Schaum's
- OUTLINE SERIES

. .,.'

THEORY AND PROBLEMS O

" PROGRAMMING
~ WITH
UCTURED BASIC

‘Byron S. Gottfried

SCHAUM'S OUTLINE OF

THEORY AND PROBLEMS

OF

PROGRAMMING
WITH
STRUCTURED
BASIC

BYRON S. GOTTFRIED, Ph.D.

Professor of Industrial Engineering
University o'ﬂ_’jggﬁwgh

SCHAUM'S OUTLINE SERIES
MCGRAW-HILL, INC.

New York St. Louis San Francisco Auckland Bogotd Caracas
Lisbon London Madrid Mexico Milan Montreal
New Delhi Paris San Juan Singapore
Sydney Tokyo Toronto

To Marcia, Sharon, Gail and Susan

BYRON S. GOTTFRIED is a Professor of Industrial Engineering at the University
of Pittsburgh. He received his Ph.D. from Case-Western Reserve University in
1962, and has been a member of the Pitt faculty since 1970. His primary interests
are in the modeling and simulation of industrial processes. Dr. Gottfried also has
active interests in computer graphics and computer programming languages. He is
_ the author of several books, including three editions of Programming with BASIC,
Programming with C and Programming with Pascal in the Schaum's Outline Series.

This book is printed on recycled paper containing a minimum of 50% total recycled fiber with
10% postconsumer de-inked fiber.

GW-BASIC is a registered trademark of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.
Microsoft is a registered trademark of Microsoft Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

QBASIC and QuickBASIC are trademarks of Microsoft Corporauon

True BASIC is a trademark of True BASIC, Inc.

Schaum's Outline of Theory and Problems of
PROGRAMMING WITH STRUCTURED BASIC

Copyright © 1993 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the copyright act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval system, without the prior
written permission of the publisher.

234567891011 121314 15SHSH98765432
ISBN 0-07-023899-5

Sponsoring Editor: John Aliano

Production Supervisor: Louise Karam

Editing Supervisors: Meg Tobin, Maureen Walker
Cover design by Amy E. Becker

Gottfried, Byron S., date
Schaum's outline of theory and problems of programming with structured BASIC/ Byron S. Gottfried.
p. cm.-- (Schaum's outline series)
Includes index.
ISBN 0-07-023899-5
1. BASIC{Computer program language) 2. Structured programming.
I. Title. II. Title: Outline of theory and problems of programming with structured BASIC. . 1II.
Title: Programmingwith structured BASIC, IV. Series.
QA76.76.B3G68 1993
005.13'3--dc20 91-43808
CIP

Preface

BASIC has been a popular programming language ever since it was first introduced in 1964, Its use
has increased explosively, however, as a result of the proliferation of personal computers that occurred
during the 1980s. Today, BASIC is the most popular of all programming languages. It is studied in high
schools and colleges throughout the world, and remains the language of choice of most computer
hobbyists.

As BASIC grew in popularity, it has also matured dramatically in terms of its capabilities. Many of
the sophisticated, structured programming constructs that are present in other, newer programming
languages have now been added to BASIC. In addition, the graphical user interfaces available on
personal computers have brought about a vastly improved programming environment. As a result,
BASIC has "grown up." Modern implementations of the language bear little resemblance to the
simplistic language of the 1960s.

This book is intended as a replacement for my earlier Schaum’s Outline of Programming with BASIC.
It offers instruction in BASIC programming using the features found in contemporary, structured
implementations of the language. Thus, the book stresses the development of programs that are logical,
efficient and orderly. The reader is therefore exposed to the principles of good programming practice as
well as the specific rules of BASIC.

The book concentrates on three implementations of structured BASIC: the 1987 ANSI standard,
True BASIC and Microsoft’s QuickBASIC/QBASIC. True BASIC is a popular personal computer
implementation that adheres very closely to the 1987 ANSI standard. QuickBASIC, and its twin
QBASIC, have personalities of their own. They are widely used on many personal computers.

One of my goals in writing this book is that it be easily understood. This enables the book to be
attractive to a wide reader audience, ranging from high school students to practicing professionals. The
book is particularly well suited to the advanced secondary or beginning college level, either as a textbook
for a beginning programming course, as a supplementary text for a more comprehensive course in
analytical techniques or as an effective self-study guide. For the most part, the required mathematical
level does not go beyond high school algebra.

The material is organized in such a manner that the reader can write complete, though elementary,

BASIC programs as soon as possible. It is very important that the reader write such programs and . -

execute them on'a computer concurrently with reading the text. This greatly enhances the beginning
programmer’s self-confidence and stimulates his or her interest in the subject. (Learning to program a
computer is like learning to play the piano; it cannot be learned simply by studying a textbook!)

The text contains many examples. These include both comprehensive programming problems and
simple illustrations that focus on specific programmying constructs. In addition, sets of review questions,
drill problems and programming problems are included at the end of each chapter. The review questions
enable readers to test their recall of the material presented within the chapter. They also provide an
effective chapter summary. Most of the drill problems and programming problems require no special
mathematical or technological background. The student should solve as many of these problems as
possible. (Answers to most of the drill problems are provided at the end of the text.) When using this
book as a text in a programming course, it may also be advisable for the instructor to supplement the
programming problems with additional assignments that reflect particular disciplinary interests.

The principal features of both True BASIC and QuickBASIC/QBASIC are summarized in five
appendixes for the reader’s convenience. This material should be used frequently for ready reference and
quick recall. It will be particularly helpful when writing or debugging a new program.

Finally, readers who complete this book will have learned a great deal about general programming
concepts as well as the specific rules of structured BASIC. In addition, they should be convinced that
programming with structured BASIC is not only easy, but also fun.

B¥RON S. GOTTFRIED

Complete Programming Examples

The programming examples are listed in the order in which they first appear within the text. The
examples vary from very simple to moderately complex. Multiple versions are presented for many of the
programs, particularly the simpler programs.

Area of a Circle - Examples 1.6 - 1.8

Roots of a Quadratic Equation - Examples 3.1 - 3.4,3.8,3.9,4.9

Evaluating a Polynomial - Example 3.7

Averaging a List of Numbers - Example 4.12

Averaging a List of Positive Numbers - Examples 4.13, 4.16, 4.17

Solution of an Algebraic Equation - Example 4.18

Generation of Fibonacci Numbers and Search for Primes - Examples 4.19, 7.8
Calculating Depreciation - Example 4.24

Deviations About an Average - Example 5.7

10. Word Unscrambling - Example 5.8

11. Writing a String Backwards - Example 5.9

12. Reordering a List of Numbers - Example 5.14

13. Search for a Maximum - Example 6.5

14. Smallest of Three Numbers - Example 6.7

15. Simulation of a Game of Chance: Shooting Craps - Examples 6.11, 6.14

16. Smallest of Three Numbers - Example 6.18

17. Table Manipulation - Examples 6.20, 6.21

18. A Pig Latin Generator - Example 6.22

19. Calculating Factorials - Example 6.27

20. The Towers of Hanoi - Example 6.28

21. Programming a Screen Display (Nothing Can Go Wrong, Go Wrong. . .) - Examples 7.11, 10.9
22. Personal Finance (Compound Interest Calculations) - Example 7.25

23. Creating a Sequential Data File in QuickBASIC: Student Exam Scores - Example 8.3
24. Creating a Sequential Data File in True BASIC: Student Exam Scores - Example 8.4
25. Reading a Sequential Data File in QuickBASIC: Student Exam Scores - Example 8.5
26. Reading a Sequential Data File in True BASIC: Student Exam Scores - Example 8.6
27. Updating a Sequential Data File in QuickBASIC: Student Exam Scores - Example 8.7
28. Updating a Sequential Data File in True BASIC: Student Exam Scores - Example 8.8
29. Creating a Direct Data File in True BASIC: States and their Capitals - Example 8.10
30. Creating a Direct Data File in QuickBASIC: States and their Capitals - Example 8.11
31. Reading a Direct Data File in True BASIC: Locating State Capitals via Binary Search - Example 8.12
32. Reading a Direct Data File in QuickBASIC: Locating State Capitals via Binary Search - Example 8.13
33. Updating a Direct Data File in True BASIC: Baseball Team Records - Example 8.14
34. » Updating a Direct Data File in QuickBASIC: Baseball Team Records - Example 8.15
35. Simultaneous Equations - Example 9.25

36. Least Squares Curve Fiiting - Example 9.30 (see also Example 11.9)

37. Programming the Function Keys - Example 10.1

38. Programming a Light Pen - Example 10.2

39. Programming a Mouse - Example 10.3

40. Calibrating a Joystick - Example 10.4

41. Programming a Joystick - Example 10.5

42. Multicolored Text - Example 10.6

43. Programming a Speaker (A Siren) - Example 10.8

VEANUNE BN

viii

45.
47.

49,
50.
51
52.
53.
54.
5s.
56.

COMPLETE PROGRAMMING EXAMPLES

Random Points - Example 11.5

A Lightning Bolt - Example 11.7

Moving Lines (Kinetic Art) - Example 11.8

Linear Regression with Graphical Display - Example 11.9
Expanding Rectangles - Example 11.11

Random Blocks - Example 11.13

Expanding Circles - Example 11.15

A Filled Lightning Bolt - Example 11.16

A Pie Chart Generator - Example 11.21

Blimp with Animated Text - Example 11.24
Simulation of a Bouncing Ball - Examples 11.25, 11.26
A Game of Paddleball - Example 11.27

A Bar Chart Generator - Examples 11.28, 11.29

Chapter

Chapter

Chapter

Chapter

2

3

4

Contents

1 INTRODUCTORY CONCEPTS 1
1.1 Introduction to Computers 1
1.2 Computer Characteristics 2
1.3 Modes of Operation 5
1.4 Types of Programming Languages 7
1.5 Introduction to BASIC 8
GETTING STARTED WITH BASIC 16
2.1 Numeric Constants 16
2.2 String Constants 17
2.3 VALADIES couceereniernernrisss s s issssssssasssssssssssssssesssecsssessssassssssssnssssinassssstssssessse 17
2.4 Operators and Expressions 18
2.5 Hierarchy of Operations 19
2.6 Use of Parentheses 20
2.7 Special Rules Concerning Numeric Expressionsc...... 20
2.8 String Expressions 22
2.9 Assigning Values: The LET Statement ... 22
2.10 Reading Input: The INPUT Statement 23
2.11 Printing Output: The PRINT Statement 25
2.12 Adding Program Comments: The REM Statement .29
2.13 The STOP and END Statements 30
2.14 Library Functions 31
CREATING AND RUNNING A BASIC PROGRAM 42
3.1 Planninga BASIC Program 42
3.2 Writing a BASIC Program 4
33 Entering the Program Into the Computer 45
3.4 Executing the Program ... 47
3.5 Error Diagnostics 48
3.6 Logical Debugging 50
3.7 Other BASIC Programming Environments 54
CONTROL STRUCTURES 62
4.1 Relational Operators and Logical Expressions 62
4.2 Logical Operators 63
4.3 Conditional Execution: The IF - THEN Statement 65
4.4 Conditional Execution: IF-THEN-ELSE Blocks 65
4.5 Unconditional Looping: FOR-NEXT Structures 70
4.6 Conditional Looping: DO-LOOP Structures 74
4.7 Conditional Looping: WHILE-WEND Structures 77
4.8 Nested Control Structures 78
4.9 Selection: SELECT CASE Structures 85

4,10

Line-Oriented Control Statements

92

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

5

6

CONTENTS

ARRAYS

5.1 Defining an Array: The DIM Statement ..,

5.2 Subscripted Variables

5.3 Initializing an Array: The DATA and READ Statements

5.4 Rereading Data: The RESTORE Statement

FUNCTIONS AND SUBROUTINES

6.1 Single-Line Functions: The DEF Statement

6.2 Multi-Line Functions

6.3 External Functions

6.4 Subroutines

6.5 Line-Oriented Subroutine Calls (GOSUB, ON-GOSUB)

6.6 External Subroutines........oeceus

" 6.7 RECUISION.uceiriceinsirmssiesissnsessssssssssssssasssssssssns

7

9

10

11

SOME ADDITIONAL FEATURES OF BASIC

7.1 Additional Data Types
7.2 More About Expressions.....

7.3 More About Statements

7.4 Clearing the Screen: The CLEAR and CLS Statements
7.5 Positioning the Cursor: The SET CURSOR and LOCATE Statements

7.6 More About Input

7.7 Formatted Output: The PRINT USING Statement

7.8 Some Additional Miscellaneous Commands

DATA FILES

108

105
107
113
118

131

131
136
143
150
157
159
161

181

181
183
184
186
186
188
192
203

214

8.1 Data File Fundamentals
8.2 Processing a Data File

.214

215

8.3 Sequential Data Files

8.4 File-Directed Device Output (Print Files)
8.5 Direct Data Files

VECTORS AND MATRICES

216
227
227

248

9.1 Vector and Matrix Operations

9.2 Matrix Input/Output

248
255
263

9.3 Special Matrices
9.4 Changing Dimensions....

PROGRAMMING A PERSONAL COMPUTER

270

288

10.1 The Keyboard Function Keys

10.2 Other Programmable Input Devices

290

10.3 Use of Color and Sound

INTRODUCTION TO COMPUTER GRAPIIICS

299

308

308

11.1 Graphics Fundamentals..

Appendix A
Appendix B
Appendix C
Appendix D

Appendix E

ANSWERS TO SELECTED PROBLEMS

INDEX

11.2 Points and Lines

11.3 Shapes
11.4 Animations

CONTENTS vii

309

322

338

11.5 Character Graphics 346
SUMMARY OF TRUE BASIC STATEMENTS 358
SUMMARY OF TRUE BASIC FUNCTIONS 364
SUMMARY OF QUICKBASIC STATEMENTS 367
SUMMARY OF QUICKBASIC FUNCTIONS 374
THE ASCII CHARACTER SET 377
379

413

Chapter 1

Introductory Concepts

BASIC (Beginner’s All-purpose Symbolic Instruction Code) is a popular, easily learned
programming language that was first developed in the mid-1960s. In recent years BASIC has undergone
extensive modifications, in order to provide the same structured programming features that are found in
other popular programming languages. These newer versions of BASIC are often referred to as
structured BASIC.

This book offers instruction in computer programming using the features found in these newer
versions of BASIC. By studying this book you will learn the details of writing complete, structured
programs in BASIC. The concepts are demonstrated in detail by the many sample problems included
within the text.

1.1 INTRODUCTION TO COMPUTERS

Today’s computers come in many different forms. They range from massive, multipurpose
mainframes and supercomputers 10 desktop-size personal computers. Between these extremes is a vast
middle ground of minicomputers and workstations. Large minicomputers approach mainframes in
computing power, whereas workstations are powerful personal computers.

Mainframes and large minicomputers are used by many businesses, universities, hospitals and
government agencies to carry out sophisticated scientific and business calculations. These computers are
expensive (large computers can cost millions of dollars) and may require a sizeable staff of supporting
personnel and a special, carefully controlled environment.

Personal computers, on the other hand, are small and inexpensive. In fact, portable, battery-powered
personal computers smaller than a typewriter are now available. Personal computers are widely used in
most schools and businesses and they are rapidly becoming common household items. Students typically
use personal computers when learning to program with BASIC.

Figure 1.1 shows a student using a personal computer.

2 INTRODUCTORY CONCEPTS {CHAP. 1

Despite their small size and low cost, modern personal computers approach small minicomputers in
computing power. They are now used for many applications that formerly required larger, more
expensive computers. Moreover, their performance continues to improve dramatically as their cost
continues to drop. The design of a personal computer permits a high level of interaction between the
user and the computer. Most applications (e.g., word processors, graphics programs, spreadsheets and
database management programs) are specifically designed “to take advantage of this feature, thus
providing the skilled user with a wide variety of creative tools to write, draw or carry out numerical
computations. Applications involving high-resolution graphics are particularly common.

Many organizations connect personal computers to larger computers or to other personal
computers, thus permitting their use either as stand-alone devices or as terminals within a computer
network. Connections over telephone lines are particularly common. When viewed in this context, we
see that personal computers often complement, rather than replace, the use of larger computers.

1.2 COMPUTER CHARACTERISTICS

All digital computers, regardless of their size, are basically electronic devices that can transmit, store,
and manipulate information (i.e., data). Several different types of data can be processed by a computer.
These include numeric data, character data (names, addresses, etc.), graphic data (charts, drawings,
photographs, etc.), and sound (music, speech patterns, etc.). The two most common types, from the
standpoint of a beginning programmer, are numeric data and character data. Scientific and technical
applications are concerned primarily with numeric data, whereas business applications usually require
processing of both numeric and character data.

To process a particular set of data, the computer must be given an appropriate set of instructions
called a program. These instructions are entered into the computer and then stored in a portion of the
computer’s memory.

A stored program can be executed at any time. This causes the following things to happen.

1. Asetof information, called the input data, will be entered into the computer (from the keyboard,
a floppy disk, etc.) and stored in a portion of the computer’s memory.

2. The input data will be processed‘to produce certain desired results, known as the output data.

3. The output data, and perhaps some of the input data, will be printed onto a sheet of paper or
displayed on a monitor (a television receiver specially designed to display computer output).

‘This three-step procedure can be repeated many times if desired, thus causing a large quantity-of data
to be processed in rapid sequence. It should be understood, however, that each of these steps,
particularly steps 2 and 3, can be lengthy and complicated.

Example 1.1

A computer has been programmed to calculate the area of a circle using the formula g = w2 given a numeric
value for the radius r as input data. The following steps are required.

1. Read the numeric value for the radius of the circle.

2. Calculate the value of the area using the above formula. This value will be stored, along with the input data,
in the computer’s memory.

3. Print (display) the values of the radius and the corresponding area.

Each of these steps will require one or more instructions in a computer program.

CHAP. 1] INTRODUCTORY CONCEPTS 3

The foregoing discussion illustrates two important characteristics of a digital computer: memory and
capability to be programmed. A third important characteristic is its speed and reliability. We will say more
about memory, speed, and reliability in the next few paragraphs. Programmability will be discussed at
length throughout the remainder of this book.

Memory

Every piece of information stored within the computer’s memory is encoded as some unique
combination of zeros and ones. These zeros and ones are called bits (binary digits). Each bit is
represented by an electronic device that is, in some sense, either "off* (zero) or "on" (one).

Small computers have memories that are organized into 8-bit multiples called bytes, as illustrated in
Figure 1.2. Notice that the individual bits are numbered, beginning with 0 (for the rightmost bit) and
extending to 7 (the leftmost bit). Normally, a single character (e.g., a letter, a single digit or a
punctuation symbol) will occupy one byte of memory. An instruction may occupy 1, 2 or 3 bytes. A
single numeric quantity may occupy 1 to 8 bytes, depending on its precision (i.e., the number of significant
figures) and its fype (integer, floating-point, etc.).

bitno. 7 6 5 4 3 2 1 0

TN
One byte
Fig. 1.2

The size of a computer’s memory is usually expressed as some multiple of 21 = 1024 bytes. This is
referred to as 1K. Small computers have memories whose sizes typically range from 64K to several
megabytes, where 1 megabyte (1M) is equivalent to 210x 210 = 1024K bytes.

Example 1.2

The memory of a small personal computer has a capacity of 256K bytes. Thus, as many as 256 x 1024 = 262,144
characters and/or instructions can be stored in the computer’s memory. If the entire memory is used to represent
character data (which is actually quite unlikely), then over 3200 names and addresses can be stored within the computer
at any one time, assuming 80 characters for each name and address.

If the memory is used to represent numeric data rather than names and addresses, then over 65,000 individual
numbers can be stored at any one time, assuming each numeric quantity requires 4 bytes of memory.

bitno. 31302928 27 26 2524 232221201918 171615141312 1110 9 8 7 6 5 4 3 2 1 0

—
One 32-bit word
Fig. 1.3

4 INTRODUCTORY CONCEPTS [CHAP. 1

Large computers have memories that are organized into words rather than bytes. Each word will
consist of a relatively large number of bits - typically 32 or 36. The bit-wise organization of a 32-bit
word is illustrated in Figure 1.3. Notice that the bits are numbered, beginning with 0 (for the right-most
bit) and extending to 31 (the left-most bit).

Figure 1.4 shows the same 32-bit word organized into 4 consecutive bytes. The bytes are numbered
in the same manner as the individual bits, ranging from 0 (for the right-most byte) to 3 (the left-most
byte).

bitno. 31 3029 28 2726 2524 232221201918 17161514 13121110 9 8 7 6 5 4 3 2 10

T L N /P — N — "
byte no. 3 byte no. 2 byte no. 1 byte no, 0
“ —~—— v
One 4-byte (32-bit) word
Fig. 14)

The use of a 32- or a 36-bit word permits one numeric quantity, or a small group of characters
(typically 4 or 5), to be represented within a single word of memory. Large computers commonly have
several million words (i.e., several megawords) of memory.

Example 1.3

The memory of a large computer has a capacity of 2M (2048K) words, which is equivalent to 2048 x 1024 =
2,097,152 words. If the entire memory is used to represent numeric data (which is unlikely), then more than 2 million
numbers can be stared within the computer at any one time, assuming each numeric quantity requires one word of
memory. .

If the memory is used to represent characters rather than numeric data, then about 8 million characters can be
stored at any one time, based upon 4 characters per word. This is more than enough memory to-store the contents. of
an entire book.

Most computers also employ auxiliary storage devices (€.g., magnetic tapes, disks, optical memory
devices) in addition to their primary memories. These devices typically range from 20 or 40 megabytes
for a small computer to several hundred megawords for a large computer. Moreover, they allow
information to be recorded permanently, since they can often be physically disconnected from the
computer and stored when not in use. However, the access time (i.c., the time required to store or
retrieve information) is considerably greater for these auxiliary devices than for the computer’s primary
memory.

Speed and Reliability

Because of its extremely high speed, a computer can carry out calculations within minutes that might
require many days, and. perhaps even months or years, if carried out by hand. For example, the end-of-
semester grades for all students in a [arge university can typically be processed in just a few minutesona
large computer.

The time required to carry out simple computational tasks, such as adding two numbers, is usually
expressed in terms of microseconds (1 usec = 1076 sec) or nanoseconds (1 nsec = 10-3 psec = 1079 sec).
Thus, if a computer can add two numbers in 10 nanoseconds (typical of a modern medium-speed
computer), 100 million (108) additions will be carried out in one second.

CHAP. 1] INTRODUCTORY CONCEPTS 5

This very high speed is accompanied by an equally high level of reliability. Thus, computers never
make mistakes of their own accord. Highly publicized "computer errors,” such as a person’s receiving a
tax refund of several million dollars, are the result of programming errors or data entry errors rather than
errors caused by the computer itself.

1.3 MODES OF OPERATION

There are two different ways that a large computer can be shared by many different users. These are
the batch mode and the interactive mode. Each has its own advantages for certain types of problems.

Batch Pracessing

In batch processing, a number of jobs are entered into the computer, stored internally, and then
processed sequentially. (A job refers to a computer program and its associated sets of input data.) After
the job is processed, the output, along with a listing of the computer program, is printed on multiple
sheets of paper by a high-speed printer. Typically, the user will pick up the printed output at some
convenient time, after the job has been processed.

In classical batch processing, the program and the data are recorded on punched cards. This
information is read into the computer by means of a mechanical card reader and then processed. In the
early days of computing all jobs were processed in this manner. Fortunately, this mode of operation is
now obsolete.

Modern batch processing is generally tied into a timesharing system (see below). Thus, the program
and the data are typed into the computer via a timesharing terminal or a personal computer acting as a
terminal. The information is then stored within the computer’s memory and processed in its proper
sequence. This form of batch processing is preferable to classical batch processing, since it eliminates the
need for punched cards and allows the input information (program and data) to be edited while it is
being entered.

Large quantities of information (both programs and data) can be transmitted into and out of the
computer very quickly in batch processing. Furthermore, the user need not be present while the job is
being processed. Therefore, this mode of operation is well-suited to jobs that require large amounts of
computer time or are physically lengthy. On the other hand, the total time required for a job to be
processed in this manner may vary from several minutes to several hours, even though the job may have
required only a second or two of actual computer time. (Each job must wait its turn before it can be read,
processed, and printed out.) Thus, batch processing is undesirable when processing small, simple jobs
that must be returned as quickly as possible (as, for example, when learning computer programming).

Timesharing

Timesharing allows many different users to use a single computer simultaneously. Generally, the
host computer is a mainframe or a large minicomputer. The various users communicate with the
computer through their own individual terminals. In a modern timesharing network, personal computers
are often used as timesharing terminals. Since the host computer operates much faster than a human
sitting at a terminal, one large computer can support many terminals at essentially the same time.
Therefore, each user will be unaware of the presence of any other users, and will seem to have the host
computer at his or her own disposal.

An individual timesharing terminal may be wired directly to the host computer, or it may be
connected to the computer over telephone lines, a microwave circuit, or even an earth satellite. Thus,
the terminal can be located far — perhaps hundreds of miles — from its host computer. Systems in
which personal computers are ‘connected to large mainframes over telephone lines are particularly

6 INTRODUCTORY CONCEPTS [CHAP. 1

common. Such systems make use of modems (i.e., modulator/demodulator devices) to convert the
digitized computer signals into analog telephone signals and vice versa. Through such an arrangement a
person working at home, on his or her own personal computer, can easily access a remote computer at
school or at the office.

Timesharing is best suited for processing relatively simple jobs that do not require extensive data
transmission or large amounts of computer time. Many applications that arise in schools and
commercial offices have these characteristics. Such applications can be processed quickly, easily, and at
minimum expense using timesharing.

Example 1.4

A major university has a computer timesharing capability consisting of 200 hard-wired timesharing terminals and
80 additional telephone connections. The timesharing terminals are located at various places around the campus and
are wired directly to a large mainframe computer. Each terminal is able to transmit information to or from the central
computer at a maximum speed of 960 characters per second.

The telephone connections allow students who are not on campus to connect their personal computers to the
central computer. Each personal computer can transmit data to or from the central computer at a maximum speed of
240 characters per second. Thus, all 280 terminals and personal computers can interact with the central computer at
the same time, though each student wilt be unaware that others are simultaneously sharing the computer.

Interactive Computing

Interactive computing is a type of computing environment that originated with commercial
timesharing systems and has been refined by the widespread use of personal computers. In an interactive
computing environment, the user and the computer interact with each other during the computational
session. Thus, the user may periodically be asked to provide certain information that will determine what
subsequent actions are to be taken by the computer and vice versa.

Example 1.5

A student wishes to use a personal computer to calculate the radius of a circle whose area has a value of 100. A
program is availabie that will calculate the area of a circle, given the radius. (Note that this is just the opposite of what
the student wishes to do.) This program isn’t exactly what is needed, but it does allow the student to obtain an answer
by trial and error. The procedure will be to guess a value for the radius and then calculate a corresponding area. This
trial-and-error procedure continues until the student has found a value for the radius that yields an area sufficiently
close to 100.

Once the program execution begins, the message

Radius = ?

is displayed. The student then enters a value for the radius. Let us assume that the student enters a value of 5 for the
radius. The computer will respond by displaying

Area = 78,5398
Do you wish to repeat the calculation?

The student then types either yes or no. If the student types yes, the message

CHAP. 1] INTRODUCTORY CONCEPTS 7

Radius = ?
again appears, and the entire procedure is repeated. If the student types no, the message
Goodbye

is displayed and the computation js terminated.

Shown below is a printed copy of the information displayed during a typical interactive session using the program
described above. In this session, an approximate value of r = 5.6 was determined after only three calculations. The
information typed by the student is underlined.

Radius = ? §
Area = 78.5398

Do you wish to repeat the calculation? yes

Radius = ? 6
Area = 113,097

Do you wish to repeat the calculation? yes

Radius = ? 5.6
Area = 98,5204

Do you wish to repeat the calculation? no
Goodbye

Notice the manner in which the student and the computer appear to be conversing with one another. Also, note
that the student waits until he or she sees the calculated value of the area before deciding whether or not to carry out
another caiculation. If another calculation is initiated, the new value for the radius supplied by the student wilt depend
on the previously calculated results.

Programs designed for interactive computing environments are sometimes said to be conversational
in nature. Computerized games are excellent examples of such interactive applications. This includes
fast-action, graphical arcade games, even though the user’s responses may be reflexive rather than
numeric or verbal.

1.4 TYPES OF PROGRAMMING LANGUAGES

Many different languages can be used to program a computer. The most basic of these is machine
language — a collection of very detailed, cryptic instructions that control the computer’s internal
circuitry. This is the natural dialect of the computer. Very few computer programs are actually written
in machine language, however, for two significant reasons: first, because machine language is very,
cumbersome to work with; and second, because every different type of computer has its own unique
instruction set. Thus, a machine-language program written for one type of computer cannot be run on a
different type of computer without significant alterations.

Usually, a computer program will be written in some high-level language, whose instruction set is
more compatible with human languages and human thought processes. Most of these are general-purpose
languages such as BASIC, C, Pascal and Fortran. There are also various special-purpose languages whose
instruction sets are specifically designed for some particular type of application. Some common

8 INTRODUCTORY CONCEPTS [CHAP. 1

examples are LISP, a list-processing language that is widely used for artificial intelligence applications,
and CSMP and SIMAN, two different types of special-purpose simulation languages.

As a rule, a single instruction in a high-level language will be equivalent to several instructions in
machine language. This greatly simplifies the task of writing complete, correct programs. Furthermore,
the rules for programming in a particular high-level language are much the same for all computers, so
that a program written for one computer can generally be run on many different computers with little or
no alteration. Thus, we see that a high-level language offers three significant advantages over machine
language: simplicity, uniformity and portability (i.e., machine independence).

A program that is written in a high-level language must, however, be translated into machine
language before it can be executed. This is known as compilation or interpretation, depending on how it is
carried out. (Compilers translate the entire program into machine language before executing any of the
instructions. Interpreters, on the other hand, proceed through a program by translating and then
executing single instructions or small groups of instructions.) In either case, the translation is carried out
automatically within the computer. In fact, inexperienced programmers may not even be aware that this
process is taking place, since they typically see only their original high-level program, the input data, and
the calculated results. Most implementations of BASIC operate as interpreters, though compilers are
becoming increasingly common.

A compiler or interpreter is itself a computer program. It accepts a program written in a high-level
language (e.g., BASIC) as input, and generates a corresponding machine-language program as output.
The original high-level program is called the source program, and the resulting machine-language
program is called the object program. Every computer must have its own compiler or interpreter for a
particular high-level language.

It is generally more convenient to develop a new program using an interpreter rather than a
compiler. Once an error-free program has been developed, however, a compiled version will normally
execute much faster than an interpreted version. The reasons for this are beyond the scope of our
present discussion.

1.5 INTRODUCTION TO BASIC

BASIC is a general-purpose, easy-to-use programming language. Its instructions consist of terms
that resemble algebraic expressions, augmented by certain English keywords such as IF, THEN, FOR,
DO, SELECT, INPUT, and PRINT. Other high-level languages have similar features, though they tend
to be more complicated 1o use. Hence, BASIC is particularly well-suited for persons learning to program
for the first time. In fact, most high schools and many junior high schools now provide instruction in
BASIC programming.

The use of BASIC is by no means restricted, however, 10 elementary programming exercises. It is
often used for more advanced applications in business, science, engineering and mathematics. Moreover,
BASIC is the principal language that is used with personal computers (PCs). Thus, BASIC is used for
many novel applications, such as computer games that require the use of graphics and sound
enhancements. We will see a representative sampling of these different types of programming
applications in the examples included within this book.

. History of BASIC

BASIC was originally developed in 1964 at Dartmouth College by John Kemeny and Thomas Kurtz.
At that time all computing was carried out on mainframe computers using batch processing. Fortran,
Algol and COBOL were the standard programming languages. The original BASIC was much easier to
use than any of these languages, however, and it could be run interactively in a timesharing environment,
Thus, BASIC provided a radical improvement in the way computing was carried out at that time.

