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PREFACE

In the field of Relativistic Fluid Dynamics, there has been only one
previous conference (the C.I.M.E. course of 1970, held in Bressanone
with the late professor Cattaneo as Director) and the only other
book on the subject is the excellent monograph by professor
Lichnerowicz, dated 1967, entitled Relativistic Hydrodynamics and
Magnetohydrodynamics and published by Benjamin. Therefore it is no
surprise that after 17 years the proceedings of a course on this
subject should amount to a rather substantial book. In 17 years the
subject has developed greatly, mainly with regard to applications
which previously would never have been imagined.

In particular there has been a tremendous development in the field
of plasma physics (relativistic fluids are a good model for high-
energy astrophysical plasmas) and nuclear physics (relativistic
fluids are currently used in the analysis of the heavy ion
reactions). Therefore relativistic fluid dynamics is a working tool
in vastly different areas such as astrophysical plasmas and nuclear
physics.

This is the explanation for the fact that, since 1970, there has
been no other general course on the subject. In fact there have been
sessions on relativistic fluids in conferences on plasma physics and
on nuclear physics separately. However this tended to obscure the
underlying mathematical structure of the subject and made more
difficult to transfer results and techniques from one area to
another.

Having realized this, we thought that a course on this subject could
bring expertise and interest from several areas (astrophysics,
plasma physics, nuclear physics, mathematical methods) and provide
an appropriate arena for fruitful discussions and exchanges of ideas

The main lecture courses had the objective of introducing the most
significant aspects of relativistic fluid dynamics. Their topics
were: covariant theory of conductivity in ideal fluid and solid
media; covariant fluid mechanics and thermodynamics: an
Introduction; hamilton techniques for relativistic fluid dynamics;
and stability theory, relativistic plasmas.

The lectures were delivered by leading scientists in these areas
(B. Carter, W. Israel, D. Holm, H. Weitzner) and constitute an
up-to-date and thorough treatment of these topics.

They were also several interesting contributions from the seminars
on specialized topics. Not all of them, for reasons of space, have
been included in this volume. In particular, the seminars by
Dudynski and Ekiel-Jezewska, Granik, Hiscock and Lindblom, Deb Ray,
Boillat, were omitted. The important topics treated by these authors
are covered, however, in other publications.

About fifty people (including research students and senior
scientists) participated actively in the course.
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We thank all the lecturers and the participants for their invaluable
contribution to the success of the course. We thank also the
C.I.M.E. foundation and its Director, Professor Conti and secretary,
Professor Zecca, for having sponsored the Course and for their
constant help and encouragement. Thanks are also due to the City of
Noto (world famous for its beautiful beaches and splendid baroque
architecture) for its support of the conference and the lavish
hospitality. Finally we are grateful to the local organizing
committee (Dr. Muscato, Professors Miceli, Fianchino and Fortuna)
for their support and dedication to the success of the meeting.
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Abstract

After a preparatory account of the established theory of non-conducting per-
fect fluid media, with emphasis on the important but traditionally neglected concept of
the 4-momentum 1-form associated with each chemically independent constituent, it is
shown how to generalise the theory to allow for conductivity by extending the variational
formalism in terms of independent displacements of the world-lines.

Attention is concentrated initially on the simplest possible conducting model,
in which appart from a single conserved particle current the only other constituent is
the entropy-current whose flow world-lines are displaced independently of those of the
conserved particles in the variational formulation, resistive dissipation being included by
allowing the variationally defined force density acting between the particle and entropy
currents to be non-zero. The model so obtained is fully determined by the specification
of the resistivity coefficient and the traditional thermodynamic variables of the corre-
sponding non-conducting thermal equilibrium state if it is restricted by postulating that
it satisfies a “regularity ansatz” to the effect that the separate 4-momenta associated with
the (non-conserved) entropy and the (conserved) particles are respectively directed allong
the corresponding flow directions. It is shown that this regularity ansatz is consistent
with good hyperbolic causal behaviour, unlike a previous ansatz proposed by Landau and
Lifshitz, which is interpretable as a degeneracy requirement to the effect that the sepa-
rate 4-momenta have the same direction as each other, and which results in (inevitably
superluminal) parabolic behaviour. Another ansatz, proposed much earlier by Eckart, is
shown to be effectively equivalent to the mixed-up requirement that the 4-momentum as-
sociated with the entropy to be directed not along its own flow direction but along that
of the particles, and (as recently shown by Hiscock and Lindblom) results in even worse
(quasi-elliptic) behavior.

After this analysis of the simplest possible well behaved thermally conducting
model, it is shown how the principles by which it was constructed can be extended to allow

for multiple (including electrically charged) currents, in solid as well as fluid media.
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Introduction.

On of the main objectives of this course will be to demonstrate the availability
of a simple and natural way of treating thermal conductivity in relativistic hydrodynam-
ics using an effectively unique “off the peg” model to be designated by the qualification
“regular”, which singles it out within a wider class of in general “anomalous” (albeit
mathematically well behaved and for some purposes physically well adapted) models of
a somewhat more complicated type, and which distinguishes it also from the older and
better known models due to Eckart! and to Landau and Lifshitz 2 whose mathematical
behaviour has long been known to be blatently pathological, due essentialy to their failure
to make proper allowance for the inertial delay time that should normally occur between
the application of any external driving force (in this case the effect of a thermal gradient)

and the build up of the corresponding response (in this case a proportional heat ﬂux)3’4.

Following lines originally developped in the non-relativistic domain by Muller?,
a considerable body of more recent work, mainly due to Israel and Stewart®7:8 has shown
how the causal pathology in the more primitive earlier models can be satisfactorily over-
come within a larger and much more elaborate class of “second order” models containing
many adjustable parameters and functions that allow a model within this class to be “tai-
lored” to fit particular physical contexts with considerable accuracy, using as a test case
the much studied example of a monoatomic Boltzman gas®. In many practical situations,
however, the cost in time (or in money, which in numerical computing and many other con-
texts often amounts to the same thing) of high accuracy tailoring is effectively prohibitive.
Moreover lack of detailed knowledge of the subject to be fitted may render accurate tailor-
ing impossible in any case, even if cost is no object. (Anyone with experience of shopping
for clothes as a surprise present for someone else will be familiar with this problem.) It
is therefore useful to have the option of using an inexpensive “off the peg model” that
is guaranteed to be intrinsically trouble free as well as being reasonably well adapted to
the most commonly ocurring situations, even if it cannot claim the high accuracy (at the
expense of restrictive specialisation) of more elaborate models.

The “regular” modell®11 to be described here is intended to fulfill such a need.
Like the similarly motivated but unsuccessful earlier attempts by Eckart and by Landau
and Lifshitz, this regular model can be considered as a limiting special case within the more
general and complicated Israel-Stewart class. The mathematical properties of this entire
class of models has recently become much better understood due to the work of Hiscock
and Lindblom 12:13:14 who have carried out much more thorough analyses of causality and
local stability properties than were available before. In particular they have cleared up
the confusion that existed in the litterature on the question of whether the newer Landau-
Lifshitz model was essentially distinct from the earlier Eckart model or whether it was
merely the same theory (at least modulo unimportant higher order corrections) presented

in terms of a different reference system. In a recent study of the special subclass of “first
order” models within the general “second order” Muller-Stewart-Israel category, Hiscock
and Lindblom have shown!® that while the Landau-Lifshitz model is a a partial differen-
tial system that (like the ancient non-relativistic Fourier heat conduction model) exhibits



parabolic (instead of causally desirable hyperbolic) behaviour as had been generally re-
alised before, on the other hand the Eckart model is even worse (with the corollary that it
is an essentially distinct theory) in that it actually displays quasi-elliptic behaviour! The
regular model whose use is being advocated here has not yet been subjected to a thorough
Lindblom-Hiscock type analysis, but its manner of construction ensures in advance that
— subject to inequalities such as as must be imposed on the equation of state even for a
simple non-conducting perfect fluid model — it will be entirely free of such flaws.

The approach that lead directly to the derivation of the regular thermal con-
duction model presented here differed from the the traditional approach (by which its
existence had been overlooked in favour of causally unsatisfactory alternatives) in that
the traditional approach was primarily based on analysis of the stress-momentum-energy
tensor, with components T#¥ say, whereas the alternative approach, as developped in the
present course, attatches greater importance to the (traditionally neglected) concept of
the momentum-energy covector with components 7, say instead. Except for a system
consisting of very weakly coupled parts, the stress-momentum-energy tensor is in general
fundamentally well defined only for the system as a whole (whence the futility of the historic
Abraham-Minkowski controversy about how to distinguish its “material” and “electromag-
netic” contributions in a polarised and thus elecromagnetically interacting medium). On
the other hand in the kind of system to be considered here, even strongly interacting
currents have corresponding separately well defined momentum-energy covectors.

In the simplest kind of thermally conducting model (including those of Eckart
and Landau-Lifshitz type) there are just two dynamically independent current vectors,
namely an (in general non-conserved) entropy current, with components s* say, together
with a single (conserved) particle number current, with components n* say, and there
will therfore be two distinct corresponding momentum energy covectors, with components
7% = Oy, and 7, = x, say (where the choice of symbols © and x is intended as a
reminder of the respective relationships with temperature and chemical potential that will
be described in due course). In the most general models to be described, the momenta may
be independent both of each other and of the corresponding currents, but in order to obtain
a simple general purpose “off the peg” model in which, appart trom the specification of
a resistivity scalar, all thermodynamic function of state are determined uniquely by their
analogues (as presumed to be known a priori) in thermal equilibrium, then some restrictive
simplifying ansatz is required. The Landau-lifshitz type models may be accounted for in
this approach as being implicitly based on an ansatz to the effect that the momentum
covectors ©, and x, in question should not be vectorially independent, but that they

should be proportional to each other (thereby determining a unit covector which turns
out to be the timelike eigenvector of the full stress-momentum-energy tensor): having
imposed such a degeneracy condition on the momenta, it is not surprising that one obtains
the degeneracy property of parabolicity for the characteristics of the corresponding system.
The Eckart type models can analogously be accounted for as being based on an ansatz that
is even more obviously inappropriate, namely that the thermal momentum-energy covector,
©, should be proportional to the covariantly modified version, n, of the particle current,
whose own momentum-energy covector x, is thereby forced to have the “anomalous”



property of being directed elsewhere: again, it is scarcely surprising that such a mix-up
leads to the flagrantly pathological property of quasi-elliptic behaviour.

Without going to the trouble of carrying out a causality analysis, it is obvious
that neither of the prescriptions just described is compatible with the elementary common
sense requirement of consistency with the weakly-coupled limit (as exemplified by the as-
trophysically familiar kind of situation in which the entropy is almost entirely carried by
a “black-body radiation” gas of photons and perhaps electon-positron pairs, in compar-
atively weak interaction with a conserved background of heavy non-relativistic particles)
in which the system may be approximated by two independent simple perfect fluids in
which each of the momenta will necessarily have the same direction as the covariantly
modified version of ts own corresponding current, i.e ©, will be proportional to sy, and
not to n, which instead must be proportional to x,. The “regular” model, as reccom-
mended for “off the peg” use, is simply based on the postulate that the foregoing property
of proportionality between each momentum-energy covector and the covariant version of
the corresponding current should be preserved even when the effective coupling is strong.
Since the decoupled limit is clearly well behaved in the sense of compatibility (subject to
the usual inequalities) with normal causality, this good behaviour will evidently carry over
into the wider class of coupled models characterised by the same “regularity ansatz”.

The development of the subject in the present course will be based on a policy
of adhering as closely as possible to a variational formulation at each stage, introducing
dissipative effects in terms of the variationally defined “external” forces that would be
required to vanish in the conservative strictly variational case. As well as showing the
appropriate way to define the momentum-energy covectors that play the key role in our
discussion, the variational approach has the advantage of taking care automatically of
many of the mathematical self-consistency requirements that would otherwise have to be
imposed on a piecemeal basis and which would end by going most of the way towards
imposition of a variational structure in any case. (Any minor residual loss of generality
is to be considered as acceptable according to the spirit of this course, whose purpose
is to set up the simplest workable general purpose models for a treating broad classes
of physical phenomena, rather than seeking to build the most elaborate and accurate
models for specialised application.) The final, and most obvious (though for our main
purpose accessory) bonus of the variational approach is that in ideal limit when the relevant
dissipation coefficients (in our case the one of central interest being the thermal resistivity)
are set equal to zero, one obtains a conservative system with the type of special properties
whose implications and systematic exploitation are described in the accompanying lecture
notes of Holm. Appart from the physical distinction that we shall be essentially concerned
here with the inclusion of dissipative effects, a basic mathematical distinction between the
approach to be developed here and the approach developped in the accompanying course
of Holm is that the latter is based the use of a “(3+1)-decomposition” with respect to some
specially chosen time-cordinate that is introduced so as to allow the direct adaptation to
relativistic systems of methods (of generalised Hamiltonian type) originally developped in
the context of Newtonian mechanics, whereas our present approach will be based on the



contrary principle (with complementary advantages and disadvantages) of adhering to a
fully covariant treatment at all stages.

As compared with the accompanying course on the full class of “second order”
models by Israel, the main physical restriction that will be imposed as a simplification
throughout the present course is that we shall take no account of viscous effects. Although
there is no reason in principle why they should not be dealt with in within the mathematical
framework of the variational approach used here, the inclusion of viscous effects will be
postponed for a future occasion since it would nevertheless involve technical complications
that would risk obscuring some of the very simple, but until now generally overlooked,
points that I hope to put over here. This course does however go beyond the accompanying
courses in a different direction by allowing for “chemical” (in the general sense, including
nuclear) interactions, which were not included in the previously cited work, but which
are more important than viscous effects in many astrophysical contexts, and which are
comparatively simple to deal with because their description can mainly be carried out
in terms of scalars, as compared with the vectors and covectors needed for describing
conduction effects and the tensors needed for describing viscous effects. The final section
(which is included as an optional extra) also contains as its main content a description
of the way to allow for the possiblity that the thermal conductivity under consideration
may be occurring in a elastic-solid (as opposed to fluid) background (as would apply in
the case of a neutron star crust). Although it would be mathematically simpler, allowance
for viscous stress would involve a further step away from the strictly variational structure,
and its description would involve further physically independent and therfore debateable
postulates. On the other hand, although the technical machinery needed for dealing with
( shear dependent) elastic stress is more elaborate mathematically than would be required
for the inclusion of (shear-rate dependent) viscous stress, the fact that it involves no
additional mechanism of dissipation makes treatment of elastic stress particularly simple
from the point of view of the amount of physical input required.

I. NON-CONDUCTING MULTICONSTITUENT FLUIDS.

1.1 Mathematical requisites: Cartan derivatives and Lie derivatives.

Before describing the first of the physical models with which we shall be con-
cerned, we shall start by explaining some of the basic mathematical machinery and termi-
nology that will be used throughout this course. We shall work in terms of a background
manifold, M say, with local coordinates z#, u = 1,...,n, where the dimension will of course
just be n = 4 in the ordinary space-time applications that will be considered. Familiarity
with the usual Riemannian covariant differentiation operation V, with local coordinate
representation V, will be taken for granted. However although such a differentiation op-
eration is generally covariant in the sense of being defined independently of any preferred

linear structure, it does depend on the specification of a fundamental (pseudo-) metric



with components g,, say satisfying V,g,, = 0. Since we shall find it profitable to work
as far as possible with concepts and relationships that are covariant in the stronger sense
of being independent even of the metric, we shall prefer, whenever it is feasable, to use
the exterior differentiation scheme of Cartan which we now recapitulate briefly, both to
fix the terminology and notation conventions, (which vary considerably throughout the
physics litterature) and because its advantages in fluid mechanics (as opposed e.g. to elec-
tromagnetic theory), although coming to be more widely recognised (see e.g. the work of

Schutzls), is not yet as widely known as it deserves to be.

The basic Cartan exterior calculus scheme is specialised in that it applies only
to covariant tensors (which we shall distinguish from contravariant and mixed tensors by
underlining) that are fully antisymmetric, i.e. to p-forms, (p < n) as defined in terms of

tensor components wy, .. u, satisfying

Wiyeptp = Wy o) (1.1)
(where square brackets denote antisymmetrised averaging), but the severity of this restric-
tion is mitigated by the fact that such tensors, w are the only ones for which integration
over a p-surface S is well defined in the absence of any previously specified (e.g. linear)
structure on the manifold, since one can construct an (unambiguously additive) scalar by
contracting such a p-form with the surface element p-vector (meaning a fully antisymmetric
contravariant tensor, which we shall distinguish by an overhead arrow) with components
dSH1Fp given in terms of a tangent space basis consisting of infinitesimal displacements
dz‘(‘l),dz‘(lz), ,d:r,‘(‘p) by )
dS = dz(y) NdZ(y) A ... AT, (1.2)

where the (associative though not commutative) exterior product operation is defined in
accordance with the normalisation convention introduced by Cartan (though not followed
by all subsequent authors) by

(g/\ﬂ)" :M

1o--Hphpt1---Hp+q plg! w[pl...upnup+1...pp+q] (1.3)

for any p-form w and ¢-form Q. Using the notation | for inner multiplication as defined

by contraction with the normalisation convention

= 1

SJE - ;" w“lu'l‘pdsﬂl.“#p (14)

one can define the integral of w over § by a limit process as the surface elements are made

infinitesimally small of the corresponding sum:

. Lt .
/SdSJQ:dS—»O %;q dS|w . (1.5)



In order to avoid confusion with the traditional physicist’s use of the symbol

“d” to indicate “infinitesimal variations” (i.e tangent space elements) as above, we shall

not follow the newer mathematician’s custom of using “d” as an abbreviation for the

exterior differentiation operation definable in the more explicit notation as “OA” , where

0 denotes the elementary partial differentiation operation with coordinate representation
given simply as

a

Ty (1.6)

Thus we distinguish between the infinitesimal variation d¢ of a scalar field ¢ due to an

infinitesimal displacement dz on the one hand, and the corresponding gradient 1-form

which we denote by d¢ (but which in customary mathematicians shorthand would be

indiscriminately denoted by the same symbol as the image displacement d¢) on the other

hand, the relation between them being given by
d¢ = 3¢ |dZ = (09) - dT = (Ou¢p)dz" . (1.7)

where we introduce the traditional use of a simple dot, -, to indicate contraction of just
one pair of adjacent indices, as distinct from the contraction of all possible indices that
is indicated by the symbol | (the result being of course the same in this particular case).
In this purely scalar example the antisymmetrised product symbol A is quite redundant.
For a form w of higher order, p > 1, the antisymmetrisation indicated by the A symbol in
the exterior product d Aw is a substantive requirement for general covariance, but for this
very reason can in many (though by no means all) contexts, including the present work,
be taken to be understood implicitly, without danger of ambiguity, even when the wedge
symbol is tacitly dropped in the interest of brevity as we shall do from now on, writing dw

for & A w with coordinate components given by
(ag)#lﬂz-nl‘;&l = (p+ l)a[plwpg...p,p.‘.l] (18)

The exterior differentiation operation as so defined has the well known coho-
mology property associated with the name of Poincaré, to the effect that for an arbitrary
p-form w

80w =0 (1.9)

and that at a local (but not necessarily global) level one has, conversely
MN=0 = Fw: 0Q=0w. (1.10)

One also has the associated Stoke’s theorem property to the effect that the integral over a

closed p-surface ¥ bounding a (p + 1)-volume I say will be given by

j{mdsﬂg:/zdijag. (1.11)



The development of the antisymmetric differential calculus can be taken consid-
erably further so as to apply to contravariant tensors whenever a preferred volume measure
n-form e is specified, since it may be used (even in the absence of any corresponding metric
tensor) for relating p-forms to dual (n — p)-vectors and vice versa. Thus if 5 is a g-vector
(i.e. an antisymmetric contravariant tensor of order g) then we can construct its dual

(n — g)-form 4 according to the formula .8 = f¢, i.e.
1
:ﬂpl...yn_q = 'q‘; fP1+:Pa €p1ec.Pglb e bhn—gq * (1'12)

Using an upper star prefix for the inverse mapping from (covariant) p-forms to (contravari-
ant) (n — p)-vectors, as defined by

(W) =w, "B =F (1.13)
the interior product of a p-form w and a g-vector f can be expressed (depending on whether
p is larger or smaller than ¢) in terms of outer (Cartan) multiplication in one or other of

the forms

Blu= «(Cw)AB) if p>gq,

Blo=*(wA(A) i a>p (1.14)
This suggests the convenience of defining the inner derivative, or “divergence” of a g-vector
E to be

div = *(3(:5)) (1.15)

In order for this to be well defined the only prerequisite structure that has to be given on the
manifold is the measure ¢, the specification (by a choice of affine connection) of a general
purpose covariant differentiation operation V being unnecessary. However whenever a
covariant differentiation operator actually is given, subject of course to consistency with
the measure in the sense that Ve = 0, the divergence operation defined by (1.15) will be

expressible directly in coordinate or condensed notation as
(divB)#1--te-1 = V) phr-ba-r - divf = (-1)771V . §. (1.16)

We may use the generalised divergence relation defined by (1.15) to express the Stokes

theorem (1.11) in the dual Green Theorem form commonly preferred by physicists:

ds|f = (—1)"/ dx]div . (1.17)
X pH
where the abbreviation
dS = +dS (1.18)

has been used for the dual surface element.

Another important kind of differentiation operation, which shares with exterior

differentiation the property of bing well defined and generally covariant independently
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of any background linear or Riemannian structure or even of any measure that may be
present is Lie differentiation with respect to any smooth vector field 5 say, which we shall
denote by the symbol 512. It is definable for any kind of field X (not just tensors, but also
densities, affine connections, et cetera) that is geometric in the sense of being bijectively
mappable by any non-singular differentiable automorphism f : z — fz of the support

manifold onto a well defined naturally induced retraction image fX,
f: X(fz)— fX(z). (1.19)

Letting f(t) denote the one-parameter family of diffeomorphisms constructed by dragging

the manifold a parameter distance ¢ along the integral curves of

dzH
— fH 1.20
> ¢ (1.20)
the corresponding Lie derivative is definable as
= d
ELX = —(f()X) |t=0 - (1.21)

In the case of a quantity that is tensorial with mixed indices T#'_J_’_g"' say, the Lie derivative

is given explicitly by the general formula
(ELT) P = 0, T2 + TP 0,6 + .
— T Mg, 8 — .. (1.22)

with an additional term for each further index, the most familiar special case being that
of the Lie derivative of another vector field, 7 say for which one obtains the simple Lie

commutator:
ELT = [, = —7LE,
[€,m* = e*on* — ntarer . (1.23)

Another familiar special case concerns the spacetime metric gy, used for specifying the
covariant differentiation operator V by the requirement that it should give Vg,, = 0 for
which one obtains

(ELG)pp = 2V (.€)) (1.24)

(with the standard convention that round bracket on indices indicates symmetrised av-
eraging over permutations) which vanishes when ¢ is the generator of a one-parameter

isometry group.

Of particular importance for our present purposes is the case of the “differential
forms”, i.e. covariant fully antisymmetric tensors to which the Cartan exterior differen-
tial calculus described above applies: for any p-form w, the Lie derivative is expressible

concisely in the above notation scheme by Cartan’s formula



