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Foreword

The field of computer graphics has reached a level of maturity, as evidenced by the graphics
capability that is ubiquitous on even entry-level personal computers and by the prevalence of
graphics software that is used to create stunning images and animations by artists who need no
knowledge of what is going on under the hood. At the same time, the field of computer graphics
continues to expand and evolve, as evidenced by the increasing number of research papers written
on the topic from one year to the next. This rapid growth poses a challenge for the author of a new
book on computer graphics, who must assess what subset of the ever-expanding body of knowledge
will be of greatest benefit to the students, and will have the longest shelf life.

Several good books have been written on computer graphics over the years, and many of them
are currently available in advanced editions. They span a spectrum from encyclopedic to nuts-and-
bolts programming. This book offers a fresh approach. It is discretized into “lectures,” organized to
fill a semester-long introductory course with one chapter for each of the 30 class periods. The topics
chosen cover most of the key concepts of computer graphics. The lectures on mathematical
foundations and on geometric modeling are particularly strong. The book is void of programming
examples, since the transitory nature of graphics languages would soon render such material
outdated.

The author has a distinguished career as a developer, researcher, and educator in computer
graphics. After earning a PhD in mathematics, he worked for many years in the young computer
graphics and computer-aided design (CAD) industries, where he contributed to early graphics
software development. While thus employed, he took an interest in mentoring several PhD students
at various universities across the country, even though it was not formally part of his job. He did this
partly because he loves research, but even more because he loves helping students succeed. As one
of those fortunate students, I can attest to his infectious enthusiasm for his subject matter, his lucid
explanations, his noise-free writing style, and his mathematical rigor. Dr. Goldman has dedicated
the past 20 years of his career to teaching and research as a professor of computer science at the
University of Waterloo and Rice University. The pedagogical style of this book has been refined
during his many years of teaching this material. He is an excellent mentor of students and I am
pleased that his reach will be extended through the publication of this book.

Thomas W. Sederberg
Brigham Young University
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To the Logos,
—Wordsmith and Mathematician Incarnate—
Co-Eternal Consort of the Creator,
Who on the First Day spoke the Word and made Light,
And saw that it was Good.

TN T
Fiat Lux.
Let there be Light.
Genesis 1:3



Preface

Behold, the days come, saith the LORD, that I will make a new covenant . . .
— Jeremiah 31:31

The good news is that Computer Graphics is fun: fun to look at, fun to use, and when done
properly even fun to program and debug. There are also many fun applications of Computer
Graphics, ranging from video games, to animated cartoons, to full-length feature movies. If you
learn Computer Graphics and Geometric Modeling, you might even get a job in a field where you
can have lots of fun. Art and architecture, biomedical imaging, computational photography:
whatever you can see, or whatever you imagine you can see, you can design with Geometric
Modeling and you can display with Computer Graphics.

Yet for a long time now and for many hapless college students, university courses on Computer
Graphics and Geometric Modeling seem to oscillate from tedious to abstruse. Ponderous books and
pedantic professors appear to focus endlessly on low-level techniques—Iline drawing, polygon
filling, antialiasing, and clipping—and they elicit little or no connection between Computer Graphics
and the rest of Computer Science. Good pedagogy is slighted: levels are mixed; mathematics abused;
intuition neglected; elegance avoided; and mysteries ignored. Fun and excitement are drained from
the subject. Sadly, I admit, I have taught such courses myself. Collectively, the field must do better.
This book is intended as a new testament, a new inspiration for teachers and students alike.

This canon is intentionally short. This book is not an encyclopedia of Computer Graphics, but
rather a brief introduction to the subject, essentially what can be taught to advanced undergraduate
students and beginning graduate students majoring in Computer Science in a 15 week one semester
course. Nevertheless, this book does cover many of the major themes of the discipline.

Broadly, these major themes can be divided into three categories: graphics, modeling, and
mathematical foundations. Graphics consists of lighting and shading—reflection and refraction,
recursive ray tracing, radiosity, illumination models, polygon shading, and hidden surface proce-
dures. Modeling is the theory of curves, surfaces, and solids—planes and polygons, spheres and
quadrics, algebraics and parametrics, constructive solid geometry, boundary files, and octrees,
interpolation and approximation, Bezier and B-spline methods, fractal algorithms, and subdivision
techniques. The mathematical foundations are mostly linear algebra, but from a somewhat idiosyn-
cratic perspective not typically encountered in standard linear algebra classes—vector geometry and
vector algebra, affine spaces and the space of mass-points, affine maps and projective transform-
ations, matrices, and quaternions.

The subject of Computer Graphics is still relatively new. I shall not put new wine in old bottles.
Rather I have deliberately sought innovative techniques for presenting this material to Computer
Science students. I have borrowed extensively from other authors, but I have rearranged and
reordered the topics and I have developed approaches that I believe are elegant to present, appealing
to learn, and sensible pedagogically. In contrast to the standard concentration on low-level graphics
algorithms, I focus instead on more advanced graphics, modeling, and mathematical methods—ray
tracing, polygon shading, radiosity, fractals, freeform curves and surfaces, vector methods, and
transformation techniques. Here is how I have organized this material.

XiX
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Fractals first. The course begins with a topic that is visually appealing, intellectually deep, and
naturally connected to the rest of Computer Science. Fractal shapes are recursion made visible.
Computer Science students are used to writing recursive programs; now, perhaps for the first time,
these students get to see recursion in visual art as well as in computational science. Fractals are
exciting at many levels: visually, intellectually, and computationally. Students can be hooked into
learning lots of important technical material in order to generate neat fractals.

I introduce fractals using turtle graphics. LOGO and turtle graphics have been popularized as
systems for teaching programming to young children. But LOGO is also a powerful vehicle for
studying Computer Graphics and Computational Geometry. This book promotes the turtle as a simple
and effective way of introducing many of the fundamental concepts that underlie contemporary
Computer Graphics.

In the version of LOGO employed here, the turtle’s state is represented by a point P specifying
the turtle’s location and a direction vector v specifying the turtle’s heading in the plane. There are
commands such as FORWARD and TURN for altering the turtle’s position and orientation. The
turtle draws curves by joining with straight lines consecutive points along its path as it moves
around in the plane under the control of a turtle programmer.

Much can be learned from this simple turtle. The FORWARD and TURN commands are
equivalent to translation and rotation, so students get an early introduction to these fundamental
transformations of the graphics pipeline, albeit in two dimensions. (There is also a RESIZE
command to change the length of the direction vector, so students get to see scaling along with
translation and rotation.) Internally, computations are performed using rectangular coordinates, but
turtle programmers have no access to these coordinates. Thus high-level commands are kept distinct
from low-level computations, a standard theme of Computer Science that will be stressed repeatedly
throughout this book. Students can also write a simple interpreter for LOGO to hone skills learned in
other Computer Science courses.

Points translate, vectors rotate and scale. Thus, although internally points and vectors in the
plane may both be represented by pairs of rectangular coordinates, points and vectors are treated
differently in turtle graphics. This distinction between points and vectors persists throughout this
book and indeed throughout Computer Graphics; the turtle is a convenient model for introducing
this very basic, but often overlooked, distinction. The turtle also anticipates the use later in this book
of affine coordinates to distinguish between points and vectors.

Students can generate fractals such as the Sierpinski triangle and the Koch snowflake via simple
recursive turtle programs. Thinking about recursive programs to generate concrete visual effects
often enhances students’” deep understanding of recursion.

Recursive turtle programs to generate fractals are typically easy to write; there is usually an
obvious base case, and the body of the recursion consists of recursive calls connected by distinct
sequences of the basic turtle commands. Nevertheless, in many such fractal programs a mystery
soon appears. Although the choice of the base case seems constrained, changing the base case does
not appear to alter the fractal generated in the limit of the recursion. This mystery demands an
explanation, and this explanation leads to an important alternative approach to generating fractals—
iterated functions systems.

An iterated function system is just a finite collection of contractive transformations. Repeatedly
applying a fixed set of contractive transformations to a compact set generates a fractal. For particular
fractals such as the Sierpinski gasket, one can often easily guess the transformations that generate
the fractal. Nevertheless, this general mathematical approach to fractals is much more difficult to
motivate to Computer Science students than recursive turtle programs. However, a straightforward
analysis of recursive turtle programs reveals that the fractal generated by a recursive turtle program
is equivalent to applying the iterated function system generated by the turtle commands in the
recursion to the turtle geometry generated by turtle commands in the base case. Thus the analysis of
recursive turtle programs motivates the study of iterated function systems.
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Moreover, understanding iterated function systems is the key to understanding the mystery
students encounter when studying fractals generated by recursive turtle programs—that changing
the base case does not appear to alter the fractal generated in the limit of the recursion. The central
result is the trivial fixed point theorem, which states that iteration of a contractive map on a point in a
complete metric space always converges to a unique fixed point. There are some technical
mathematical difficulties to overcome in order for students to understand the statement and proof
of this fixed point theorem, so strong motivation is essential. The fractal mystery of recursive turtle
programs provides this motivation.

Understanding this theorem is well worth the effort because this fixed point theorem will be
invoked again later in the course of this book in the chapter on radiosity. Both the Jacobi and the
Gauss-Seidel relaxation methods for solving large systems of linear equations are based on this
trivial fixed point theorem. Recursive root finding algorithms for certain transcendental equations
can also be derived from this theorem. Toward the end of this book, using subdivision, students will
discover that Bezier and B-spline curves are also fixed points of iterated function systems. Thus,
somewhat surprisingly, smooth polynomial and piecewise polynomial curves are also intimately
related to fractals.

The study of fractals from the perspective of turtle graphics and iterated function systems
typically takes about four weeks, more that one-quarter of a fifteen-week semester. This time is
well spent. In addition to rendering visually exciting graphics, student are introduced to points and
vectors, affine coordinates and affine transformations, matrix computations, and an important fixed
point theorem. They also learn to distinguish clearly between high-level concepts and low-level
computations. With this preparation, students are now ready to move up to three dimensions.

Three dimensions require new mathematical foundations. In two dimensions, students can get
by with coordinate geometry, but in three dimensions coordinates can be confusing and often
actually get in the way of the analysis. Therefore Part II of this book begins with a thorough review
of three-dimensional vector geometry: addition, subtraction, scalar multiplication, dot product, cross
product, and determinant. Most Computer Science students have seen vector algebra before either in
courses on physics or linear algebra, but their geometric understanding of the vector operations is
still tenuous at best. A thorough review of vector methods from a geometric perspective is in order
here to prepare the students for modeling and analyzing geometry in three dimensions.

Computer Graphics deals with points as well as with vectors—points, not vectors, are typically
displayed on the graphics terminal—so this book discusses affine spaces (spaces of points) and
affine transformations along with vector spaces and linear transformations. Affine spaces are new
to most students—the restriction to affine combinations may appear artificial at firs—but this
unfamiliarity is all the more reason to adopt coordinate-free methods. When the levels are not
mixed, when theory is kept separate from computation, these concepts are much easier to explain
and simpler to understand. Later, students will see that the distinction between points and vectors is
computational as well as theoretical: points translate, vector do not.

Vector techniques are applied right away to derive coordinate-free vector formulations for all the
affine and projective transformations commonly used in Computer Graphics—translation, rotation,
mirror image, scaling, shearing, and orthogonal and perspective projections—before matrix
methods are introduced. These vector formulas emphasize the distinction between transformations
(high-level concepts) and their matrix representations (low-level computational tools), notions that
are too often confused in the minds of the students. When matrices are introduced later to speed up
calculations, these vector formulas are invoked to derive matrix representations for each of the
corresponding transformations. Because the original vector formulas are coordinate free, these
matrix representations are not confined to describing projections into coordinate planes or rotations
around coordinate axes, but work for planes and axes in general position.

Vector geometry replaces coordinate computations throughout this book. Coordinates are
confined to low-level subroutines for calculating addition, subtraction, scalar multiplication, dot
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product, cross product, and determinant. Vector methods are applied ubiquitously to derive metric
formulas, surface equations, and intersection algorithms; vector algebra is applied to calculate normal
vectors for lighting models, and to generate reflection and refraction vectors for recursive ray tracing.

The proper uses of coordinates are to communicate with a computer and to speed up certain
common computations. When coordinates are introduced, the theoretical distinction between points
and vectors in affine space leads naturally to the insertion of a fourth coordinate, an affine
coordinate, to distinguish between the rectangular coordinates for points and vectors: the affine
coordinate is one for points and zero for vectors. This affine coordinate leads to the adoption of
4 0o 4 matrices to represent affine transformations.

Affine transformations on affine spaces are similar to linear transformations on vector
spaces. Affine transformations map points to points, vectors to vectors, and preserve affine
combinations. Thus affine transformations are represented by matrices that preserve the fourth,
affine coordinate. Translation, rotation, mirror image, scaling, shearing, and orthogonal projec-
tion are all affine transformations.

Regrettably, affine spaces and affine transformations are not sufficient to model all the geometry
encountered in Computer Graphics. Perspective projection is not an affine transformation. Perspec-
tive is not a well-defined transformation on vectors: moreover, points on the plane through the center
of projection parallel to the plane of projection are not mapped to affine points but seem rather to be
mapped to infinity by perspective projection. Thus a more general ambient space incorporating a
more general collection of transformations is required to accommodate perspective projections.

Most books on Computer Graphics adopt projective spaces and projective transformations.
Projective transformations include all the affine transformations as well as perspective projection.
Nevertheless, projective spaces have several major drawbacks that make them unsuitable either as
an algebraic or as a geometric foundation for Computer Graphics.

Projective space contains two types of points: affine points and points at infinity. The points at
infinity complete the geometry of affine space—parallel lines in affine space meet at points at
infinity in projective space—so perspective projection is defined at all points in projective space
except the center of projection. But there is a big price to pay for these points at infinity.

The points at infinity in front of an observer are identical to the points at infinity behind the
observer. Therefore gazing along an unobstructed direction in projective space, an observer would
see the back of their head! Orientation—up and down, left and right, front and back—plays a
fundamental role in the visual world, but there is no notion of orientation in projective space. This
peculiar geometry of projective spaces is nonintuitive and difficult for most mathematically
unsophisticated students of Computer Science to understand.

Worse yet, the points at infinity in projective space supplant the vectors in affine space. To
adopt projective geometry, Computer Graphics would have to abandon the vector geometry that
provides the foundation for most of the required mathematical analysis. But realistic lighting models
depend on vectors normal to surfaces: diffuse and specular illumination, reflection and refraction
computations all make use of surface normal vectors.

Finally, projective space is not a linear space. One cannot add points, or even take affine
combinations of points, in projective space. Thus projective space is not a suitable model for
most computer computations. Matrix multiplication is allowed, so the standard transformations in
the graphics pipeline can be accommodated in projective space. But without an algebra for points
it is impossible to construct many of classical parametric curves and surfaces, such as Bezier or
B-spline curves and surfaces, inside projective space. Similarly, with no notion of addition or scalar
multiplication, projective spaces fail to support shading algorithms based on linear interpolation.

All of these basic problems—theoretical and computational, geometric and algebraic—can be
overcome by replacing projective space with the space of mass-points.

Mass-points form a vector space. To multiply a mass-point by a scalar, simply multiply the mass
by the scalar (masses are allowed to be negative); to add two mass-points, apply Archimedes’ law of
the lever—place a mass equal to the sum of the two masses at the center of mass of the original two
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mass-points. The space of mass-points is a four-dimensional vector space: three dimensions are due
to the points, the fourth dimension is induced by the masses. Vectors are incorporated into the space
of mass-points as objects with zero mass; affine space is embedded in the space of mass-points by
setting the masses of all the points to one.

Replacing projective space by the space of mass-points, replaces a compact, nonorientable,
nonlinear three-dimensional manifold by a four-dimensional vector space. Going up in dimension
removes the geometric incongruities of projective space and facilitates algebraic computations while
modifying only slightly the formal representation.

The space of mass-points has all of the advantages, but none of the disadvantages, of projective
space. The space of mass-points incorporates the points and vectors of affine space, so vector
algebra and vector geometry make sense in the space of mass-points. The space of mass-points is a
linear space, so it is possible to construct Bezier and B-spline curves and surfaces, as well as their
rational variants, inside the space of mass-points. Since the space of mass-points is a vector space,
the natural transformations on the space of mass-points are linear transformations. The linear
transformations that preserve mass are precisely the affine transformations; perspective projections
are also linear transformations on the space of mass-points, albeit ones that do not preserve mass.

There are other rewards for working in the space of mass-points. Archimedes’ law of the lever
can be applied in the space of mass-points to derive the formula for perspective projection from any
center of projection into any plane. Also the classical map from the viewing frustum to a rectangular
box can be derived simply by adding to the image of an arbitrary point under perspective projection
the depth vector from the point to the plane of projection. This addition, however, is the addition of
mass-points and vectors in the space of mass-points, not the ordinary addition of points and vectors
in affine space. Perspective projection in the space of mass-points introduces additional mass to
affine points, and this mass must be taken into account to get the correct formula for the map from
the viewing frustum to the rectangular box.

Since the space of mass-points is a four-dimensional vector space, four coordinates are needed
to represent mass-points. The fourth coordinate stores the mass; the first three coordinates store the
rectangular coordinates of the point multiplied by the mass. Thus the rectangular coordinates of
the points can be retrieved from these four coordinates by dividing the first three coordinates by the
mass. Notice how coordinates for mass-points extend affine coordinates by permitting the fourth
coordinate, the mass, to take on any value.

These coordinates for mass-points resemble homogeneous coordinates for projective points but
with this difference: the same affine point with different masses in the space of mass-points
represents distinct mass-points; the same affine point with different homogeneous coordinates in
projective space represents the same projective point. In fact, projective points are just equivalence
classes of mass-points, where two mass-points are equivalent if the masses are located at the same
point in affine space.

The space of mass-points is a four-dimensional vector space, so linear transformations on
the space of mass-points are represented by 4 x 4 matrices. Thus the same matrices are used
to represent the same transformations on affine space in both the space of mass-points and
projective space. Therefore the familiar computational formalism of homogeneous coordinates
and projective transformations remains valid in the space of mass-points.

But there is a big bonus here: we can also multiply vectors in four dimensions. The only real
vector spaces that have an associative multiplication with inverses are the real numbers (one
dimension), the complex numbers (two dimensions), and the quaternions (four dimensions). Thus
quaternion multiplication is multiplication in the space of mass-points. It is not an anomaly that we
are working in four dimensions instead of three dimensions; rather we are incredibly lucky, since in
four dimensions we can take advantage of this additional multiplicative structure.

Classically, one can use the richness of this quaternion algebra to represent conformal transform-
ations on vectors in three dimensions by sandwiching vectors between quaternions rather than by
multiplying vectors by 4 x 4 matrices. Thus quaternions provide more compact representations for
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conformal transformations than 4 x 4 matrices. Moreover, composing conformal transformations by
multiplying quaternions is faster than composing conformal transformations by matrix multiplication.

Quaternions are used most effectively in Computer Graphics to avoid distortions during
conformal transformations (quaternions are easy to renormalize) and to perform key frame anima-
tion (by spherical linear interpolation). There is a good deal of folklore about quaternions scattered
throughout the literature, but I have yet to find a good textbook treatment of quaternions for
Computer Graphics. Fortuitously, the four-dimensional vector space of mass-points incorporates
quaternions in a natural way; we do not need to introduce quaternions as an additional ad hoc
structure unrelated to projective space.

With the proper mathematical foundations—vector geometry and vector algebra, mass points
and quaternion multiplication, affine transformations and perspective projections—the technical
tools are now in place to study three-dimensional Computer Graphics.

Realistic rendering can be accomplished in three ways: ray tracing, polygon shading, and
radiosity. This book covers all three of these topics. Conceptually, the most straightforward method
is recursive ray tracing, so the text treats this method first.

Recursive ray tracing is based on the recursive computation of reflection and refraction rays. Two
innovations are introduced here by taking advantage of the transformations studied in the previous
chapters: reflection rays can be computed from the law of the mirror using the mirror image map for
arbitrary mirror planes; refraction rays can be computed from Snell’s law using the rotation transform-
ation around arbitrary axes. In fact, these approaches to reflection and refraction are left as easy exercises
for the students. The text adopts an even simpler approach, decomposing reflection and refraction
vectors into orthogonal components and analyzing each component directly using the appropriate
optical laws and the simple mathematics of dot products and cross products. Thus because the proper
mathematical foundations are in place, reflection and refraction rays are easy to compute.

Ray casting is a compelling topic only if students have visually interesting surfaces to render.
Therefore this subject provides a natural time and place to introduce some classical surfaces. The study
of surfaces is confined here to the investigation of those properties and computations necessary for ray
tracing: surface equations, surface normals, and ray—surface intersections. Again vector methods and
transformation techniques play a key role in an innovative approach to ray tracing surfaces.

The sphere is the simplest nonplanar surface. Vectors normal to the surface of a sphere are parallel
to the vectors from the center to points on the surface of the sphere, and the intersection of a line and a
sphere can be reduced to the intersection of a line and a coplanar circle. Once the sphere is mastered,
several other quadric surfaces can easily be analyzed using affine and projective transformations.

An ellipsoid is the image of a sphere under nonuniform scaling. Thus surface normals on the
ellipsoid can be computed by finding surface normals on the sphere and mapping these normals onto
the ellipsoid. The intersections of a ray and an ellipsoid can be calculated in a similar fashion by
mapping the ray and the ellipsoid to a ray and a sphere, calculating the intersections of the ray and
the sphere, and then mapping the resulting intersection points back to the ellipsoid.

Cylinders and cones are next. A sphere is the locus of points equidistant from a point; a cylinder
is the locus of points equidistant from a line. From this definition it is easy using vector techniques
to compute normals to the surface of the cylinder. Similar definitions and normal vector computa-
tions are developed for the cone. The intersections of a ray and a cylinder can be calculated by
applying orthogonal projection onto a plane perpendicular to the cylinder axis to map the ray and
the cylinder to a ray and a circle, then invoking the algorithm already developed for ray tracing the
sphere to calculate the intersections of the ray and the circle, and finally using the parameters of
the intersection points on the line to find the intersection points on the cylinder. The intersections of
a ray and a cone can be calculated in a similar fashion, Just replace orthogonal projection by
perspective projection from the vertex of the cone.

Arbitrary algebraic and general parametric surfaces can also be ray traced. General algorithms
are presented for computing surfaces normals and ray—surface intersections for these broad surface
types. The torus can be represented both as an algebraic and as a parametric surface. Thus these
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general algorithms can be applied to a geometrically familiar, computationally tractable (fourth-
degree) surface.

Solid modeling follows right after surface modeling. Three common approaches to solid
modeling are investigated: constructive solid geometry (CSG), boundary file representations
(B-REP), and octrees. Constructive solid geometry fits in well with the preceding study of ray
tracing and surface modeling. The primitives in CSG trees are typically solids bounded by planes,
natural quadrics, and tori. CSG trees can be rendered and their mass properties can be calculated by
ray casting algorithms. Boundary file representations introduce the notion of topology—connectivity
information—alongside geometry—shape information—to facilitate searching the model for import-
ant features. Since conversion algorithms from CSG trees to boundary file representations are often
quite complicated, boundary files are frequently restricted to polygonal models. To render these
polygonal models to appear as smooth curved surfaces requires polygon-shading techniques.

Polygon shading is the second of the three realistic rendering techniques presented in this book.
Both Gouraud and Phong shading are covered here. Although these two shading algorithms are low
level, scan line procedures, vector methods are still stressed in order to develop clever, fast,
incremental implementations. Spherical linear interpolation is introduced for Phong shading, taking
advantage of the students’ previous encounter with the use of spherical linear interpolation for
quaternions representing rotations in key frame animation.

Hidden surface algorithms are required for realistic rendering of polygonal models. Many hidden
surface algorithms are available, and the text surveys four representative procedures: z-buffer, scan
line, depth sort, and BSP-tree. The z-buffer algorithm is the easiest to implement, but the scan line
algorithm is the hidden surface procedure that integrates best with Gouraud and Phong shading. Only
while describing scan line algorithms does this book intentionally descend into low level, coordinate
techniques. It is precisely when speed is at a premium that coordinate techniques are appropriate.
Students learn that there are indeed times when it is expedient to descend to coordinate-based methods
for fast rendering (Render unto Caesar . . . ). Depth sort, in contrast, provides some subtle applications
of vector techniques, both for measuring relative depth and for finding obstructing planes. Finally,
BSP-trees are a well-known and important data structure in Computer Science; BSP-trees are most
useful for finding hidden surfaces when the model is fixed, but the viewpoint or the light sources can
change position.

Radiosity is the rendering method that presents the most realistic diffuse images. In contrast to
recursive ray tracing, radiosity softens shadows and portrays color bleeding. To introduce radiosity,
the text begins with the continuous form of the rendering equation and then successively simplifies
this integral into a large discrete system of linear equations. Jacobi and Gauss-Seidel relaxation
techniques are recommended for solving these linear systems, techniques already familiar to
students from the fixed point methods encountered during the investigation of fractals. Gathering
and shooting are both investigated here.

Freeform curves and surfaces constitute the final topic presented in this book. So far, students
have rendered only a limited number of rigid surfaces, mostly planes and quadrics. But in order to
faithfully represent a rich variety of forms including car bodies, ship hulls, airplane wings, toys,
shoes, and even many animated cartoon characters, geometric modeling deals mainly with freeform
shapes. Therefore this book closes with techniques for representing, analyzing, and rendering
freeform curves and surfaces. Typical textbooks in Computer Graphics provide at best only a
cursory ad hoc introduction to Bezier and B-spline techniques. In contrast, this book delivers
a thorough, unified approach to Bezier and B-spline approximation, as well as to subdivision
surfaces. Since these topics generally require some mathematical sophistication, several innovations
are introduced here to simplify the presentation.

Linear interpolation is already familiar to students from Gouraud and Phong shading. Dynamic
programming procedures based on successive linear interpolation are provided for Bezier and
B-spline curves and surfaces: for Bezier curves and surfaces this procedure is called the de Casteljau
algorithm; for B-splines the method is known as the de Boor algorithm.
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Figures are often easier to understand than formulas. This book uses simple data flow
diagrams—pyramid algorithms—to develop a straightforward, common approach to these dynamic
programming procedures. Students are encouraged to bypass formulas and reason directly from
these diagrams. A common approach permits common derivations for common properties such as
affine invariance and nondegeneracy. Explicit expressions and as well as recursion formulas for
the blending functions of Bezier curve and surface schemes can also be generated directly from
these diagrams.

Blossoming provides the simplest, most direct approach to deriving many of the unique
properties of Bezier and B-spline curves and surfaces. Therefore, following the maxim that students
should use the mathematics most appropriate to the problem at hand, | have tried to present a clear
and unintimidating introduction to blossoming. While blossoming will be new to most students,
blossoming is not difficult. In addition to introducing the blossom axiomatically, the text also
presents the blossom concretely using pyramid algorithms. The pyramid diagram for the blossom is
identical to the pyramid diagram for Bezier curves with one slight variation: a different parameter is
introduced on each level of the pyramid algorithm. Thus linear interpolation is also at the heart of
blossoming. The standard properties of the blossom—symmetry, multiaffinity, the diagonal prop-
erty, the dual functional property, as well as existence and uniqueness—are all derived here directly
from these pyramid diagrams.

Bezier schemes are intimately related to blossoming because the corresponding pyramid
algorithms are so closely connected. It follows from the dual functional property that the blossom
of a univariate polynomial evaluated at the end points of a parameter interval yields the correspond-
ing Bezier control points. Therefore blossoming provides a general approach to change of basis
procedures for Bezier schemes. Conversion between monomial and Bezier form, degree elevation
techniques, and subdivision algorithms are all derived here from blossoming. Moreover, the
homogenous variant of the blossom is used to derive a differentiation algorithm for Bezier curves
based on the de Casteljau algorithm.

B-splines are also closely related to blossoming. A slight modification of the blossoming
interpretation of the de Casteljau algorithm for Bezier curves—starting with the blossom eval-
uated at consecutive knots instead of at the end points of the parameter domain—generates the de
Boor evaluation algorithm for B-spline curves. Many introductory books simply take the de Boor
algorithm as the definition of the B-splines. But without appropriate motivation, students are at a
loss to understand what is so special about this particular recursion formula. Blossoming provides
the proper motivation as well as the natural connection between the de Casteljau algorithm and
the de Boor algorithm. As with Bezier curves, the blossom of a spline evaluated at the knots yields the
corresponding B-spline control points. Therefore blossoming also provides a general approach to
change of basis procedures for B-splines, so knot insertion algorithms for B-splines are readily
derived here from blossoming. As with Bezier curves, the homogenous variant of the blossom is
used to derive a differentiation algorithm for B-splines curves based on the de Boor algorithm, and this
differentiation algorithm is used in turn to prove that the polynomial segments of B-spline curves join
smoothly at the knots.

Subdivision is the key to rendering Bezier surfaces. The de Casteljau subdivision algorithm
generates a polyhedral approximation that converges to the Bezier surface under recursive subdiv-
ision. This polyhedral approximation can then be rendered using either ray tracing, or polygon
shading, or radiosity. Knot insertion algorithms play the analogous role for B-spline surfaces.

Subdivision can be implemented using matrices to multiply the control points. For Bezier
schemes these subdivision matrices form an iterated function system. Hence, rather remarkably,
Bezier curves and surfaces can be rendered as fractals by applying this iterated function system to an
arbitrary compact set. Thus the book comes full circle, recapitulating close to the very end the fractal
methods introduced almost at the very beginning.

Knot insertion for B-splines is the analogue of subdivision for Bezier curves and surfaces. Knot
insertion can also be represented by matrix multiplication and these matrices also form an iterated
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function system. Thus B-spline curves and surfaces can also be rendered as fractals by applying this
iterated function system to an arbitrary compact set. One additional innovation here is that we show
how to extend the Lane-Riesenfeld subdivision algorithm for B-splines with uniform knots to a
subdivision algorithm due to Scott Schaefer for B-splines with nonuniform knots.

The Lane-Riesenfeld knot insertion algorithm for B-splines with uniformly spaced knots is
the principal paradigm for more general subdivision schemas. This book closes with a chapter
containing a brief introduction to general subdivision surfaces for rectangular and triangular meshes,
including box splines, centroid averaging, Loop subdivision, and Catmull-Clark subdivision, topics
still at the frontier of current research. Three simple paradigms are employed to explain each of these
methods: split and average (box splines), centroid averaging (meshes of arbitrary topology), and
stencils—vertex, edge, and face stencils as well as special stencils for extraordinary vertices (Loop
subdivision and Catmull-Clark subdivision).

This concludes the brief survey of the topics covered in this book. Many topics have purposely
been omitted from this text, not because they are uninteresting or unimportant, but simply because
they are either too advanced—physics-based modeling, scientific visualization, virtual reality—or
too specialized—user interfaces, graphics hardware, input devices—for an introductory course.

A good book is a compendium of the abiding past, a snapshot of the transitory present, and a
guess at the unknowable future. Writing a good book, much like teaching a compelling course, is
about making choices: what to include and what to exclude are dictated by time and taste. I have
tried to concentrate on enduring themes and to avoid ephemeral motifs. Graphics hardware and
software will certainly soon change, but graphics algorithms based on well-established physical
models of light and cogent mathematical methods will last a long time. Therefore I have avoided
descriptions of current graphics hardware, and I have omitted from this book special programming
languages such as C++ and APD’s like OpenGL. Low-level graphics algorithms such as line
drawing, polygon filling, and clipping are bypassed to give more time and space to high-level
graphics techniques such as ray tracing, polygon shading, and radiosity.

I have tried to write a book that is exciting to read without being superficial, rigorous without
being pedantic, and innovative without being idiosyncratic. I have kept the manuscript relatively
short in the hope that students and lecturers alike will read it in full. Lots of exercises and projects
are included to flesh out this book, but there are many topics that I have consciously chosen not to
cover. My intention has been to write a A Guide for the Perplexed, not a Summa Theologica.

Certainly I should thank all those who came before me in the field of Computer Graphics—
founders and innovators, scientists and mathematicians, pure academics and practicing engineers,
serious students, and conscientious professors. There can be no new testament without an older
revelation on which to build. And yet. .. Siggraph is attended by tens of thousands of people, and
hundreds of paper are submitted to Siggraph each year. If even only a small percentage of these
people and papers are important, I could not hope to list them all here.

Let me close instead by asking forgiveness from my former students, whom I abused with my
lackluster teaching in the past. I hope I have done better by them here. I have drawn inspiration from
my forebears, encouragement from my colleagues, and constructive criticism from my graduate
students. I trust this constellation is sufficient to the task.

The days of any book are numbered. This book, like its predecessors, will inevitably become
obsolete due to innovations in theory and technology. Three-dimensional graphics hardware is
now technically feasible. If this hardware becomes popular, the current concentration on two-
dimensional projections may someday be outdated, and user interfaces will certainly change.
Innovations in mathematics such as Clifford algebras or in physics such as quantum computing
may eventually make other parts of this book seem as stodgy and old fashioned as the tomes it is
written to supplant. Instructors should keep these issues in mind when choosing a textbook for their
classes in the future. Authorities argue, barriers breakdown, canons change, consensus crumble,
disciplines decline, epistemologies expire, fashions fade, ideologies implode, laws languish,
methods mutate, orthodoxies ossify, paradigms perish; fime and chance happen to them all.
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