III discussed topics pertaining to analysis,
visualisation, conflict identification and composition of Early Aspects. The papers in
this volume focus on mapping of Early Aspects across the software lifecycle.
Complementing this focus on aspect mapping is a special section on Aspects and
Software Evolution guest edited by Walter Cazzola, Shigeru Chiba and Gunter
Saake—the co-editor-in-chief handling this issue was Awais Rashid.

We wish to thank the guest editors for their commitment and effort in producing
such a high quality volume. We also thank the editorial board for their continued
guidance, commitment and input on the policies of the journal, the choice of special
issues as well as associate-editorship of submitted articles. Thanks are also due to the
reviewers who volunteered time amidst their busy schedules to help realize this
volume. Most importantly, we wish to thank the authors who have submitted papers
to the journal so far, for their contributions maintain the high quality of Transactions
on AOSD.

There are two other special issues on the horizon. One focuses on aspects,
dependencies and interactions (guest editors: Ruzanna Chitchyan, Johan Fabry,
Shmuel Katz and Arend Rensink) for which the call for papers has closed and the
papers are currently in the review phase. There is an open call for papers for a special
issue on aspects and model-driven engineering (guest editors: Jean-Marc Jezequel
and Robert France). The call will close on 15 November 2007. These special issues
coupled with the regular submissions to the journal mean that we have a number of
exciting papers to look forward to in future volumes of Transactions on AOSD.

There are also important changes afoot at the journal. At the last editorial board
meeting Don Batory and Dave Thomas volunteered to step down from the editorial
board. Their input and guidance were invaluable in the start-up period of the journal.
Don was also a very active and conscientious associate editor. We thank them both
for their contributions. At the same time, we welcome Bill Harrison, Oege de Moor
and Shriram Krishnamurthi to the editorial board and look forward to working with
them.

Another major change involves the co-editors-in-chief. As per the journal policy,
one of the founding co-editors-in-chief, Mehmet Aksit, is stepping down after the first
two years of the journal. So this is the last volume Mehmet will be co-editing in this
role. Needless to say, Mehmet has been instrumental in the successful launch of the
journal and its operations to date and the editorial board is most grateful for his efforts
and contributions. We do not lose Mehmet although as he will remain on the editorial
board and continue to guide us.

At the same time, it is with great pleasure we welcome Harold Ossher who will be
taking over from Mehmet as co-editor-in-chief. Harold’s name needs no introduction
in the AOSD and software engineering communities. His work on subject-oriented

VI Editorial

programming laid the early foundations of AOSD and, subsequently, his work on
multi-dimensional separation of concerns has been fundamental in influencing how
we perceive the notion of aspects. The journal will continue to flourish under his
guidance and leadership and we feel that the future for both the journal and the AOSD
community at large is very bright.

Awais Rashid and Mehmet Aksit
Co-editors-in-chief

Organization

Editorial Board

Mehmet Aksit, University of Twente

Shigeru Chiba, Tokyo Institute of Technology
Siobhdn Clarke, Trinity College Dublin

Theo D’Hondt, Vrije Universtiteit Brussel
Robert Filman, Google

Bill Harrison, Trinity College Dublin

Shmuel Katz, Technion-Israel Institute of Technology
Shriram Krishnamurthi, Brown University
Gregor Kiczales, University of British Columbia
Karl Lieberherr, Northeastern University

Mira Mezini, University of Darmstadt

Oege de Moor, University of Oxford

Ana Moreira, New University of Lisbon

Linda Northrop, Software Engineering Institute
Harold Ossher, IBM Research

Awais Rashid, Lancaster University

Douglas Schmidt, Vanderbilt University

List of Reviewers

Jonathan Aldrich
Jodo Araijo

Don Batory

Klaas van den Berg
Lodewijk Bergmans
Jean Bézivin
Gordon Blair
Johan Brichau
Shigeru Chiba
Ruzanna Chitchyan
Paul Clements
Yvonne Coady
Arie van Deursen
Erik Ernst

Robert Filman
Lidia Fuentes
Alessandro Garcia
Sudipto Ghosh

Jeff Gray

VIII Organization

Michael Haupt

Bill Harrison

Robert Hirschfeld
Jean-Marc Jézéquel
Gregor Kiczales
Giinter Kniesel
Thomas Ledoux
Cristina Lopes
Roberto Lopez-Herrejon
David Lorenz
Hidehiko Masuhara
Ana Moreira

Klaus Ostermann
Martin Robillard
Americo Sampaio
Christa Schwannninger
Dominik Stein

Mario Siidholt

Eric Tanter

Gabriele Tinzer

Peri Tarr

Bedir Tekinerdogan
Emiliano Tramontana
Ian Welch

Jon Whittle

Lecture Notes in Computer Science

Sublibrary 2: Programming and Software Engineering

For information about Vols. 1- 4204
please contact your bookseller or Springer

Vol. 4834: R. Cerqueira, R.H. Campbell (Eds.), Middle-
ware 2007. XIII, 451 pages. 2007.

Vol. 4824: A. Paschke, Y. Biletskiy (Eds.), Advances
in Rule Interchange and Applications. XIII, 243 pages.
2007.

Vol. 4807: Z. Shao (Ed.), Programming Languages and
Systems. XI, 431 pages. 2007.

Vol. 4799: A. Holzinger (Ed.). HCI and Usability for
Medicine and Health Care. X VI, 458 pages. 2007.

Vol. 4789: M. Butler, M.G. Hinchey, M.M. Larrondo-
Petrie (Eds.), Formal Methods and Software Engineer-
ing. VIII, 387 pages. 2007.

Vol.4767: F. Arbab, M. Sirjani (Eds.), International Sym-

posium on Fundamentals of Software Engineering. XIII,
450 pages. 2007.

Vol. 4764: P. Abrahamsson, N. Baddoo, T. Margaria,
R. Messnarz (Eds.), Software Process Improvement. XI,
225 pages. 2007.

Vol. 4762: K.S. Namjoshi, T. Yoneda, T. Higashino, Y.
Okamura (Eds.), Automated Technology for Verification
and Analysis. XIV, 566 pages. 2007.

Vol. 4758: F. Oquendo (Ed.), Software Architecture.
XVI, 340 pages. 2007.

Vol. 4757: F. Cappello, T. Herault, J. Dongarra (Eds.),
Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface. XVI, 396 pages. 2007.

Vol. 4753: E. Duval, R. Klamma, M. Wolpers (Eds.),
Creating New Learning Experiences on a Global Scale.
XII, 518 pages. 2007.

Vol. 4749: B.). Kramer, K.-J. Lin, P. Narasimhan (Eds.),
Service-Oriented Computing — ICSOC 2007. XIX, 629
pages. 2007.

Vol. 4748: K. Wolter (Ed.), Formal Methods and Stochas-

tic Models for Performance Evaluation. X, 301 pages.
2007.

Vol. 4741: C. Bessiere (Ed.), Principles and Practice of
Constraint Programming — CP 2007. XV, 890 pages.
2007.

Vol. 4735: G. Engels, B. Opdyke, D.C. Schmidt, F. Weil
(Eds.), Model Driven Engineering Languages and Sys-
tems. XV, 698 pages. 2007.

Vol. 4716: B. Meyer, M. Joseph (Eds.), Software Engi-
neering Approaches for Offshore and Outsourced Devel-
opment. X, 201 pages. 2007.

Vol. 4680: F. Saglietti, N. Oster (Eds.), Computer Safety,
Reliability. and Security. XV, 548 pages. 2007.

Vol. 4670: V. Dahl, 1. Niemeli (Eds.), Logic Program-
ming. XII, 470 pages. 2007.

Vol. 4652: D. Georgakopoulos, N. Ritter, B. Benatal-
lah, C. Zirpins, G. Feuerlicht, M. Schoenherr, H.R.
Motahari-Nezhad (Eds.), Service-Oriented Computing
ICSOC 2006. X VI, 201 pages. 2007.

Vol. 4640: A. Rashid, M. Aksit (Eds.). Transactions
on Aspect-Oriented Software Development IV. IX, 191
pages. 2007.

Vol. 4634: H. Riis Nielson, G. Filé (Eds.), Static Analy-
sis. XI, 469 pages. 2007.

Vol. 4620: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development II1. IX, 201
pages. 2007.

Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky
(Eds.), Architecting Dependable Systems IV. XIV, 435
pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Emst (Ed.), ECOOP 2007 - Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovi¢, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XI1,414 pages.
2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
XI, 375 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part III. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part I1. XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part I. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.). Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.). Human-Computer Interac-
tion, Part I11. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I1. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXIII, 1240 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.), Re-
quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4536: G. Concas, E. Damiani, M. Scotto, G. Succi
(Eds.), Agile Processes in Software Engineering and Ex-
treme Programming. XV, 276 pages. 2007.

Vol. 4530: D.H. Akehurst, R. Vogel, R.F. Paige (Eds.),
Model Driven Architecture - Foundations and Applica-
tions. X, 219 pages. 2007.

Vol. 4523: Y.-H. Lee, H.-N. Kim, J. Kim, Y.W. Park,
L.T. Yang, S.W. Kim (Eds.), Embedded Software and
Systems. XIX, 829 pages. 2007.

Vol. 4498: N. Abdennahder, F. Kordon (Eds.), Reliable
Software Technologies - Ada-Europe 2007. XII, 247
pages. 2007.

Vol. 4486: M. Bernardo, J. Hillston (Eds.), Formal Meth-
ods for Performance Evaluation. VII, 469 pages. 2007.

Vol. 4470: Q. Wang, D. Pfahl, D.M. Raffo (Eds.), Soft-
ware Process Dynamics and Agility. XI, 346 pages. 2007.
Vol. 4468: M.M. Bonsangue, E.B. Johnsen (Eds.), For-
mal Methods for Open Object-Based Distributed Sys-
tems. X, 317 pages. 2007.

Vol. 4467: A.L. Murphy, J. Vitek (Eds.), Coordination
Models and Languages. X, 325 pages. 2007.

Vol. 4454: Y. Gurevich, B. Meyer (Eds.), Tests and
Proofs. IX, 217 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program
Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.

Vol. 4440: B. Liblit, Cooperative Bug Isolation. XV, 101
pages. 2007.

Vol. 4408: R. Choren, A. Garcia, H. Giese, H.-f. Leung,

C. Lucena, A. Romanovsky (Eds.), Software Engineer-
ing for Multi-Agent Systems V. XII, 233 pages. 2007.

Vol. 4406: W. De Meuter (Ed.), Advances in Smalltalk.
VII, 157 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4401: N. Guelfi, D. Buchs (Eds.), Rapid Integra-
tion of Software Engineering Techniques. IX, 177 pages.
2007.

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),

Task Models and Diagrams for Users Interface Design.
X1, 355 pages. 2007.

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XTI, 235 pages. 2007.
Vol. 4379: M. Siidholt, C. Consel (Eds.), Object-Oriented
Technology. VIII, 157 pages. 2007.

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. X1, 332 pages. 2007.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4350: M. Clavel, F. Durén, S. Eker, P. Lincoln, N.
Marti-Oliet, J. Meseguer, C. Talcott, All About Maude
- A High-Performance Logical Framework. XXI1I, 797
pages. 2007.

Vol. 4348: S. Tucker Taft, R.A. Duff, R.L. Brukardt, E.
Plodereder, P. Leroy, Ada 2005 Reference Manual. XXII,
765 pages. 2006.

Vol. 4346: L. Brim, B.R. Haverkort, M. Leucker, J. van
de Pol (Eds.), Formal Methods: Applications and Tech-
nology. X, 363 pages. 2007.

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIIL, 317 pages. 2007.

Vol. 4336: V.R. Basili, H.D. Rombach, K. Schneider,
B. Kitchenham, D. Pfahl, R.W. Selby (Eds.), Empirical
Software Engineering Issues. XVII, 193 pages. 2007.

Vol. 4326: S. Gobel, R. Malkewitz, I. Turgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. X1, 269 pages. 2007.

Vol. 4322: F. Kordon, J. Sztipanovits (Eds.), Reliable
Systems on Unreliable Networked Platforms. XIV, 317
pages. 2007.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — [CSOC 2006. XIX, 653 pages.
2006.

Vol.4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4262: K. Havelund, M. Nifiez, G. Rosu, B. Wolff
(Eds.), Formal Approaches to Software Testing and Run-
time Verification. VIII, 255 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4242: A. Rashid, M. Aksit (Eds.), Transactions

on Aspect-Oriented Software Development II. IX, 289
pages. 2006.

Vol. 4229: E. Najm, J.-F. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.

Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative
Approaches for Learning and Knowledge Sharing. X VII,
721 pages. 2006.

Vol. 4218: S. Graf, W. Zhang (Eds.), Automated Tech-
nology for Verification and Analysis. XIV, 540 pages.
2006.

Vol. 4214: C. Hofmeister, I. Crnkovié, R. Reussner

(Eds.), Quality of Software Architectures. X, 215 pages.
2006.

Table of Contents

Focus: Early Aspects — Mapping Across the Lifecycle

Guest Editors’ Introduction: Early Aspects—Mapping Across the
Lifecycleo 1
Jodo Araijo and Elisa Baniassad

COMPASS: Composition-Centric Mapping of Aspectual Requirements
£0 ATChItECTUTE . .. ottt 3
Ruzanna Chitchyan, Mdnica Pinto, Awais Rashid, and Lidia Fuentes

Aspects at the Right Time 54
Pablo Sdnchez, Lidia Fuentes, Andrew Jackson, and Siobhdn Clarke

Focus: Aspects and Software Evolution

Guest Editors’ Introduction: Aspects and Software Evolution 114

Walter Cazzola, Shigeru Chiba, and Gunter Saake

Extracting and Evolving Code in Product Lines with Aspect-Oriented
Programming. 117
Vander Alves, Pedro Matos Jr., Leonardo Cole,
Alexandre Vasconcelos, Paulo Borba, and Geber Ramalho

A Survey of Automated Code-Level Aspect Mining Techniques 143
Andy Kellens, Kim Mens, and Paolo Tonella

Safe and Sound Evolution with SONAR: Sustainable Optimization and
Navigation with Aspects for System-Wide Reconciliation.............. 163
Chungian Robin Liu, Celina Gibbs. and Yvonne Coady

AMLhor INdext: :vons cwsns cmsmnams susms smint so@s fhs b s53 $a a5 544 191

Guest Editors’ Introduction: Early Aspects — Mapping
Across the Lifecycle

Jodo Aratjo' and Elisa Baniassad’

" Universidade Nova de Lisboa, Portugal
ja@di.fct.unl.pt
% Chinese University of Hong Kong, China
elisa@cse.cuhk.edu.hk

Early Aspects are aspects found in the early life-cycle phases of software
development, including requirements elicitation and analysis, domain analysis and
architecture design activities. Aspects at these stages crosscut the modular units
appropriate for their lifecycle activity; traditional requirements documentation,
domain knowledge capture and architectural artifacts do not afford separate
description of early aspects. As such, early aspects necessitate new modularizations
to be effectively captured and maintained. Without new tools and techniques, early
aspects remain tangled and scattered in life-cycle artifacts, and may lead to
development, maintenance and evolution difficulties.

Overview of the Articles and the Evaluation Process: This special issue consists of
eight articles, selected out of ten submissions. Each were evaluated by three
reviewers and revised at least twice over a period of 7 months.

The Early Aspects special issue covers three main areas of research, and is split
over two volumes of the journal. The papers in vol. III focused on Analysis and
Visualization, and Conflicts and Composition. This volume contains papers on
mapping early aspects throughout the life-cycle.

Mapping

The relationship between aspects between life-cycle phases is of primary interest to
the Early Aspects community. In this work, researchers attempt to draw a
correspondence between concerns in one lifecycle phase, to those found in another.
These approaches may involve link recovery, in which existing artifacts are examined
and the links between them derived, link formation, in which aspects in each phase
are captured in such a way that promotes traceability between them, or link
exploitation, in which traceability links are made explicit, and then exploited for other
purposes. Here we present two papers related to mapping between aspects at
life-cycle phases.

COMPASS: Composition-Centric Mapping of Aspectual Requirements to
Architecture by Ruzanna Chitchyan, Monica Pinto, Awais Rashid and Lidia Fuentes

This paper presents COMPASS, an approach that offers a systematic means to
derive an aspect-oriented architecture from a given aspect-oriented requirements
specification. COMPASS provides an aspect-oriented requirements description

A. Rashid and M. Aksit (Eds.): Transactions on AOSD IV, LNCS 4640, pp. 1-2, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 J. Aratjo and E. Baniassad

language (RDL) that enriches the informal natural language requirements with
additional compositional information. COMPASS also offers an aspect-oriented
architecture description language (AO-ADL) that uses components and connectors as
the basic structural elements with aspects treated as specific types of components.

Aspects at the Right Time by Pablo Sdnchez, Lidia Fuentes, Andrew Jackson and
Siobhdn Clarke

This paper describes an aspect mapping from requirements (specified in
Theme/Doc) to architecture (specified in CAM) to design (specified in Theme/UML).
The mapping includes heuristics to guide to the right time to specify the right aspect
properties. Moreover, it allows aspect decisions captured at each stage to be refined at
later stages as appropriate. Also, they provide a means to record decisions that capture
the alternatives considered and the decision justification, crucial for managing aspect
evolution at the right time.

COMPASS: Composition-Centric Mapping of
Aspectual Requirements to Architecture

Ruzanna Chitchyan', Ménica Pinto”, Awais Rashid', and Lidia Fuentes

! Computing Department, Lancaster University, Lancaster LA1 4WA, UK
{rouza, marash}@comp.lancs.ac.uk
% Dept. Lenguajes y Ciencias de la Computacién, University of Malaga, Malaga, Spain
{pinto, 1ff}@lcc.uma.es

Abstract. Currently there are several approaches available for aspect-oriented
requirements engineering and architecture design. However, the relationship
between aspectual requirements and architectural aspects is poorly understood.
This is because aspect-oriented requirements engineering approaches normally
extend existing requirements engineering techniques. Although this provides
backward compatibility, the composition semantics of the aspect-oriented
extension are limited by those of the approaches being extended. Consequently,
there is limited or no knowledge about how requirements-level aspects and their
compositions map on to architecture-level aspects and architectural
composition. In this paper, we present COMPASS, an approach that offers a
systematic means to derive an aspect-oriented architecture from a given aspect-
oriented requirements specification. COMPASS is centred on an aspect-
oriented requirements description language (RDL) that enriches the usual
informal natural language requirements with additional compositional
information derived from the semantics of the natural language descriptions
themselves. COMPASS also offers an aspect-oriented architecture description
language (AO-ADL) that uses components and connectors as the basic
structural elements (similar to traditional ADLs) with aspects treated as specific
types of components. Lastly, COMPASS provides a set of concrete mapping
guidelines, derived from a detailed case study, based on mapping patterns of
compositions and dependencies in the RDL to patterns of compositions and
dependencies in the AO-ADL. The mapping patterns are supported via a
structural mapping of the RDL and AO-ADL meta-models.

Keywords: aspect—oriented software development, early aspects, requirements
engineering, architecture design, requirements to architecture mapping,
requirements composition, architecture composition.

1 Introduction

As aspect-oriented software development (AOSD) grows in popularity, more and
more requirements [9, 45, 54, 69] and architecture [9, 67] level approaches emerge.
They all aim to improve modular representation and analysis of crosscutting concerns
at the requirements- or architecture-level, but no single approach covers both
activities: starting from requirements and resulting in an architecture specification for

A. Rashid and M. Aksit (Eds.): Transactions on AOSD IV, LNCS 4640, pp. 3-53, 2007.
© Springer-Verlag Berlin Heidelberg 2007

4 R. Chitchyan et al.

the given requirements. Though some approaches, e.g., [45, 54], provide initial
insights into architectural choices, no concrete mapping guidelines for deriving the
architecture are provided. Our approach, COMPASS, is based on a composition-
centric perspective for such requirements-to-architecture mapping. That is, it focuses
on the compositional information and dependencies of concerns at the requirements-
level and utilises these as a basis for a systematic transition from an aspect-oriented
requirements specification to an aspect-oriented architecture. Compositions are the
embodiments of aspectual interactions in requirements. The mapping facilitated by
COMPASS allows a developer to utilise requirement compositions to pinpoint the
likely aspectual relationships in architecture that originate from the requirements.'

Such a composition-centric approach requires rich composition semantics at the
requirements-level. However, the majority of current aspect-oriented requirements
engineering (AORE) techniques have been developed as extensions to other
contemporary requirements engineering (RE) approaches. For instance, the AORE
with ARCADE approach [54] extends a viewpoint-based requirements engineering
model called PREView [64] with the notion of aspects. Similarly, the aspect-oriented
use case approach [31] extends the traditional use case model with aspectual use
cases. Although this provides backward compatibility in terms of software processes
and development practices, it also restricts these AO approaches to the same dominant
decomposition as the extended RE approach, turning everything that does not fit quite
well with the base® approach into aspects. The semantics of such concerns put into
this “aspect-bin” are often under-investigated; they frequently do not receive adequate
representation and reasoning support either. Though some of these concerns may very
well align with the given notations (often adopted from the base approach, or new
dedicated “add-ons”) and classification, others may be forced into such adapted
frameworks. For instance, in case of aspectual use cases [31] the extend and insert use
cases are re-classified as “aspectual” and an additional set of infrastructure use cases
is introduced for the representation of non-functional concerns. Although the extend
and insert use cases fit very well into the traditional use case (i.e., functionality-
related) semantics and representation, the infrastructure use cases are forced to
“functionalise” the qualitative semantics of non-functional concerns. As such the
expressive and compositional power of the aspect-oriented approach is limited by that
of the base approach.

The provision of richer composition semantics at the requirements-level is the first
aim of COMPASS. The COMPASS Requirements Description Language (RDL)
partitions requirements into concerns like most RE techniques but with two main
differences. First, it takes a symmetric approach to such partitioning, i.e., aspects and
base concerns are treated uniformly using the same abstraction, a concern. [46, 66].
Second, it enriches the usual informal natural language requirements with additional
compositional information derived from the semantics of the natural language
descriptions themselves. This compositional information is utilised for semantics-
based composition of requirements-level concerns. It also provides core insights into

"It must be noted that other aspects, motivated by the solution domain, may also arise in
architecture. Such solution domain aspects are not targeted by this approach. Our
compositions pinpoint the aspects arising from the problem domain, i.e., the requirements.

? “Base approach” here is the approach being extended with Aspects.

COMPASS: Composition-Centric Mapping of Aspectual Requirements to Architecture 5

the intentionality of a requirement hence facilitating a clearer mapping to relevant
architectural elements. The natural language requirements’ annotation with the RDL
is fully automated via our Wmatrix [58] natural language processor. Tool support is
also available for crosscutting concern identification [56, 57].

A composition-centric approach also requires clearer architectural composition
semantics for aspects. Presently in many cases, aspect-oriented architecture design
approaches adopt concepts introduced by aspect-oriented programming (AOP)
languages, without questioning how appropriate these may be at the architecture level.
Some of the examples of such programming language driven features are:
introductions; asymmetric representation — i.e., use of different artefacts for base
functionality and aspectual behaviour; and the lack of separation of compositional
information (i.e., the pointcuts) from the aspect behaviour (i.e., the advice). Although
such features provide a closer alignment between architecture and a given AOP
language, they do not always help to capture the fundamental nature of software
architecture descriptions, unnecessarily complicating architecture comprehensibility
and evolution. For instance, AOP introductions are implementation-specific
mechanisms thought to extend the interface and behaviour of a class when only the
binary code is available. This is not appropriate at the architecture level, where
instead the interface of a component should be extended by transforming the
component into a composite component with multiple interfaces. Also, pointcuts
specify composition of architectural components, be it aspectual ones, and, therefore,
ought to be part of the connector semantics rather than be included within the aspect
specification.

The provision of suitable abstraction and composition mechanisms at the
architecture-level is the second aim of COMPASS. We propose an aspect-oriented
ADL (AO-ADL) based on a symmetric decomposition model — it uses components
and connectors as the basic structural elements (similar to traditional ADLs) with
aspects treated as specific types of components. Connectors are enriched with
additional composition semantics to cope with the crosscutting effect of aspectual
components.

Having enriched requirements and architecture models with suitable aspect
composition semantics, COMPASS provides a set of concrete mapping guidelines,
derived from a detailed case study, based on mapping patterns of compositions and
dependencies in the RDL to patterns of compositions and dependencies in the AO-
ADL. The mapping patterns are supported via a structural mapping of the RDL and
AO-ADL meta-models.

The mapping guidelines in COMPASS are a significant contribution not only to
improving transparency of transition from aspectual requirements to architecture but
also to the general issue of relating requirements to architecture in a systematic
manner. The third goal of COMPASS is to establish clear links between the
requirements-level aspects and their compositions with architecture elements and
transition from the requirements-level to architecture. The architecture derived from
COMPASS mappings acts as a starting point for refinement and elaboration into an
architectural solution. We leave the topics of architecture refinement and elaboration
out of this paper for a separate discussion, and focus on the actual mappings
themselves.

6 R. Chitchyan et al.

The rest of the paper is structured as follows. Section 2 presents how COMPASS
fits within the software development activities. Section 3 discusses our RDL and its
composition semantics. Section 4 discusses the abstraction and composition
mechanisms in our AO-ADL. Section 5 presents the mapping patterns based on the
compositional information and dependencies as well as the structural mapping
between the RDL and AO-ADL meta-models. The discussion in Sects. 3,4 and 5 is
based on a concrete case study of an online auction system that has also been used as
a basis for eliciting the mapping guidelines. Section 6 discusses and demonstrates
application of guidelines, as well as presents some difficult issues that the COMPASS
approach faces. Section 7 discusses related work and Sect. 8 concludes the paper. The
summary of the mapping guidelines is presented in Appendix A.

2 COMPASS Within the Software Development Process

In order to explain the relation of COMPASS to the general software development
activities, we have highlighted the COMPASS activities in Fig. 1. As shown, COMPASS
is concerned with the link between the RE and Architectural activities, which is
represented as the oval containing “Requirements to Architecture Mapping” activity
along with its adjacent arrows.

Figure 1 explicitly mentions a number of RE activities that come before the
COMPASS activities, as well as a number of Architecture Design activities that come
after. Though none of these pre and post COMPASS activities are the focus of this
paper, for the sake of completeness and clarity, we provide a brief overview of some
related issues in this section.

2.1 Requirements Engineering

For use of COMPASS we do not prescribe any particular RE technique, the only
specified condition being that the used technique will contain natural language
requirements specification. The decision to use natural language specification was
motivated mainly by the fact that the majority of the requirements are still specified in
natural language text [12]. Clearly, it is hardly possible to establish a direct mapping
from raw natural language text to architecture design. Thus, a number of tasks
dedicated to concern identification and structuring requirements into a specification
document need to be undertaken. The specification document will then form input for
the COMPASS mapping.

Thus, any kind of structured text-based specification (such as viewpoints or use
cases) can form COMPASS input.’ Our own work on producing such structured
natural language requirements for AORE from initial natural language (NL) text is
presented in [56, 57]. In brief, our approach for structuring is based on use of tool-
supported corpus-based natural language processing methodology. We initially apply
an NL processor (called WMATRIX [6, 58]), which helps to identify the main topics
of interest in the given natural language document by comparing the given document

* Input for COMPASS can be produced by any other RE approach that uses natural language. It
is not necessary to use specifically our approach that is discussed further in this section.

