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Preface

A great discovery solves a great problem but there is a grain of discovery in the
solution of any problem. Your problem may be modest; but if it challenges your
curiosity and brings into play your inventive faculties, and if you solve it by your
own means, you may experience the tension and enjoy the triumph of discovery.

George Polya

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried to
write a book that assists students in discovering calculus—both for its practical power and its
surprising beauty. In this edition, as in the first, I aim to convey to the students a sense of
the utility of calculus and develop their technical competence, but I also strive to give them
some appreciation for the intrinsic beauty of the subject. Newton undoubtedly experienced a
sense of triumph when he made his great discoveries. I want students to share some of that
excitement.

The emphasis is on understanding. Enough mathematical detail is presented so that the
treatment is precise, but without allowing formalism to become obtrusive. The instructor can
follow an appropriate course between intuition and rigor by choosing to include or exclude
optional sections and proofs. Section 1.4, for example, on the precise definition of the limit
is an optional section. Although a majority of theorems are proved in the text, some of the
more difficult proofs are given in Appendix C.

While teaching from the first edition for three years, I (and my students) have had ideas,
some major, some minor, for improving the exposition and organization and for adding new
and better examples and exercises. I have also had the benefit of some valuable suggestions
from colleagues, both friends and strangers, which have been incorporated into the second
edition. Here is a summary of some of the principal changes:

B At the request of several users, some of the applications of integration are introduced
earlier. In fact, applications of integration now occur in two chapters. The applications, such
as volume and work, that ordinarily require only basic techniques of integration are in Chapter
5. Those applications for which it is profitable to have studied further techniques (separable
differential equations, arc length, surface area) are in Chapter 8, together with centers of mass,
hydrostatic pressure, and a new section on applications to economics and biology (consumer’s
surplus, present value of an income stream, blood flow, cardiac output).
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® The chapter Limits and Rates of Change (now Chapter 1) has been substantially reor-
ganized. In particular, the properties of limits are introduced earlier.

® In Chapter 2 the section Rates of Change in the Natural and Social Sciences is placed
earlier and there is increased emphasis on linear approximation.

® The Midpoint Rule for approximate integration is now covered. It first occurs in Section
4.3, where the definite integral is introduced. The treatment of approximate integration in
Section 7.8 is expanded to include comparison of errors for the Left Endpoint, Right Endpoint,
Trapezoidal, Midpoint, and Simpson’s rules.

® In Chapter 6 the method for differentiating the exponential and logarithmic functions has
been changed so that the exponential function is differentiated first.

® In Chapter 10 there are more graphs of Taylor Series approximations, and Taylor’s Formula
is now proved in the text instead of in the exercises. Multiplication and division of power
series are now covered.

® Chapter 11 contains more applications of vectors in examples and exercises. Kepler’s
First Law is proved in the text although, as before, Laws 2 and 3 are left as exercises with
hints.

® Chapter 12 now contains many more computer graphics of surfaces and level curves,
both in examples and exercises, and tree diagrams have been added to illustrate the Chain
Rule. The geometric basis of Lagrange multipliers is explained.

® A new section on surface area has been added in Chapter 13. Although parametric surfaces
are still given a full treatment in Chapter 14, it is now possible to cover surface area and
surface integrals nonparametrically.

® There is a new appendix on complex numbers.

My educational philosophy was strongly influenced by attending lectures of George Polya and
Gabor Szego when I was a student at Stanford University. Both Polya and Szego consistently
introduced a topic by relating it to something concrete or familiar. Wherever practical I have
introduced topics with an intuitive geometrical or physical description and have attempted to
tie mathematical concepts to the students’ experiences.

I found Polya’s lectures on problem solving highly inspirational and his books How To
Solve It, Mathematical Discovery, and Mathematics and Plausible Reasoning have become
the core text material for a mathematical problem-solving course that I instituted and teach at
McMaster University. [ have adapted these problem-solving strategies to the study of calculus
both explicitly, by outlining strategies, and implicitly, by illustration and example.

Students usually have difficulties in situations where there is no single, well-defined pro-
cedure for obtaining the answer. I think nobody has improved very much on Polya’s four-
stage problem-solving strategy, and accordingly I have presented a version of this strategy on
the front endpapers of this book together with a discussion of it and an example of its use in
To the Student. I also urge my students to read Polya’s How to Solve It for a more leisurely
exposition of the principles. I often find myself nagging them into using these principles.

The classic calculus situations where problem-solving skills are especially important are
related rates problems, maximum and minimum problems, integration, testing series, and
solving differential problems. In these and other situations I have adapted Polya’s strategies
to the matter at hand. In particular three special sections are devoted to problem solving: 7.6

(Strategy for Integration), 10.7 (Strategy for Testing Series), and 15.4 (Strategy for Solving
First Order Differential Equations).

In this edition I have added what I call Problems Plus after even-numbered chapters. These
are problems that go beyond the usual exercises in one way or another and require a higher
level of problem-solving ability. The very fact that they do not occur in the context of any
particular chapter makes them a little more challenging. For instance, a problem that occurs
after Chapter 10 need not have anything to do with Chapter 10. I particularly value problems
in which a student has to combine methods from two or three different chapters. In recent
years | have been testing these Problems Plus on my own students by putting them on
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assignments, tests, and exams. Because of their challenging nature I grade these problems in
a different way. Here I reward a student significantly for ideas toward a solution and for
recognizing which problem-solving principles are relevant. My aim is to teach my students
to be unafraid to tackle a problem the likes of which they have never seen before.

A counterpart to the Problems Plus are the Applications Plus, which occur after odd-
numbered chapters (starting with Chapter 3) and which tend to be challenging because they
involve related concepts from science that are usually outside students’ experiences. Again
the idea is to combine concepts and techniques from different parts of the book. These problems
are helpful in demonstrating the sheer variety of the applications of calculus but also in focusing
the students’ attention on the essential mathematical similarities in diverse situations in science.
By solving a wide variety of concrete problems, I hope that they will come to appreciate the
power of abstraction. I am grateful to Garret Etgen for amassing such a wide-ranging collection
of applied problems.

1 believe that one of the reasons that the first edition has been successful at a range of educational
institutions is that there has been such a wide range of abilities among my own calculus
students and my goal has been not to lose any of them. In particular I did not want to lose
the interest of my very best students and so I have sought to challenge them with stimulating
exercises. There is nothing in any text that can compensate for a deficiency of good problems.
I have selected my exercises from those used in 20 years of calculus classes and have expressly
chosen examples for their instructional value. I have added 1000 new exercises to this edition,
making a total of about 7500 exercises that range from the essential, routine ones to those
that will challenge your best students. I have made a special effort to include unusual problems
at both ends of the spectrum of difficulty. Many of the new exercises are thought provoking
and occur toward the end of exercise sets.

Another reason for the first edition’s success may be the heuristic flavor of many of the
text examples. Examples can, and should, be more than exercise-solving “templates.” Carefully
constructed examples can be one of the most effective ways of leading students into more
advanced material. Many examples herein are designed to promote careful thinking about the
problems and ideas behind calculus while giving the students insight into why theorems and
proofs are necessary.

For the most part the order of topics presented is fairly traditional. The trend toward the early
introduction of trigonometric functions is reflected in the placement of the differentiation of
all six trigonometric functions in Chapter 2, before the Chain Rule. However, many instructors
would also like to be able to use the other transcendental functions prior to the coverage of
the definite integral. I have encouraged this alternative by making the introduction of the
transcendental functions as flexible as possible. In Chapter 6 the exponential function is defined
first, followed by the logarithmic function as its inverse. (Students have seen these functions
introduced this way since high school.) Later I present the more elegant definition of the
logarithm as an integral. This presentation allows the coverage of much of Chapter 6 before
Chapters 4 and 5, if desired. To accommodate this choice of presentation, specially identified
problems involving integrals of exponential and logarithmic functions are included at the end
of the appropriate sections of Chapters 4 and 5. This order of presentation allows a faster-
paced course to teach the transcendental functions and the definite integral in the first semester.
For instructors who would like to go even further in this direction I have prepared an
alternative edition of this book, called Calculus: Early Transcendentals Edition, in which the
exponential and logarithmic functions and their applications to exponential growth and decay
(essentially the contents of Chapter 6 of the present edition) are presented in Chapter 3.

One of the most striking changes in this edition is the four-color production. I admit that when
Brooks/Cole first proposed a four-color book, I was very skeptical and advised against it. But
when I actually sat down to think seriously about how four colors could enhance the book’s
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To the Student

Reading a calculus textbook is different from reading a newspaper or a novel, or even a
physics book. Don’t be discouraged if you have to read a passage more than once in
order to understand it. You should have pencil and paper at hand to make a calculation
or sketch a diagram.

Some students start by trying their homework problems and only read the text if they
get stuck on an exercise. I suggest that a far better plan is to read and understand a
section of the text before attempting the exercises. In particular, you should study the
definitions to see the exact meanings of the terms.

Part of the aim of this course is to train you to think logically. Learn to write the
solutions of the exercises in a connected step-by-step fashion with explanatory words or
symbols—not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the back of the book, in Appendix
H. There are often several different forms in which to express an answer, so if your
answer differs from mine, don’t immediately assume that you are wrong. There may be
an algebraic or trigonometric identity that connects the answers. For example, if the
answer given in the back of the book is V2 - 1 and you obtain 1/ (1 + \/5), then you
are right and rationalizing the denominator will show that the expressions are equivalent.

The symbol @ means that a calculator (or computer) is required to do a calculation in
an example or exercise. The symbol M indicates the end of a proof or an exercise. You
will also encounter the symbol (2), which warns you against committing an error. I have
placed this symbol in the margin in situations where I have observed that a large proportion
of my students tend to make the same mistake.

Calculus is an exciting subject; I hope you find it both useful and interesting in its own
right.

A Note on Logic

In understanding the theorems it is important to know the meaning of certain logical
terms and symbols. If P and Q are mathematical statements, then P = Q is read as “P
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implies 0 and means the same as “If P is true, then Q is true.” The converse of a theorem
of the form P = Q is the statement Q = P. (The converse of a theorem may or may not
be true. For example, the converse of the statement “If it rains, then I take my umbrella”
is “If I take my umbrella, then it rains.”) The symbol < indicates that two statements
are equivalent. Thus P & Q means that both P = Q and Q = P. The phrase “if and
only if” is also used in this situation. Thus “P is true if and only if Q is true” means the
same as P & Q. The contrapositive of a theorem P = Q is the statement that ~Q >
~P, where ~P means not P. So the contrapositive says “If Q is false, then P is false.”
Unlike converses, the contrapositive of a theorem is always true.

Methods of Problem Solving

The way to master calculus is to solve problems—Iots of problems. The exercise sets at
the end of each section begin with straightforward exercises designed to test your mastery
of fundamental skills. Later exercises are less straightforward because they involve appli-
cations to science, because they involve more complex calculations, or because they
make you think harder about what the concepts really mean. The problems at the end of
exercise sets are often quite challenging and may require more than one attempt. The
Problems Plus, which can be found after the even-numbered chapters, are also challenging.
Often the challenge is to recognize that a problem requires combining methods from two
or more different chapters. For instance, the Problems Plus after Chapter 8 don’t nec-
essarily relate to Chapter 8 but might require using knowledge from any of the chapters
from 1 to 8.

If you have trouble solving any of the more challenging problems, you might find it
useful to look at the Principles of Problem Solving that are printed on the front endpapers
of this book. For a more thorough discussion of the problem-solving process I recommend
that you consult the following books:

Polya, G. How To Solve It (2nd ed.). Princeton University Press, 1957.

Polya, G. Mathematical Discovery. New York: John Wiley and Sons, 1962.
Wickelgren, W. How To Solve Problems. San Francisco: W. H. Freeman, 1974.

Solow, D. How To Read and Do Proofs. New York: John Wiley and Sons, 1982.

Here is a problem that involves only precalculus mathematics:

Express the hypotenuse h of a right triangle in terms of its area A
and its perimeter P.

After reading the Principles of Problem Solving, try to solve this problem. Then look at
the solution on the following page.
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Understand the problem

Draw a diagram

Connect the given with the unknown

Introduce something extra
/
h
b
a
Figure 1
Relate to the familiar

To the Student

Example Express the hypotenuse 4 of a right triangle in terms of its area A and its
perimeter P.

Solution Let us first sort out the information by identifying the unknown quantity
and the data:

Unknown: h

Given quantities: A, P

It helps to draw a diagram and we do so in Figure 1.

In order to connect the given quantities to the unknown, we introduce two extra variables
a and b, which are the lengths of the other two sides of the triangle. This enables us to
express the given condition, which is that the triangle is right-angled, by the Pythagorean
Theorem:

The other connections among the variables come by writing expressions for the area and
perimeter:

A=3ab P=a+b+h

Since A and P are given, notice that we now have three equations in the three unknowns
a, b, and h:

W =a + b? (1)
A = iab )
=a+b+h 3)

Although we have the correct number of equations, they are not easy to solve in a
straightforward fashion. But if we use the problem-solving strategy of trying to recognize
something familiar, then we can solve these equations by an easier method. Look at the
right sides of Equations 1, 2, and 3. Do these expressions remind you of anything familiar?
Notice that they contain the ingredients of a familiar formula:

(a + b)? = a*> + 2ab + b?
Using this idea, we express (a + b)? in two ways. From Equations 1 and 2 we have
(a + b)? = (a2 + b2 + 2ab = h? + 4A
From Equation 3 we have

@+ b2 = (P —h2=P2—2Ph+ K

Thus h* + 4A = P2 — 2Ph + K?
2Ph = P? — 4A
P? — 4A
h=""p

This is the required expression. [ |
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