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PREFACE

The CFIC 96 Conference (Rome, September 2-5, 1996) is the second meet-
ing on fractals and chaos and their applications in chemical engineering orga-
nized by the Italian Research Center on Disordered Systems and Fractals in
Chemical Engineering, jointly founded in 1993 by the Departments of Chemical
Engineering of the Universities of Cagliari, Genoa and Rome and the Polytech-
nic Institute of Milan.

The CFIC 96 Conference was attended by over 100 researchers and stu-
dents from all countries and all research fields. The original goal of organizing
a working conference to facilitate the interdisciplinary exchange of ideas and
to address the most relevant applications of dynamical and disordered system
theory in reaction engineering, chemical physics and catalysis can, with no un-
due rhetoric, be described as successfully achieved. The very positive and in
some cases enthusiastic response of many participants was the best reward for
the great organizational effort involved. Special thanks for making it possible
to organize this conference go to the entire group of the University of Rome,
and to A.R. Giona, A. Adrover and O. Patierno in particular.

This book contains the articles presented at the conference and accepted
for publication after a peer-reviewing procedure. These articles are fully rep-
resentative of the intense and scientifically rich program of the Conference.
The articles are divided into different sections representing the main fields of
application of fractal and chaos theory in chemical engineering science.

Special thanks go to the members of the Scientific Committee (P.M. Adler,
D. Avnir, F. Brouers, M.-O. Coppens, J. Drahos, R. Krishna, R. Lapasin, F.
Muzzio, W. Rudzinski, W.A. Schwalm, T. Vicsek) and to the referees for their
cooperation in the preparation of this book. The financial support of the CNR
(Consiglio Nazionale delle Ricerche, Comitato per la Chimica) is gratefully ac-
knowledged.

Massimiliano Giona and Giuseppe Biardi
Chairmen of CFIC 96 Conference
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The influence of spatial correlations on reaction/diffusion and
convective transport phenomena

Alessandra Adrover and Alessandro Galassini

Dipartimento di Ingegneria Chimica
Universitd di Roma ”La Sapienza”
Via FEudossiana 18, 00184 Rome, Italy

The article analyzes the influence of the spatial correlation of the pore structure on
reaction-diffusion and convective transport phenomena. Two aspects are developed
in greater detail: prediction of the permeability of correlated porous structures and
the influence of correlations in fluid-solid noncatalyticreactions. A general purpose
simulator for fluid-solid reaction in complex geometries is also proposed.

1 Introduction

Random percolation networks are an important tool for modeling transport
processes in disordered systems such as porous media, polymers and gels. In
the study of percolation models, spatial disorder is usually assumed to be
uncorrelated, i.e. the probability of any site being occupied is independent of
the occupancy of other sites. However, natural systems exhibit some degree of
spatial correlation, and correlated percolation models!:2 prove to be useful in
application to porous media and transport because they mimic the structure of
real materials® better than the customary uncorrelated percolation schemes.

The generation of correlated percolation lattices can be regarded as an
application of the reconstruction of porous media. This topic has been ex-
tensively studied by Joshi®*, Quiblier ®, Adler et al3. An analytic solution of
the inverse reconstruction problem has recently been proposed by Giona and
Adrover® for isotropic and homogeneous porous media and further extended to
the generation of non homogeneous porous matrices with prescribed pore-pore
correlation function and position-dependent porosity 7.

The purpose of this article is to analyze the influence of the spatial cor-
relations of the pore network on reaction/diffusion and convective transport
phenomena. In particular, we review the main results of the permeability
model for correlated porous structures proposed by Adrover and Giona® and
analyze the influence of the spatial correlation of solid reactant distribution on
fluid-solid noncatalytic reactions, presenting an efficient lattice simulator for
diffusion and reaction phenomena in the presence of moving boundary condi-
tions.
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2 Generation of correlated percolation lattices

Let us consider a thin section of a porous medium as a two-dimensional image
Z, and let P be the pore space, described by its characteristic function yp (x),
such that xp(x) =1 if x € P and xp(x) = 0 elsewhere.

The porosity ¢ is given by € =< x7(x) >, and the normalized pore-pore
correlation function by

C2x(x) - ((X‘P(y) - ez(fzgy + x) - 5)) . (1)

On the assumption of isotropy, C2y(x) is solely a function of z = |x| and
a generic cross section of the material is representative of the entire three-
dimensional structure. The goal of the reconstruction of porous media is to
generate stochastic lattice models with the same porosity and the same pore-
pore correlation function as the original image. The methods developed to solve
the reconstruction problem ¢ can be applied to generate percolation models
with correlations by assuming a given functional expression for the pore-pore
correlation function and by letting the porosity vary.

Let us define the set of basis processes {Y(x,2)} by convoluting a system
of Gaussian uncorrelated processes éx(x) (with zero mean and unit variance)
with a Gaussian kernel,

d/4
Y0 = [ au Nea(a+ x)du = (%) L™ @t x, @

where E? is the Euclidean d-dimensional space, B4 = {x | —o0 < z; <
0, (i = 1,..,d)}. Each basis process Y(x, A) is still Gaussian with zero mean
and unit variance but exhibits a Gaussian decay of the correlation function ¢
Cay(z,A) = e=*=",

We can expand a generic Gaussian process Y(x) as the linear superpositiorf-8
of a continuous and a discrete spectrum of basis process {Y(x, )}

Nloc

v = [ TR N+ Y vEmy ) 3)
i=1

which admits the correlation function

) Nioc
Cay(z) = /0 FNe A+ Y e (4)

$=1

“The basis processes {)(x, \)} for different \ are uncorrelated with one another, i.e.
< Y(x, A1) Y(x!, A2) >= 0 for A1 # Aa.



5

where Nj,. is the number of discrete (localized) Gaussian contributions and
() = p%(N).

The entire spectrum w(A) of A encompassing both the continuous and the
discrete part is given by 7()) = T(A) + vaz“;“ a;6(A — A;).

The transformation from the Y-process to the binary (pore/pore matrix,
0/1) porous structure with a given value of the porosity ¢ is given by a nonlinear
filter 36 G depending on the Gaussian distribution function Fy of Y and on
the assigned porosity €.

For each point x, the characteristic function of the generated (0/1) porous
structure xp(x) is given by

1 Fy(Y(x)) <e
- = 5
@ =600 ={, PO )
Eq. (5) ensures statistically that the generated porous medium admits the
porosity €, while the correlation function Cs, () is related to the corresponding
correlation function Cay(z) through the relation 3:6

Cax(z) = /_°° dy, /—w dyz [(g(yl,e) w10 R E)] p(y1, 92, Cay(2)) ,

€ —¢?

(6)
where p(y1,y2, C2y(z)) is a bivariate Gaussian p.d.f. with correlation coeffi-
cient Coy(z).

In order to generate a lattice structure possessing a specified porosity and
a given functional expression of Cy(z), for every Csy(z), the corresponding
value of C3y(z) is evaluated through eq. (6). From the knowledge of Cay(z),
the weight function 7(A) can be evaluated numerically or analytically (where
possible) from eq. (4).

It shguld be observed that, on the condition that Cyy(z) > 0, and putting
z =122, Cay(z) = Cay(z),

Cay(2) = /0 ” r(A)e*d) (7

it follows that () is the inverse Laplace transform of the analytic continuation
on the complex plane Cg,) (2) of the correlation function of the Y(x) process®
C2y(z). In all those cases in which closed-form solutions for the inverse Laplace

transform of -C-'.‘(,';,) (2) cannot be obtained, the weight function 7(A) should be

obtained numerically.

bThe analytic continuation 5&3’,) (2) of 53 ¥ (2) valid for all complex z (whose restriction to
real z coincides with Cy(z)) can be achieved by considering rational approximations (Padé
approximants) or by means of other methods such as orthogonal polynomial expansion®
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3 Permeability of correlated percolation lattices

In section 2 we have shown that a generic correlated porous structure can be
generated by means of the linear superposition of basis processes {Y(x,\)}
possessing a Gaussian decay in the correlation function Cay(z). Henceforth
we shall refer to these structures as Gaussian correlated percolation lattices.

In ref. (8] an analogous superposition principle is applied to predict trans-
port properties, and specifically permeability. Starting from the study of
the permeability of random lattices generated by an elementary basis process
Y(x, ), an equation can be derived for the permeability of random structures
generated by the superposition of the basis processes {Y(x,A)}.

For 2-d lattice structures, the Carman-Kozeny equation® for permeability
attains the form

K N4 g3
@ = Foos (wyJa)? ’ ®

where N is the lattice size expressed in lattice units, a the unit lattice site
length, and w,/a the dimensionless wetted perimeter.

For Gaussian correlated percolation lattices, the dimensionless wetted peri-
meter wp/a behaves as w,/a ~ N2,/T— e(av/A1), and the Carman-Kozeny
equation attains the form

K 1 g3
? T hl-oma)’ ©)

in which k, is a modified Kozeny constant.

Figure 1 shows the comparison of the theoretical curve eq. (9) and the
Lattice Boltzmann Equation (LBE) ! simulation results® for the permeability
K/a? as a function of &3 /((1 = €)A1a?) for many different exponentially cor-
related lattice structures with 0.70 < £ <0.90 and 0.01 < )02 < 0.20. This
figure clearly shows that the Carman-Kozeny relation expressed as a function
of A1, eq. (9), is well verified by exponentially correlated percolation lat-
tices far from criticality with a unique value of the modified Kozeny constant
kx =13.5+0.3.

In order to develop a predictive model for the permeability of random cor-
related lattice structures, eq. (9) should be generalized for arbitrary structures
possessing a discrete and/or continuous spectrum m(A), eq. (4).

“Lattice Gas Automata (LGA) and the Lattice Boltzmann Equation (LBE) have been
developed as an alternative method to direct simulation and to spectral techniques for solving
the partial differential equations of fluid mechanics and transport. The ease with which
arbitrary complex boundary conditions are handled by the LBE approach prompts its use
to tackle a great variety of problems related to the physics and fluid dynamics of disordered
and fractal media.
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Figure 1: LBE simulation results for the permeability K/a? of two different sets of 200 x 200
exponentially correlated percolation lattices (0.01 < A;a? < 0.20) far from criticality (0.70 <
€ < 0.90). The continuous line corresponds to eq. (9) with a least square fitted value of the
modified Kozeny constant k) = 13.5.

By considering that the correlation function of a lattice structure generated
as a linear superposition of the basis processes {Y(x, A)} is a linear superpo-
sition of the correlation functions Cyy(z, ), it is natural to extend eq. (9) in
the form

L E , (10)
a?  kx(1-¢€)(< )X >a?)
where < A > is the average of A, with respect to the spectrum (A)
00 1) Nioc
<A>= / Am(A)dA =/ AT(A)dA + Z a;l; . (11)
g 0 i=1

and k) is the same modified Kozeny constant estimated in the previous section
for exponentially correlated structures.

Egs. (10) and (11) enable us to predict the permeability of generic 2-
d porous structures from their structural data. From the knowledge of the
experimental Cay(z) and of €, we calculate Cyy(z) by using eq.(6) and then
estimate w(A) numerically as the inverse Laplace transform of the analytic
continuation on the complex plane of ézy(z).

Once ¢, m(A) and consequently < A > are known, we calculate K /a? from
eq. (10) with the same value of the modified Kozeny constant kx estimated
from the analysis of exponentially correlated percolation lattices.

To validate the model, we predict the permeability of deterministic and
stochastic fractal structures at different iterations in the construction process,
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Figure 2: LBE simulation results for the permeability K/a? vs 3 /((1 — €)(< A > a2?)) for
probabilistic and stochastic fractal structures at different iterative construction stages: a)
two different realizations of a fractal percolation lattice (b = 2, p = 0.90, N = 256) for
3 € n £ 7; b) Sierpinsky Carpet (1 < m < 4) and Chess Fractal (1 < n < 3). The
continuous line is the model, eq.(11). Dotted lines correspond to an error of factor two, i.e.
an error bounded between Kpodet/2 < K < 2K pmodei-

and compare the model predictions with LBE simulation results. The stochas-
tic structures considered are fractal percolation lattices !!. The deterministic
fractal structures are the Sierpinski Carpet (SC) and the Chess Fractal (CF)
8, specifically designed since, unlike the Sierpinski carpet, it does not exhibit
straight channels. A fractal percolation lattice is a random fractal generated by
means of an iterative procedure. The square lattice £, = N x N is divided into
b2 squares of side N/b (in lattice units). A subset of these squares is selected
to form £ in such a way that each square has the independent probability p
of being chosen as a square of £. The iterative procedure continues so that
&n is a random collection of squares of side 6, = N/b" (in lattice units).

This iterative procedure, which depends on the parameters p and b, defines
a random fractal Fp 5 = N3Lo€s with fractal dimension D = log(b2p)/ log(b).

The deterministic fractals analyzed are generated by means of a similar
but deterministic iterative procedure. The square lattice £, = N x N is divided
into b2 squares of side N/b. A set of (b% — I?) of these squares is selected to
form £;. The iterative procedure continues so that &, is a collection of squares
of side 6, = N/b".

For all the lattice structures generated by means of an iterative procedure,
the evaluation of < A > should take into account the fact that at each itera-
tion there exists a well-defined minimum dissipation lengthscale controlling the
viscous effects at the solid boundary. This minimum dissipation length corre-
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sponds to the lattice side 6, = N/b" of the smallest box at the iteration n.
The existence of such a lengthscale implies that there exists a limiting value A,
of A, a®?), = 4/62, such that all the values of A > ), are not related to viscous

transport phenomena.
Consequently, eq. (11) should be reformulated as

oo o A+ T ass s
L7+ T o

<A g (12)

Nise being the number of localized Gaussian contributions with Ai < Ae.

Figures 2 a)-b) show the excellent agreement between the theoretical curve
eq. (10) and the LBE simulation results of permeability for (a) two realizations
of fractal percolation lattices (b = 2, p = 0.90, N = 256) and (b) the two
deterministic fractals SC (b= 3,1 =1, D = log(8)/ log(3), N = 243) and CF
(b=4,1=2, D =log(12)/ log(4), N = 256), at different iteration stages. The
value of k) is the same obtained from the analysis of exponentially correlated
percolation lattices, k) = 13.5.

Although the model has been derived from the Carman-Kozeny equation
applied to exponentially correlated percolation lattices, its range of application
and quantitative prediction capabilities are greater than the Carman-Kozeny
model. Without any fitting parameters, the model predicts with great accuracy
the permeability of highly diluted exponentially correlated percolation lattices
(0.93 < £ £ 0.995) and also the permeability of a 2-d square array of cylinders
throughout the entire range of the solid fraction ¢, including the range of ¢ in
which the Carman equation fails, i.e. for very concentrated and very diluted
arrays.

4 Fluid-solid noncatalytic reactions

The literature on gas-solid noncatalytic reactions 12 usually considers two dis-
tinct phenomenologies: (a) the particle is initially non-porous and the solid
reactant is distributed in an inert matrix; fluid diffuses through the product
layer and reaction occurs at a moving boundary; (b) the particle is initially
porous and reaction occurs in a distibuted way throughout the entire pore-
space. For both phenomenologies, many authors have analyzed the influence
of the spatial distribution of solid reactant 131415 o5 the conversion vs time
curves, regardless of the spatial correlation properties. We study the influence
of the spatial correlation of the solid reactant on fluid-solid non-catalytic reac-
tions, focusing on initially non-porous particles with an assigned solid reactant
distribution function.



