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p-LENGTH THEOREMS

BY

G. HIGMAN
As motivation and introduction, I begin with a self-contained account of

1. Finite groups of exponent six. Such a group, G say, is soluble.

(1) G has a normal series G > H> K> 1, such that G/H, K are 3-groups,
and H|K is a 2-group. .

We take K to be the largest normal 3-subgroup of G, and H/K to be the
largest normal 2-subgroup of G/K.

H contains the centraliser of H|K.

Otherwise there exists M normal in G, ih the centraliser of H/K, such that
M/H is a 3-group. Then M/K is the direct product of its Sylow subgroups,
and if 7/K is the Sylow 3-subgroup, 7/K is characteristic in M/K and so
normal in G/K, whence T is a larger normal 3-subgroup than K.

It follows that every 2-element of G belongs to H. For a Sylow 2-subgroup
of G is abelian; and since H/K is a 2-group we may choose coset representa-
tives for K in H out of a preassigned Sylow 2-subgroup and hence to commute
with any 2-element. This proves (i).

(11) G has a normal series G > L > M > 1 such that G/L, M are 2-groups, and
LIM is a 3-group.

This, though formally similar to (i), is more difficult.

We choose M, L, N in turn so that M is the largest normal 2-subgroup of
G, L/M the largest normal 3-subgroup of G/M, and N/L the largest normal
2-subgroup of G/L, so that we have to show N = G. Almost as in (1) we have

L contains the centraliser of LIM.

N contains the centraliser of NJL.

But we cannot finish as in (i), because a Sylow 3-subgroup of G is not neces-
sarily abelian. L/M is a 3-group, and we let F/M be its Frattini subgroup.
Then

L is the centraliser of L|F.

If the centraliser is greater than L, it contains an element not in L of order
2, by the choice of L. Such an element induces in L/M a non-trivial auto-
morphism, of order prime to 3, which is the identity on L/F. This is im-
possible.

L/F is an elementary abelian 3-group, and so can be identified with a vector
space over the field of three elements. The automorphisms induced by ele-
ments of G are linear transformations of the vector space. They form a
representation of G, or since the kernel is L, a faithful representation of G/L.
Consider first the way /V/L is represented. N/ L is a 2-group, so the repre-
sentation is completely reducible; however, N/L is abelian and of exponent 2,
so that the irreducible components are of dimension 1. Putting together iso-
morphic summands into one block, we express V as a direct sum

1



2 G. HIGMAN

V=V O VD D Ve

where, on each summand V;, each element n of N is represented by a scalar
multiplication v — ¥ (n)v. If N is not the whole of G, there is an element
¢ in G, not in N, of order 3. Then operation by ¢ permutes the summands
Vi, because gNg~' = N. Suppose that for some i, Vig = V;. Then, for v in
Vi, nin N,

1 (gng o = vgng ' = (vy)ng ' = 1w .

Thus ¥ (gng=") = ¥ (n) and so ¥ (n'gng ') = 1. Now ¢ does not centralise
N/L, so that we can choose n so that n 'gng ' is not in L; and then n 'gng!
does not centralise L/F, so that for some 7, x‘“(n 'yng ') # 1. This implies
that V.g = V,;. Since ¢ is of order 3, there are three V, permuted cyclically
by ¢, and hence a vector v such that v, vg, v¢* are linearly independent; in
particular vg* + vg + v # 0.

Reverting to multiplicative notation, this means that there is an element y
of L such that

(gy)?* =g *vg*-g 'vg-y

is not in F, whence ¢y is of order 9 at least. This contradiction proves that
N = G, and establishes (i1).

Either (i) or (ii) is sufficient to establish the restricted Burnside conjecture

for exponent 6. Together they can be used to establish the order of the
largest finite k-generator group of exponent 6.

2. The general problem. Abstracting from the above, one considers, for
any finite group G and for any prime p, the upper p-series of G:

lcNycPhcNcP,c---cPcN Py,

where P, =1, N;/P; is the largest normal subgroup of G/P; of order prime to
p (p’-subgroup) and P;.,/N; the largest normal p-subgroup of G/N;. This will
be of real interest only if, for some /, Ny = . The condition -for this is that
every chief-factor (or equivalently every composition-factor) of G is either a
p-group or a p’-group. If so G is p-soluble and | = 1, = [(G), the p-length of
G, is the least integer [ “or which N, = G.

Then the fundamental results on exponent six say that, if G is of exponent
6, then /, =1 and /; = 1. The general problem is to find conditions, and
particularly conditions on the Sylow p-subgroup of G, which imply bounds
for the p-length. This can be pursued at three levels of difficulty, the first
two of which correspond to the cases /, = 1 and /; = 1 for exponent 6, while
in the third a different kind of difficulty occurs.

In all cases, the fundamental lemma is:

For i = 1, P; contains the centraliser of P,/N, |, and N, contains the centraliser
of N:/P:.

If, for instance, the centraliser Z of P, is not in P,, let M be a normal
subgroup of G with P, c M < ZP,, the first inequality being strict, and M
being minimal. Then M/P, is a p'-group, by the definition of P,. By the
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Schur-Zassenhaus theorem, P,/N, is complemented in M/N,, say by X/N,.
Elements of X induce inner automorphisms in P,/N,, because X < ZP,, and
automorphisms of order prime to p because X/N, is a p’-group. That is, M/N,
is the direct product of P,/N, and X/N,, whence X is normal in G, contrary
to the definition of N,.

The simplest level of attack on p-length theorems uses this result within
the Sylow p-subgroup of G. For instance:

If S is a Svlow p-subgroup of G, the centre of S is contained in P, .

Since P,/N, is a p-group, P, < SN,, so that we may choose elements of S as
coset representatives in P,/N,. The elements of the centre of S commute
with these representatives, so that a fortiori they centralize FP,/N,, hence
SchP.

If the Sylow p-subgroup has class c,, thew l, = c,.

Proof by induction on /,. G/P, has p-length [/, — 1, and its Sylow subgroup
is isomorphic to S/Sn P,. Since the centre of S is in S P,, this has class
at most ¢, — 1; thus the induction hypothesis gives /, — 1 = ¢, — 1, as required.
The case [, = 1 being trivial, the result follows.

3. Second level attack. This begins by improving the “centraliser” theo-
rem slightly for the p-factors, Pi/N;-,.

If Fi/Ni_, is the Frattini subgroup of the p-group PiN; ., then P; is the
centraliser of Pi/F;.

The centraliser contains P;, because P;/F; is abelian; and if it were larger,
there would be p’-elements which centralise the Frattini factor group Pi/I; of
Pi/N;-, but not P;/N,_, itself, which is impossible.

Thus G/P; is represented faithfully as a group of automorphisms of the
elementary abelian p-group P./F;; that is, as a linear group over a field of
characteristic p. At the second level of attack we seek to exploit this (in
particular with 7 = 1) but, to avoid the worst difficulties, we make the as-
sumption that Sylow q-subgroups of G, for primes q other than p, are abelian.
We observe that, in addition to being a linear group over a field of charac-
teristic p, G/P, is a p-soluble group with no non-trivial normal p-subgroup.

If, changing the notation, G is any linear group over a field of characteristic
p, and ¢ is an element of order p* in G, then ¢?" =1, so that (¢ — 1)»" =0,
but ¢*" '+ 1, so that (¢ — 1)»"' # 0. Thus the minimal equation of ¢ is
(x — )7, for some r in the range p" ! < » < p*. In general, no more can be
said; bhut one of the most important weapons used in proving p-length theo-
rems, and a fact that has proved useful in other directions, is that if G is
p-soluble with no non-trivial normal p-subgroup, much more can be said.

If G is a p-soluble linear group over a field of characteristic p, has no non-
trivial normal p-subgroup, and has abelian Sylow gq-subgroups for q # p, then
the minimal equation of an element of order p* is (x — 1)»" = 0.

Let g be an element of G of order p», and let N be the largest normal p’-
subgroup of G. We show first that there exists a Sylow ¢-subgroup @ of N
for some prime ¢, such that ¢ normalises @, but ¢»" ' does not centralise it.
Indeed, for each prime ¢ dividing the order of N, there is a Sylow ¢-subgroup
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normalised by ¢, since the number of such subgroups is prime to p. If this
group were centralised by ¢?""' for all ¢, the order of the centraliser of ¢g#»"~*
in NV, would equal the order of N, so that ¢»"™* would centralise N, which it
does not. @, by our basic assumption, is abelian.

Now consider @ as a linear group. Its order is prime to p, so that it is
completely reducible. We can, if necessary, extend the base field so that the
irreducible components of € are absolutely irreducible, and so one-dimensional.
This will not alter the minimal equation of ¢. Then V, the vector space on
which G operates, can be written as a direct sum

V=V.®--- DV

of minimal characteristic @-modules, and any element x of @ acts, on V;, as
a scalar multiplier: » — X*(x)v.

Because @ is normalised by ¢, operation by ¢ permutes the summands V;.
We shall show that this permutation has at least one p*-cycle. If not, ¢*" ' = h
maps each V; into itself, whence, for each 7, and for each x in @, x(h~'xh) =
xi(x), and Xi(x 'h~'xh) = 1. But this means x ‘4 'xh = 1, so that & centralises
€, which is not so.

Hence the permutation of the V; induced by ¢ includes at least one p*-cycle,
whence the degree of the minimal equation of ¢ is at least p*, proving the
theorem.

As an illustration of the way this yields p-length theorems:

Let G be a p-soluble group, with abelian Sylow g-subgroups, q + p, such that,
for elements x in a Sylow p-subgroup, x** = 1. Then its p-length is at most e.

Proof by induction on the p-length of G. If, as usual, the upper series is

lc NycPhcN,c---,

then G/P, has p-length [(G) — 1; if we can show that its p-elements satisfy
2" =1 we are clearly home. If not, there is an element x in G, whose
order modulo P, is p*. Applying the theorem, the minimal equation of the
transformation of P,/F, induced by x has degree p¢, so that for some y in P,
(which we can assume belongs to the same Sylow p-subgroup as x)

y.x*lyx.x‘ yx2. .x'P'-nyPe*l *= 1
indeed, is not in F,. But then
(yx ' # 1

whence either yx=! or x has order p°*!, proving the result.

4. Top level attack. Preliminaries. We now see what happens if we
try to throw out the condition that Sylow subgroups for p # ¢ are abelian.
We begin with an example to show that, as they stand, the theorems do not
remain valid in this case. )

Put G = 7@, @ a normal quaternion subgroup, T a cycle of order 3 which
induces in @ an automorphism of order 3. It is easily verified that G has a
representation of degree 2, over the field of three elements. Thus if 7, 7, &
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are the .quaternion units, and ¢-1(z, 7, k)t = (j, k, i), we may take

R S e R
1 -1’ 1 1)’ 1 0l’ 0 1]
Clearly, the minimal equation of ¢ is (! — 1) =0, not ({ — 1)®* = 1; and if we
extend G by an elementary abelian 3-group &#, so that G operates in the
above way on it, GZ¥ has 3-length 2, but contains no elements of exponent
9. Thus the theorems above have to be modified if there exist non-abelian
g-groups, q # p, in G.

Before indicating the modifications, we prove:

THeorREM. Let G = PN, where P is a Sylow p-subgroup, N a normal p'-sub-
group, and let g be an element of P which does does not centralise N. Then
for some prime q + p, N contains a q-subgroup Q, normalised by P but not
‘centralised by q, such that (i) Q is either-elementary abelian, or has Q' = Z(Q) =
O(Q); and (ii) Q/Q' is transformed irreducibly by P, and Q' trivially.

We take @ to be any subgroup of N which is normalised by P but not
centralised by ¢, and which is minimal subject to this. Then for some prime
g, Q is a g-group. For Q is certainly of order prime to p, so that, for each
prime dividing its order, P normalises some Sylow subgroup. If @ is no
g-group, these Sylow subgroups are proper subgroups, so that by the minimality
of @, ¢ centralises them, and hence centralises @ itself, a contradiction.

Then Q/@(Q) is a direct product of groups transformed irreducibly by P;
if there is more than one of these we have a contradiction to the minimality
of Q. Moreover ¢ does not centralise Q/@(Q). Now let X be a subgroup of
@ normalised by P. which contains x '¢~'x¢g for all x in @. Because ¢ does
not centralise Q/@(Q), XO0(Q) is greater than @(Q); and because P transforms
Q/0(Q) irreducibly, this implies that X@(Q) = . By the fundamental pro-
perty of the Frattini subgroup, this implies X = Q. :

We use this fact twice. First, let X be the subgroup of @ consisting of
those elements whose ¢th powers are in @’. X is characteristic in &, so it
admits P. But, modulo @', we have

(x1-g7lxg) = x99 'x%
Now @(Q) is a proper subgroup of & which admits P, so that, by the mini-
mality of @, ¢ centralises @(Q), whence x % 'x%g = 1. Thus X satisfies our
conditions, and X = @, which is to say @(Q) = Q’.  Second, consider C, the
centraliser of @(Q). Obviously, C admits 2. But if y belongs to @(Q) so does
x 'yx for any x in @, and so
y=9'g9, x'yx=g"'x"'yxg.

Taken together, these imply that x '¢ 'xg belongs to C, so that C = @, which
is to say Z(Q) > @(G). Because P transforms Q/®(Q) irreducibly, this means
that either Z(Q) = @, in which case @ is elementary abelian, or Z(Q) = @&(G).

We shall use the term special g-group to denote a g-group @ which either
is abelian or satisfies Q' = Z(Q) = @((); an extraspecial q-group is a non-abelian
special ¢-group with cyclic centre.
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5. Theorems of type 2.1.n. Reduction to special case. We shall be
concerned to prove theorems of the following special kind. We shall be given a
p-soluble linear group G of linear transformations of a vector space over a field
of characteristic p, with no non-trivial normal p-subgroup. We shall be given
elements a, b, --- of a Sylow p-subgroup of G, and a word «(a, b, ---) in these
elements and their inverses; and a finite set w,, w,, --- of linear combinations
of such words. We may also be given a side-condition %, such that if it
holds for a group G it also holds for subgroups and factor groups of G. Then
our theorem will be: If G satisfies »', and ula, b, ---) + 1, at least one of
Wy, Wy, -+ 1s not 0.

For instance, “If all g-subgroups of G are abelian, for g + p, and a is of
order p, its minimal equation is (x — 1)*" = 0”7 is a theorem of this sort which
we already know to be true. Another, which we shall prove later, is “If a,
b are of orders p7, p*, and the elements of orders p in the cyclic groups {a} and
{b} do not commute, then either a has minimal equation (x — 1)*" =0 or b has
minimal equation (x — 1)» = 0.7

Then we have:

In proving any theorem of this kind we may suppose

(1) G = PQ, where P is a Sylow p-subgroup generated by a,b, ---, and Q is
a normal special q-group, such that P transforms Q[Q' irreducibly and Q'
wdentically.

(i1) G is absolutely irreducible.

In the cases we deal with, we shall be able to strengthen (ii) to the assertion:
Q is absolutely irreducible, but I do not know any reason to suppose this is
true in general.

Assuming the special case to hold, we establish the general case. Let N
be the greatest normal p’-subgroup of G, P the subgroup generated by a, b,

-+, so that P acts faithfully as a group of automorphisms of N. This im-
plies in particular that w(a,b, ---) acts non-trivially on N. Then by the
previous theorem, we can choose a special g-group € in N which is normalised
by P but not centralised by « = u(a, b, ---), such that N acts irreducibly on
Q/Q’ and trivially on @’. Let V be the vector space on which G, and so PQ,
acts, and let

0=VycV,cV,c---cV,=V

be a composition series for V as PQ-module. The set of elements which act
trivially on each factor V;,,/V; is a normal p-subgroup of PQ. Now u acts
non-trivially on @, so that the normal subgroup it generates is not a p-group.
Hence we can choose 7 so that # acts non-trivially on V"“/Y‘;' Let P, Q,u,
etc., be the restrictions of P, Q,u, etc., to Vi /Vi. Then PQ is a p-soluble
linear group, which is irreducible, and hence contains no non-trivial normal
p-subgroup. P is a Sylow p-subgroup, generated by a, b, ---, elements such
that « = ula,b, ---) # 1. Q, as the maximal normal p’ bubgroup of PQ, is not
centralised by any element outside it, in particular not by a. But any proper
subgroup of @ invariant under P is centralised by u (since its inverse image
(in Q) is already centralised by u). Hence Q is a special g-group, and P
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transforms Q/Q’ irreducibly and @’ trivially. Thus we are in the special case
envisaged in the theorem, except that PQ is irreducible rather than absolutely
irreducible, a matter that can be dealt with by a preliminary extension of the

ground field. Thus one of w, = wa,b, --), w,, -+ is non-zero; and since
these are images of w,, w,, --- under a ring-homomorphism, one of w,, w,,
- 1S non-zero.

6. Statement of theorems.

1) Let G be a p-soluble group of linear transformations of a vector space
over a field of characteristic p, with no non-trivial novmal p-subgroup. Let g
be an element of G of order p. Then the minimal equation of g is (x — 1) =0
where v = p*, unless there is an integer ny = n such that pro — 1 is a power of
a prime q, and G has non-abelian Sylow q-subgroups, in which case, if n, is
the smallest such integer, pr—"o(pm — 1) =< r < pn.

Obviously if p7o — 1 = g7, either p or g 1s 2. If ¢ =2, p — 1 divides ¢", so
that p =1+ 2" is a Fermat prime. 1If p =2, then n, > 1, so that ¢m = 3(4).
Thus m is odd, and from pro =1 + ¢ it follows that 1 + ¢ is a power of 2
and g = 2! — 1 is a Mersenne prime. Thus

(1) If p is neither 2 nor a Fermat prime, v = p* always.

(2) If p is an odd Fermat prime r = p* if G has abelian Sylow 2-subgroups,.
and r = p"~(p — 1) anyway.

@3) If p=2, r=p* if G has abelian Sylow q-subgroups for all Mersenne
primes less than 2", if q = 2™ — 1 is the least Mersenne prime for which this
is not so, r = 2" "q, and in any case r = 2" *3.

It will emerge from our argument that these results are best possible. An
element ¢ with » < p» will be called exceptional. The second theorem we
shall require is:

2) If, under the conditions of 1), g, h are elements of the same Sylow
subgroup of G such that (g"™ ', h*" ') # 1, then either (g — 1"+ +#0, or
(h—1)P" g — 1) = 0.

This includes, but goes beyond, the statement that if ¢, 2 are both ex-
ceptional, then the elements of order p in {¢} and {h} commute. In proving
1) and 2) we can assume G = PQ, etc., and that Q is absolutely irreducible.
As usual we establish irreducibility, and assume the ground field chosen large
enough for this to imply absolute irreducibility. We assume that the proof
is by induction on the parameters n, or m and n, that enter into the theorem.

Q is certainly completely reducible; assume first that not all irreducible -
components are equivalent, so that, if V is the vector space on which every-
thing operates,

V': VI’ZB Iyzégfb 17:4.
where the V, are minimal characteristic @-submodules, and « > 1. P operates
as a pefmutation group on the V,, and since PQ transforms V irreducibly,
P permutes V,, ---, V, transitively, and so P,, the subgroup of P leaving V,

fixed, is a proper subgroup.
If we are dealing with 1), P is the cyclic group {¢} of order p", so that P,
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is the cyclic group {¢**} of order p*¢, a > 0. If a = n, then (as in the second
level attack) (¢ — 1)»"-! # 0, so we may assume k = ¢*" ' belongs to P,. We
can find x in @ so that A 'x~'kx =y # 1, and we can assume V, so chosen
that y # 1on V,. It is clear that P\, restricted to V,, is a p-soluble group
of linear transformations. It has no normal p-subgroup not 1; for if it did,
this subgroup would have to contain ¢*" ', and therefore y, a contradiction.
Thus the minimal equation of ¢** on P,Q, by the induction hypothesis, is
(x — 1)70 = 0, where », = p** if @ is abelian, or if no power p* with b<n —a
is 1 + ¢¢, and where 0 = p*— ¢(p* — 1) if p® is the least power. Now for i =
1,---,p*— 1, and for v in V,, vy' belongs to V;:,; so that for any integer s

v(g — D)PPt = plg — PGt = g(gr® — ) (] 4 g + g 4 -+ + P
pa—1

=w + wg + wg*+ -+ + wyg
w = (g — 1)y,

where the different terms are in different summands Then if (¢** — 1)*'# 0
on V,, we have (¢ — 1)** ' 0. Thus the minimal cquation of ¢ is (g — 1)
with » = p%,. In the non-exceptional case this gives » = p*, and in the ex-
ceptional, » = p" % p* — 1) as required.

Now turn to 2), when P is generated by ¢, &, with k= (¢»™7", h*" ") # 1.
We can find x in @ so that k-'x 'kx =y + 1, and we can suppose that y re-
stricted to V. is not 1. If the permutation of the V; induced by ¢ includes
at least one pm™-cycle then as usual (g — 1) ' #+ 0, and we are home. Thus
VigP™ ' = V; for all i. Suppaose next that V, belongs to a cycle under & which
contains at least p" elements. Then for v in V,

v(h — 1Pt = v + vh + vh* + --- + vh?" !

where the terms belong to different direct summands, and as v varies over
V., so does vh’ over the corresponding V,., say. Thus if on any of these
¢*™ ' is not 1, we can choose v so that :

wh— 1P g — 1" = w(@™ T = 1)+ vh(gP" T = 1)+ e ok T = 1)
#0,

and again we are home. If, however, ¢*™ ' is 1 on all V k" (even on V, and
V.h~?"') one shows easily that £ = (¢*™ ', k*" ') is 1 on V,, and hence that
y=k'x'%kx is 1 on V,, contrary to choice of V.

That is, we may assume that not only ¢*™ ' but also A**' belongs to Pl,
and we are now .in a position to apply induction on m and n. Since P, is a
proper subgroup of P, the first powers of ¢, & in P, are g**, h** where one of
a,b is at least 1. Let U be an irreducible P,Q-submodule of V,. The re-
striction of P,Q to U is a p-soluble linear group, and by irredueibility it has
no non-trivial normal p-subgroup. Because V, is a sum of equivalent irre-
ducible @-modules, the fact that y is not 1 on V, implies that it is not 1 on
U, and hence that £ is not 1 on U. Thus if ¢, h are the restrictions to U of
g» and ¢”, (@*™ ', h*" " ') £ 1. Since at least one of a,b is positive, we can
apply induction to deduce that either (g — 1)»™ * ' or (h — 1)" " (g — 1)»" **
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. is not zero. That is, that either (g — 1)*™~** or (h — 1)*™~*’(¢ — 1)*""' is non-
zero on U. The argument is concluded exactly as in the case of 1), by re-
marking that for v in V, (or in particular in U), v,vg, - - -, vg?*~! belong to distinct
direct summands, as do v, vk, ---, vh**~t. It follows that if u(g — 1)P™#* # 0
then even uv(g —1)»™*+0, and if w(h — 1) ?(¢g —1)» ' =0, then even
v(h — 1)P"1(g — 1)»" ' £ 0.

We have, finally, to deal with the case in which the decomposition V =
Vih --- @ V, is trivial; that is, V is a direct sum of isomorphic irreducible
@-modules. In this case we show that there is only one such module, that
is, @ is irreducible. Supposc in fact that

V=V.®---DVu

where V,, ---, V; are now irreducible isomorphic ©-modules. Since we are
dealing with an irreducible group PQ), there is no loss of generality in supposing
that the base field is finite, say with p* elements. Then we prove that V
contains 1 + p* + --- + p e irreducible @-modules. This is obvious if d =1,
so we use induction on d. Then we have to show that the number of sub-
modules not contained in V., --- P Vy is plé-ve.  But such a submodule
consists of all elements

vy, vz, - -, viq)

where a;, 1 =2, ---,d, is a fixed homomorphism of V, into V;. But V,isan
(absolutely) irreducible module, so that there are p* such homomorphisms, and
p-ve choices for a;, ---, s as required. Since P permutes these 1 + p* +
-+« 4+ pl-ve submodules, it must leave at least one of them, say U fixed (since
it ts a p-group); and then U is a PQ-submodule. But V was irreducible, so
that U=V and d = 1.

This completes the proof that we can suppose @ absolutely irreducible.

7. Extraspeclal g-groups. We have, then, to consider linear groups PQ,
where @ is a normal, absolutely irreducible g-group, and P is a Sylow p-group,
which we may assume transforms @/Q’ irreducibly.

The first stage is to investigate @ abstractly. Q/Q’ is a vector space over
the field F, of g elements, say W. If ¢ is a generator of @', and x, y belong
to @, we can write (x,y) = ¢?@¥_ Here p(x, y) can be considered as an element
of F,; and it depends only on the cosets mod Q' to which x, y belong. That
is, it is a function from W x Wto F,. The usual commutator identities show
that it is bilinear and skew-symmetric; and the fact that Q' = Z(Qj shows that,
given x # 0 in W, we can find y so that p(x,y) # 0. Thus p(x, y) is a skew-
symmetric form of maximum rank; and so W is a symplectic space. It fol-
lows that W is of even dimension, say 2/, and that @ has order g*+!.

If x,y are elements of @ which do not commute, they generate a non-abelian
group, @, say, of order ¢*. The centraliser of x has index ¢, since the only
conjugates are xc', and similarly that of y, so that the centraliser @, of Q,
has index at most ¢*. But Q, n Q. is the centre {c} of @,; hence Q. has index
¢*, and Q@ = Q,Q.. Thus, if / > 1, @ can be written as a central product of .
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two proper subgroups. (G is the central product of its subgroups A, B if
G = AB and every element of A commutes with every element of B; then
A n B belongs to the centre of G, and G is isomorphic to a factor group
(A x B)/K of the direct product of A and B, K being isomorphic to A n B.)
We notice that Q., like @,, is extraspecial, since an element in its centre is
in the centre of @. More generally if @, is any extraspecial subgroup of @,
and Q. is its centraliser, @, is also extraspecial, and @ is the central product
QIQZ- .

The advantage of expressing a group as a central product is in the hold it
gives us over its representations. Consider first a direct product A x B. We
recall that if U, V are vector spaces over the same field, we can form their
product space U V (e.g., if u,, -+, 4, are a basis of U, and v,, ---, v, are
a basis of V, u; ®v; can be taken as a basis of U V). If s, ¢ are trans-
formations of U, V into themselves we can form the transformation s ®¢ of
U & V into itself; and the map (s, ) — s ¢ is bilinear in each of s and ¢, and
(s, @ t)(s: D ty) = 5,805 1ty In matrix terms, if S = (s;;) 1s the matrix of s,
and 7 the matrix of ¢, the matrix of s, if the basis vectors are properly

ordered, is
‘\‘HT o SlmTJ
Smil o Spm1

Evidently, if @ — s(a) and & — t(b) are representations of A, B as transformations
of U and V, then (a, b) — s(a) ) t(b) is a representation of A x B as a trans-
formation of U&) V. If the representations we start from are absolutely
irreducible, so is the representation we finish with, since then the enveloping
algebras are full matrix algebras. And conversely, every (classical) absolutely
irreducible representation of A x B is obtained in this way (which we call
forming the Kronecker product). Suppose indeed that we have such a
representation, operating on a space U, and let U, be a subspace admitting B
(absolutely) irreducibly. Then for each a in A, U is a B-module isomorphic
to U, so that the sum of such modules is the whole of U. Thus we can
choose a basis for U so that the representation, for B, takes the form

T(b) 0
S
0 T(b)J

A matrix representing an element a of A commutes with all these, and since
the T'(b) span a full matrix algebra it has the form

su@l - siml@)d

Smi(@)] Smml@)l

Then the mapping a - [si;(@)] is a representation of A,-and che representation
we started with was the Kronecker product of a — (s,;(@)) and T — T'(b).
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If we are concerned with a central product G = AB, we can regard it as
obtained from the direct product A x B by the homomorphism which identifies
(c, 1) with (1, ¢) if ¢ belongs to A n B; so that a representation of AB is just
a representation of A x B which represents (¢, 1) and (1, ¢) in the same way.
Now ¢ is a central element, both of A and of B, so that an absolutely irre-
ducible representation represents it by a scalar, and it makes sense to say
that two representations represent A N B in the same way. Thus: The ab-
solutely irreducible representations of a central product AB can be obtained as
Kronecker products of absolutely irreducible representations of A and of B which
represent A N B in the same way.

Now, let @ be an extraspecial g-group; and let [* be a ficld whose charac-
teristic is not ¢, which contains a primitive g-root of unity o, and also, if
g =2 and char () = 0, a primitive 4th root. Then @ has just one absolutely
irreducible representation in which the gencrator ¢ of Q' is represented by ol,
and this can be wrilten in the field F.

Let @ have order ¢*''. If [ =1, @ is a non-abelian group of order ¢°, and
the result is well known. If / > 1, @ is the central product of two proper
extraspecial subgroups @,, Q., for which, by induction, we may assume the
result proved. Any absolutely irreducible representation of @ representing ¢
by wl is a Kronecker product of absolutely irreducible representations of @,,
®: which represent ¢ by wl. By assumption, there is just one choice for each
of @, Q. and this representation can be written in F. Hence the same is
true of Q.

8. Linear groups P’() with () absolutely irreducible. Now continue the
same assumptions, but add the hypothesis that /' is finite and of characteristic
p, and that @ is a normal subgroup of the group PQ (where P is a Sylow
p-subgroup) which has a faithful representation in which @ is represented irre-
ducibly. If V is the space on which PQ acts, we would like to be able to
lay hands on V as a P-module. This there seems no way of doing. How-
ever (denoting the representation by p) we can lay our hands on the envelop-
ving algebra of p(Q) considered as a P-module under p(x)-- p(g'x9), by means
of the theorem of the previous section.

Let &7 be the group-algebra of @ over F, and consider the factor algebra
&|&(c — wl) where o is the gth root such that ¢ = wl, as a linear trans-
formation. Since @ has just one absdlutely irreducible representation, in which
¢ is represented by w/, and this can be written in the field F, &'/ (c — wl)
has just one absolutely irreducible representation and this can be written in
F. Since «&'|c2(c — wl) is semi-simple, this implies that it is a full matrix
" algebra over F. Since its dimension is ¢*, it is a (¢' x ¢') matrix algebra,
which incidentally implies that the representation of PQ is of degree ¢'. 1f ¢
is an element of P then ¢ acts, by transformation, both on @&'/< (¢ — wl) and
also on the enveloping algebra of @ (as a linear group). Its mode of action
in the two cases is precisely the same, since it has the same effect on the
elements of @, which span the algebra. We prove the special case of Theo-
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rem 1, to which it has been reduced, by comparing the dimensions of the
centraliser of ¢ in & /& (c — wl) and in the enveloping algebra.

We have an absolutely irreducible linear group PQ, where @ is absolutely
irreducible and extraspecial, P is cyclic of order p and transforms Q/Q’
irreducibly. Let ¢**! be the order of . Because Q/Q’ is transformed irre-
ducibly (and faithfully) by P, it is isomorphic to the additive group of % (6),
0 a prth root of 1, a generator of P acting as multiplication by 6. It follows
that the elements of Q/Q’ other than the identity are permuted by the
generator in cycles all of length p*. Since these elements form a basis for
& & (c — wl) we have: The centraliser of P in &7 (c — wl) has dimension
(g% — D)/p" + 1.

The generator ¢ of P is a linear transformation over a field of characteristic
p satisfying ¢*" — 1 = 0. Thus the Jordan canonical form of the correspond-

ing matrix is
[jl\l J
_],\

i

{ ... 1}-
0 -1’

here we may assume p* = A, = 4, = -+ = 4; = --- (where superfluous 4;’s are
put equal to 0, and the first inequality springs from the fact that g*"—1=0).
Also, since we are dealing with a ¢' X ¢ matrix, we have 4, + 4, + --- +
A + --- = ¢q'. The centraliser of P is then the set of matrices which commute
with the matrix above.

The centraliser of P has dimension 3, (2 — 1)4

This comes by direct computation. One obtain immediately that the di-
mension is > &, where &; is the dimension of the set of matrices X;;
satisfying J.Xy = Xi;/;. These matrices form Hom (M;, M;), where M; is a
cyclic # [x] module satisfying ux* = 0. Evidently, an element of Hom (M;, M;)
is determined by the image of a generator. Ifj =< i, this image can be chosen
at will; if / = it must be chosen from the subset of those elements v satis-
fying vx* = 0. Thus in any case the dimension is min (7, 7). Thus the di-
mension we are looking for is 3%:; min (4;, 4;); which is 33:2i — 1)4;, because
the A’s have been arranged in descending order.

All but one of the non-zero A;'s are equal to p", the other to p» — 1.

We first show that ¢' = —1(p"). If p* is odd this is obvious, for ¢* is the
order of the field generated by a p*th root of unity, so that p*+q¢' — 1, but
prlg* —1. Thus p*|q' + 1, as asserted. If p =2, we have to proceed a
little differently. We use the fact that Q/Q’ is a symplectic space, and that
transformation by ¢ induces in it a sympléctic transformation, and so, in
particular, one of determinant 1. The determinant of the multiplication by &
is, of course, the norm N(f), so that #i+ere*+=-+e2~! — 1 whence

where Jx 1s the 4 X A matrix
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2" (@ — D@ + Dilg—1).

Since 271 (¢ — 1), this implies that ¢' + 1 is divisible by a higher power of 2
than ¢ — 1. In particular 4|¢' + 1, so that ¢ =3(4) and [/ is odd. Thus
(¢ —1/(@—1) is odd, and 2" |¢' + 1, as required.

Now if ¢' = ap + (p» — 1), and we put x4, = -+ g = p*, and oy, = p* — 1,

we have
@i — Dy = a*p + (2a + 1)(p~ — 1)

(@ + 12p" — (2a + 1)

Il

and
1+ @ —1p =1+ {[(@+ pr — 1] — 1}/p»
=(a+ 1)*%p"— 2a+1).

Thus A; = s gives a solution of our equations; that it is the only solution
follows from the fact that any A’s satisfying

przhzhz--2Z2hz -
and
Atd+ o+ A+ =gt
can be reduced to g, - -, tta+: by a sequence of moves each of which increases

some 4; at the expense of 4;, where j > i, which decreases the sum 312t — DA

We obtain (as part of our result):

If G= PQ is a linear group over a field of characteristic p, where Q is an
absolutely irreducible normal extraspecial q-group, and P is the cyclic group
generated by the element g of order p*, which transforms Q|Q' irreducibly, then
the minimal equation of g is (x — 1) =0 wunless p~ — 1 is a power of gq, in
which case it is (x — 1)P" ' = 0.

This, of course, is a more precise version of the missing special case of
Theorem 1. .

If we make the same assumptions except that g need no longer transform Q|Q’
trreducibly, then ¢ has minimal equation (x — 1)" =0 with r < p™ only if (i)
p* — 1 is a power of q and (ii) Q is the central product Q = Q,Q., where g trans-
forms Q.,/Q' irreducibly and Q./Q' trivially (here Q. may be trivial).

We can choose a special g-subgroup &, such that ¢ transforms Q,/Q! irre-
ducibly and faithfully; and since @; c ', @, is either abelian or extraspecial.
If @, is abelian, the minimal equation of ¢ is certainly (x — 1)** = 0. If @, is
extraspecial, @ is the central product @,6., where @. is the centraliser of @,.
We form groups G, = {¢,,®,} and G, = {g9.,Q.}, where g, transforms the
group Q; ih the same way as ¢, and has the appropriate order. If we form
the central product of G, and G,, we can evidently identify ¢ with ¢,9., ab-
stractly; and hence, if we take appropriate irreducible faithful representations
of G, and G,, as a linear transformation ¢ is identified with the Kronecker
product ¢, ® g,. If ¢ centralises ., ¢, is the identity, ¢, and ¢ have the
same minimal equation, and we are home. If not, by Theorem 1, ¢ operates
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on some subspace like /,» ;& J,, which is to say (the characteristic being p)
like J,» &) J,» .. Thus ¢ has minimal equation (x — 1)*" = 0, proving the result.

9. Completion of the proof of Theorem 2. In the special case that
remains to us this says: Let G = PQ be a linear group over a field of character-
istic p, where Q is a normal, absolutely irreducible extraspecial q-group, and
P is a Sviow p-group which transforms Q[Q' irreducibly and is genervated by
elements g and h satisfving (¢?™ ', " ") £ 1. Then either (g — 1)1 £ 0 or
(h— 1P g™t —1)#0.

We shall assume that (¢ — 1)»™ ' = 0, so that ¢ is of order p™ and exceptional,
and prove that (& — 1)»" (4™ ' — 1) # 0. The first step is to find out scme-
thing about how P transforms Q/Q'. Elements of P induce a p-group of
symplectic transformations of Q/Q’ (with respect to a certain skew-symmetric
form), which we may suppose to be a subgroup of some fixed Sylow p-subgroup
of the symplectic group on @/Q’. We shall describe such a Sylow subgroup,
taking separately the two possible cases (i) p a Fermat prime, ¢ = 2; and (ii)
p =2, ¢ a Mersenne prime. We remark that the dimension of @/Q’ must be
such that an irreducible symplectic p-group exists; but state the facts without
proof.

i) Ifg=2 p=2"+1 we let <% * be the field of 2% elements so that & *
contains a primitive pth root of unity, . Then under our assumption, Q/Q’
can be regarded as a vector space over . *; and we let x,,x,, --- be an
F * basis. For « in & * let a' = a*", so that a->a’ is the automorphism
of . * of order 2. Then (X aix;, 3 B:x> = Slitr(a;8) is a (skew-) sym-
metric form on Q/Q’ (as a vector space over ,%,), which is easily seen to
have top rank; indeed, for fixed 7, it has top rank on the subspace of all ax,,
a in ¢ %, so that the corresponding Subgroup Q: of @ is extraspecial. Since
00’ — 62*+1 = gr = 1, the transformations

A): S x> S al" xg )

for all integers u,, and all permutations o, are symplectic. If o is restricted
to a Sylow p-subgroup of the symmetric group on 1,2, --- they form a Sylow
p-subgroup of the symplectic group, as is verified by counting them.

(i) The results for ¢ = 2" — 1, p = 2, are similar but a bit more complicated.
% * is now the field of ¢* elements; and /)’ is again a vector space over
% * with 4 * basis x,, x., ---; but ¢ is now a primitive 2!t'st root so that
06" = —1. The fundamental form is given hy

S aix, N B = ‘\_—“,(agﬁ,’ — aifi) .
We now have to define the transformations 7', of ..‘/'* by
T () = 0"a’ (n odd) ,
Ta) = 0"« (7 even) .

The transformations 7', form a generalized quaternion group; and the Sylow
2-group consists of transformations



