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Preface

This is the second in a series of three books devoted to Mathematical
Morphology, and published by Academic Press. The first volume, /mage
Analysis and Mathematical Morphology, which appeared in 1982, dealt
mainly with the Euclidean case. The third volume will be devoted to
algorithms. This second volume extends the scope of the first.

The manuscript was read by Dr N. Fisher, whose critical comments and
corrections considerably improved the style of the original document. I am
most grateful to him. I should also like to thank my collegues from the School
of Mines of Paris and from other institutes for their constructive advice
during the development of the theory presented here. Thanks are due to Mrs
L. Pipault, Mrs M. Kreyberg and Miss A. Andriamasinoro for typing this
text, and Mr Waroquier for the figures and the drawings. Finally, I am
grateful to Academic Press for the quality of their production.

JEAN SERRA
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1 SETS
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x, ¥, b, h, etc.

F(*%)
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u, w(*)
Z ()

Notation

scalars (i.e. positive numbers)
(latin lower case letters) points in [R” or Z”, and also

vectors O,, O,, . . .; when one wants to specify that x
is a point (geometrical figure) and not a vector, one
writes {x}

set of points x satisfying property *

(latin capital letters) Euclidean or digital sets under
study

structuring element

test plane generating cross-sections

set of directions w, i.e. the unit sphere
Euclidean space, digital space of dimension #»
umbra

arbitrary set

set of all subsets of set * (i.e. Boolean lattice)
arbitrary complete lattice

lattice of increasing mappings on %

lattice of dilations, erosions, on #

set of all closed, open, compact subsets of *
set of umbrae, set of umbrae of family *
connected class

set of convex sets of family *

2 LOGIC AND SET TRANSFORMATIONS

Ix
VX
Ww.r.t.

& iff
xeX; x¢X

X=Y; X #Y
XCY;ZDOB
XYy

there exists an x such that

for all x

with respect to

implies

if and only if

point x belongs to set X; point x does not belong to set
X

sets X and Y coincide; set X is different from set Y
X is included in Y; Z contains B

set X hitsset Y, i.e. X NY =



3 TOPOLOGY

X X

0X

X—X

lrlj{: )

inf, sup
XXX 1X

d(X,Y); d(x,y)
u.s.c.;l.s.c.
LCS space
#(dx)

P{*}

E(X)

NOTATION

complement of X, i.e. set of point x such that x ¢ X
family of sets X

complement operator

smaller than, longer than, sup, inf in a lattice

homothetic of X with scaling factor \; A X =
{x:x/\ e X}

translate of X by vector #; X, = {x:x - heX}

set transform of X w.r.t. set transformation ¥

dual transformation (w.r.t. the complementation),
i.e. ¥¥(X) = [¥(X)I*

set union, i.e. set of points belonging to X orto Y
set intersection, i.e. set of points belonging to both X
and Y

set difference, i.e. set of points belonging to X and not
toY

union, intersection, of all the translates X, with b ¢ B
Minkowski addition, substraction

generic notation for opening, closing

generic notation for dilation, erosion

closure, interior, of set X

boundary of set X

X, tends towards X (for the Hit or Miss topology) in &
upper limit, lower limit

limit of * when ¢ tends towards ¢,

lower, upper bound

monotonic sequential convergence of {X;} to X, by
upper (resp. lower) values

distance between X and Y; distance between x and y
upper semicontinuous; lower semicontinuous

locally compact Hausdorff and separable space
Lebesgue measure in [R»

probability of the event *

mathematical expectation of X
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Introduction

J. SERRA

Nec ipsa tamen intrant (in memoriam) sed rerum
sensarum imagines, illic praesto sunt cogitationi
reminiscenti eas. Quae, quomodo fabricatae sint? Quis
dicit?

(Saint Augustine, Conf X-8)

MORPHOLOGICAL OPTICS

Traditionally, mathematical morphology has been used to describe objects
by considering them as subsets of Euclidean space, which results in emphasis
on their shapes, their volumes and their textures, as well as on their
luminosity and colour at each point. In order to compare bodies, to recognize
them, and to uncover their genesis, or to follow their evolution in time—in
brief, to reduce them to their essentials—mathematical morphology classifies
them into groups of more or less similar entities by putti.ng them through
sequences of set transformations.

In recent work, this principle—the use of set transformations for the
purpose of description—has proved efficient. The past twenty years have
witnessed the construction of a consistent methodology, sometimes
mathematically complex, accompanied by the design of morphological
processors and their use in a large number of applications.

Yet, what is the value of a hybrid mixture of abstract mathematics and
more or less reliable recipes? Does it look like a symbiosis, or rather like a
badly wrapped package? Is it necessary to know the ins and outs of the theory
of increasing and idempotent mappings acting on the most general lattices,
when one wants to control the manufacture of carburettors by means of a
morphological processor?

To answer these questions, it seems sensible to set this book, which will be
essentially theoretical, in the more general framework of what we shall call
morphological optics, in terms of the dual aspects—experimental and mathe-
matical—of this method.

Classically, the terms ‘‘optics’” designates that branch of physics whose

IMAGE ANALYSIS AND MATHEMATICAL MORPHOLOGY Copyright © 1988 Academic Press Limited
VOL 2 ISBN 0-12-637241-1 All rights of reproduction in any form reserved



2 IMAGE ANALYSIS AND MATHEMATICAL MORPHOLOGY

primary purpose was the study of human vision, but which was finally used to
develop theories on the nature and the behaviour of light. Optics is part of
physics, since in parallel to each of its mathematical developments, optics is
used to invent equipment adapted for the visual field (microscopes, photo-
electric cells, lasers, etc.). Moreover, thanks to its mathematical structure,
the science of optics has extended beyond the strict domain of human vision
(for example, by going from the visible spectrum to consider all electro-
magnetic radiation) and has expanded the formalism itself. The history of
optics in the nineteenth century illustrates this point: Fresnel discovered a
series of wave-related phenomena, but he interpreted them in terms of
geometry, which is somewhat inadequate when it comes to distinguishing
between longitudinal and transverse waves. Some time later, Green invented
an appropriate vectorial formalism, which justified Fresnel’s results, and laid
the groundwork for Maxwell and his famous synthesis between electro-
magnetism and light waves.

It is noteworthy that the theory of mathematical morphology tends to be
organized similarly to optical theory, i.e. with an initial emphasis on vision,
the same dialectical distinctions between theory and instrumentation, and the
same gradual breaking-up of the approach, moving from the “‘seen’’ to the
‘““unseen’’, via generalization of the mathematical framework.

MORPHOLOGICAL OPTICS DERIVED FROM VISION

In vision, a distinction should be made between geometrical and morpho-
logical optics. It is well known that the theories of geometrical optics depend
initially on the postulate that a system is identified when it is possible to
predict the image of a luminous point. The complete field of vision is then
deduced by the superposition of elementary transforms. Often, there is an
even stronger hypothesis; namely that ‘‘the image of the point is itself a
point”’. Obviously, in such a process the convolution and point transforms of
Euclidean space (homothetics, rotations, affinities, etc.) play major roles.
The usefulness of the linearity property need not be demonstrated: when an
image is taken, one sums the images to attenuate the background noise;
short-sighted correction lenses deconvolute the retinal image, etc.

Linearity also occurs in acoustics. Indeed, the intensity of sounds, when
one leaves aside considerations of phase, combine arithmetically. When
several sources emit sound at the same time, the hearing process accom-
modates all the vibrations, and, to a certain extent, isolates and compares
them. If this were not the case then there would be no orchestras! Since pre-
serving the ratios among the sound sources is necessary for an intelligent
understanding of the sound scene, all amplifiers (or transmitters) are
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required to comply with the relative proportions of the source origins, i.e. in
mathematical terms, they must be linear.

However, visual signals combine differently. Objects in space generally
have three dimensions, which are reduced to two dimensions in a photograph
or on the retina. In this projection, the luminances of the points located along
a line oriented directly away from the viewer are not summed, because most
physical objects are not translucent to light rays, in the way that they would
be to X-rays, but are opaque. Consequently, any object that is seen hides
those that are placed beyond it with respect to the viewer: this self-evident
property is a basic one.

In fact, it serves as a starting point for mathematical morphology, since,
whenever we wish to describe quantitatively phenomena in this domain, a set-
theoretic approach must be used. Stating that A is in front of B is equivalent
to asserting that we see the visible contour of B minus, in the set-theoretic
sense, that of A. Stating that A hides B is equivalent to saying that the
contour of B is included in the contour of A, etc. A morphological
description, i.e. a description of their shapes, must primarily use portions of
space. When transformations are involved, they must apply globally, i.e.
they cannot be reduced to simple juxtapositions of point transformations
(Just like gestalt psychology when it deals with human vision).

Now, the set #(R") of subsets of Euclidean space is equipped with an order
relation, called inclusion, such that any family X; of elements of (IR")
admits a smallest upper bound, called the union, and denoted U X, and a
greatest lower bound, called the intersection (the dual of the union), and
denoted N X;. In the same way that the theory of geometrical optics puts its
emphasis on the transformations that commute with addition, morphology
naturally stresses the transformations, or mappings ¥ : Z2(R")— #(IR") that
are related to the basic structures of #?(R"). Thus they will be developed:

(i) either from those that preserve inclusion, i.e.

X C Y=y¢(X) Cy(Y), X, Ye AR,

these transformations are designated as increasing transformations;
or
(ii) from those that commute with the union, i.e.

V(U X) = UYX),  Xe AR,

which are called dilations (the dual operation that commutes with the
intersection is called an erosion).
It will be noted, moreover, that the three classes are not independent: each of
the latter two can generate the first class.



4 IMAGE ANALYSIS AND MATHEMATICAL MORPHOLOGY

IRREVERSIBILITY AND MORPHOLOGICAL DISCOURSE

The parallel that could be drawn with linear methodologies ceases at this
point, insofar as there is a major problem. When we say that in geometrical
optics we improve a fuzzy picture, making it sharp, we are expressing the
point of view of the spectator. The physicist would tend to feel that nothing
had been gained, since it is always possible to revert from the sharp to the
fuzzy picture: both of them contain exactly the same amount of information.
The implied linear process is reversible. We are well aware, since Wiener’s
work, of the emphasis that signal processing lays on the notion of the
information content of a message. This high level of interest is all the more
justified when one considers questions related to transmission (amplifiers,
broadcasting, etc.).

In computer vision, what are we seeking—to transmit information or
rather to assimilate it? Reversibility is acceptable when we improve the
images that provide the input to a system, as with the case of spectacles for
shortsighted people. It is also acceptable to encode images for transfer to
processing devices, as is the case when the retinal image is transferred to the
visual cortex of the occipital lobe. But beyond this point? The brain does not
add a third ““eye’’, which would then look at the visual zones and be observed
itself. The chain stops there, and with it the notion of reversibility. Recogni-
tion of an object simply means that all the rest has been eliminated from the
scene. This is a definitive irreversible operation.

The tool created within the framework of mathematical morphology
satisfies this property. The simplest dilation, the union of a set X and its
translate X, can only lose information: from X U X, one cannot backtrack
to identify X. The question then arises as to how we can spread out successive
losses among a series made up of dozens of transformations, so that the result
converges to a single aim? This is the central question of morphology; in
various forms and in particular expressions this question occurs frequently.

(i) Since we no longer have the structure of a group, which proved to be
useful in the case of geometrical optics (the usual similarities and
convolutions), what are the conditions required in order that the
composition of two morphological operators remains in the same class
as one of them? If the answer is that no such conditions exist then does
this mean that the composition takes on a new meaning? If such
conditions do exist then how can we interpret the composition? For
example, the product of two dilations is yet another dilation, but a
dilation followed by an erosion leads to a product that has the charac-
teristics of neither. Thus, as the various possible combinations
between dilations and their complementary operations take place,



