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PREFACE

During the last three decades much progress has been
made in the field of topological vector spaces. Many genera-
lizations have been introduced; this was, to a certain
extent, due to the curiosity of studying topological vector
spaces for which a known theorem of Functional analysis can
be proved. To justify that a class C, of topological vector
spaces is a proper generalization of another class C, of
topological vector spaces, it is necessary to construct an
example of a topological vector space belonging to C, but
not to C, ; such an example is called a counterexample. In
this book the author has attempted to present such counter-
examples in topological vector spaces, ordered topological

vector spaces, topological bases and topological algebras.

The author makes no claim to completeness,- obviously
because of the vastness of the subject. He makes no attempt

to give due recognition to the authorship of most of the

counterexamples presented in this book.

It is assumed that the reader is familiar with general
topology. The reader may refer to B[18] for information

about general topology.

To facilitate the reading of this book, some funda-
mental concepts in vector spaces and ordered vector spaces
have been collected in the Chapter called 'Prerequisites’'.
Thereafter each Chapter begins with an introduction which
presents the relevent definitions and statements of theorems

and propositions with references where their proofs can be



Vi

found. For some counterexamples which require long and
complicated proofs, only reference has been made to the

literature where they are available.

The books and papers are listed separately in the
bibliography at the end of the book. Any reference to a
book 1is ?ndicated by writing B[ J<and to a paper by P[ j :

The author would like to express his deep gratitude to
Professor T. Husain, McMaster University, Hamilton, Canada,
and Dr. I. Tweddle, University of Stirling, Stirling,
Scotland, who have given him both moral and material support
during the preparation of this book. The author wishes to

thank Mr. Mohammed Yousufuddin for typing the manuscript.

The author takes great pleasure in thanking the editors
and the staff of Springer's "Lecture Notes in Mathematics"
series for their keen interest in the publication of this

book.

S.M. Khaleelulla

Department of Mathematics
Faculty of Science

King Abdulaziz University
Jeddah, Saudi Arabia
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