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Preface

Mathematical sciences are contributing more and more to advances in life
science research, a trend that will grow in the future.

Realizing that the mathematical sciences can be critical to many areas
of biomedical imaging, we organized a three-day minicourse on mathemati-
cal modelling in biomedical imaging at the Institute Henri Poincaré in Paris
in March 2007. Prominent mathematicians and biomedical researchers were
paired to review the state-of-the-art in the subject area and to share mathe-
matical insights regarding future research directions in this growing discipline.

The speakers gave presentations on hot topics including electromagnetic
brain activity, time-reversal techniques, elasticity imaging, infrared thermal
tomography, acoustic radiation force imaging, electrical impedance and mag-
netic resonance electrical impedance tomographies. Indeed, they contributed
to this volume with original chapters to give a wider audience the benefit of
their talks and their thoughts on the field.

This volume is devoted to providing an exposition of the promising an-
alytical and numerical techniques for solving important biomedical imaging
problems and to piquing interest in some of the most challenging issues. We
hope that it will stimulate much needed progress in the directions that were
described during the course. The biomedical imaging problems addressed in
this volume trigger the investigation of interesting and difficult problems in
various branches of mathematics including partial differential equations, har-
monic analysis, complex analysis, numerical analysis, optimization, image
analysis, and signal theory.

The partial support offered by the ANR project EchoScan (AN-06-
Blan-0089) is acknowledged. We also thank the staff at the Institute
Henri Poincaré.

Paris Habib Ammari
March 2009
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Introduction

Medical imaging modalities such as computerized tomography using X-ray
and magnetic resonance imaging have been well established providing three-
dimensional high-resolution images of anatomical structures inside the human
body. Computer-based mathematical methods have played an essential role
for their image reconstructions. However, since each imaging modality has its
own limitations, there have been much research efforts to expand our ability
to see through the human body in different ways. Lately, biomedical imaging
research has been dealing with new imaging techniques to provide knowledge
of physiologic functions and pathological conditions in addition to structural
information.

Electrical impedance tomography, ultrasound imaging, and electrical and
magnetic source imaging are three of such attempts for functional imaging
and monitoring of physiological events.

The aim of this book is to review the most recent advances in the math-
ematical and numerical modelling of these three emerging modalities. Al-
though they use different physical principles for signal generation and de-
tection, the underlying mathematics are quite similar. We put a specific
emphasis on the mathematical concepts and tools for image reconstruction.
Other promising modalities such as photo-acoustic imaging and fluorescence
microscopy as well as those in nuclear medicine will be discussed in a forth-
coming volume.

Electrical impedance tomography uses low-frequency electrical current to
probe a body; the method is sensitive to changes in electrical conductivity.
By injecting known amounts of current and measuring the resulting electri-
cal potential field at points on the boundary of the body, it is possible to
invert such data to determine the conductivity or resistivity of the region of
the body probed by the currents. This method can also be used in principle
to image changes in dielectric constant at higher frequencies. However, the
aspect of the method that is most fully developed to date is the imaging of
conductivity. Potential applications of electrical impedance tomography in-
clude determination of cardiac output, monitoring for pulmonary edema, and
screening for breast cancer.

xiii



xiv Introduction

Electrical source imaging is an emerging technique for reconstructing brain
electrical activity from electrical potentials measured away from the brain.
The concept of electrical source imaging is to improve on electroencephalog-
raphy by determining the locations of sources of current in the body from
measurements of voltages.

Ton currents arising in the neurons of the brain produce magnetic fields
outside the body that can be measured by arrays of superconducting quan-
tum interference device detectors placed near the chest; the recording of
these magnetic fields is known as magnetoencephalography. Magnetic source
imaging is the reconstruction of the current sources in the brain from these
recorded magnetic fields. These fields result from the synchronous activity of
tens or hundreds of thousands of neurons.

Both magnetic source imaging and electrical source imaging seek to deter-
mine the location, orientation, and magnitude of current sources within the
body.

Ultrasound imaging is a noninvasive, easily portable, and relatively inex-
pensive diagnostic modality which finds extensive use in the clinic. The major
clinical applications of ultrasound include many aspects of obstetrics and gy-
necology involving the assessment of fetal health, intra-abdominal imaging of
the liver, kidney, and the detection of compromised blood flow in veins and
arteries.

Operating typically at frequencies between 1 and 10 MHz, ultrasound
imaging produces images via the backscattering of mechanical energy from in-
terfaces between tissues and small structures within tissue. It has high spatial
resolution, particularly at high frequencies, and involves no ionizing radiation.
The weakness of the technique include the relatively poor soft-tissue contrast
and the fact that gas and bone impede the passage of ultrasound waves,
meaning that certain organs can not easily be imaged.

As we said before, in this book not only the basic mathematical princi-
ples of these three emerging modalities are reviewed but also the most recent
developments to improve them are reported. We emphasize the mathemat-
ical concepts and tools for image reconstruction. Our main focuses are, on
one side, on promising anomaly detection techniques in electrical impedance
tomography and in elastic imaging using the method of small-volume expan-
sions and in ultrasound imaging using time-reversal techniques, and on the
other side, on emerging multi-physics or hybrid imaging approaches such as
the magnetic resonance electrical impedance, impediography, and magnetic
resonance elastography.

The book is organized as follows. Chapter 1 is devoted to electrical
impedance tomography and magnetic resonance electrical impedance tomog-
raphy. It focuses on robust reconstructions of conductivity images under
practical environments having various technical limitations of data col-
lection equipments and fundamental limitations originating from its in-
herent ill-posed nature. The mathematical formulation of the magnetic
resonance electrical impedance tomography and multi-frequencies electrical
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impedance tomography are rigorously described. Efficient image reconstruc-
tion algorithms are provided and their limitations are discussed.

Chapter 2 outlines the basic physical principles of time-reversal techniques
and their applications in ultrasound imaging. It gives a good introduction to
this very interesting subject.

Chapter 3 covers the method of small-volume expansions. A remarkable
feature of the method of small-volume expansions is that it allows a sta-
ble and accurate reconstruction of the location and of geometric features of
the anomalies, even for moderately noisy data. Based on this method robust
and efficient algorithms for imaging small thermal conductivity, electromag-
netic, and elastic anomalies are provided. Emerging multi-physics or hybrid
imaging approaches, namely impediography, magneto-acoustic imaging, and
magnetic resonance elastography are also discussed. In these techniques, dif-
ferent physical types of radiation are combined into one tomographic process
to alleviate deficiencies of each separate type of waves, while combining their
strengths. Finally, a mathematical formulation of the concept of time revers-
ing waves is provided and its use in imaging is described.

Chapter 4 deals with electrical and magnetic source imaging reconstruction
methods for focal brain activity. Mathematical formulations and uniqueness
and non-uniqueness results for the inversion source problems are given. The
basic mathematical model is described by the Biot—Savart law of magnetism,
which makes the mathematical difficulties for solving the inverse source
problem very similar to those in magnetic resonance electrical impedance
tomography discussed in Chap. 1.

Chapter 5 considers time-resolved imaging of brain activity. It discusses
optical flow techniques in order to infer on the stability of brain activity.



Contents

1 Multi-frequency Electrical Impedance
Tomography and Magnetic Resonance

Electrical Impedance Tomography .....................ooaian. 1
Jin Keun Seo and Eung Je Woo
1.l Introductions ... seemmsmessmmssssss e isssaaisssssssssssamums 1
1.2 Electrical Impedance Tomography ..............cccoviiiii.n. 6
1.2.1  Inverse Problem in RC-Circuit ................cooonn... 6
1.2.2  Governing Equation in EIT ............................ 8
1.2.3  EIT System and Measured Data Set .................. 12
1.2.4  The Standard Reconstruction Method:
4-Channel EIT System..........coooiviiiiiiiiiiiia. .. 15

1.2.5 Boundary Geometry Effect and Rough
Analysis of Relation Between Conductivity

and Potential ............ ... 21
1.2.6  Frequency-Difference EIT........................... iies 20
1.3 Trans-Admittance Scanner for Breast Cancer Detection ...... 30
1.3.1 Review on Lesion Estimation Using EIT .............. 30
1.3.2  Trans-Admittance Scanner ....................ooooeeen. 38
1.4 Magnetic Resonance Electrical Impedance Tomography ...... 44
1.4.1 Fundamentals in MREIT ... 45
1.4.2  Mathematical Framework of MREIT .................. 55
1.4.3  Other Algorithms .........cccoovviiiiiiiiiiiiiin . 64
1.4.4  Challenges in MREIT and Open Problems
~ for Its Achievable Spatial Resolution .................. 67
References. . .. ..o 68

2 Time Reversing Waves for Biomedical

APPLCationS ........oiiii e 73
Mickael Tanter and Mathias Fink

2.1 INtroduetion: ss::ioisssa3 03505 siaesamismassinmsssisssisissisisasss 73
2.2 Time Reversal of Acoustic Waves: Basic Principles............ 74
2.3 Time Reversal Cavities and Time Reversal Mirrors ........... 76



Contents

2.4  Time Reversal Is a Spatial and Temporal Matched

Filter of Wave Propagation ...........................cooooaa.. 79
2.5 Iterating the Time Reversal Process ............................ 82
2.6 Applications of Time Reversal.....................oooviiin.. .. 84
2.6.1 Real Time Tracking and Destruction of
Kidney Stones Using Time Reversal ................... 84
2.6.2  Time Reversal and Temporal Pulse Compression... .. 87
2.6.3 Transcranial Focusing Using Time
Reversal for Brain Tumours Therapy .................. 90
References. . ... ..o 96

The Method of Small-Volume Expansions

for Medical Imaging ... 99
Habib Ammari and Hyeonbae Kang
3.1 Introduction. ....... .ot 99
3.2  Conductivity Problem.........cooooiiiiiiiiiiiiiiiiiiiiiannn.. 102
3.3 Wave EQUATION! o« coosis 00 swmmpasmmeenss s gos 50555585 ssas8ssasasnn 105
34 Heat EQuation ..:.::c:xscassssmmvmmsoronaisssraesseiassdsnssssssus 107
3.5 Modified Stokes SyStem ..........oviiiiiiniiiiiii i 109
3.6 Electrical Impedance Imaging ..., 112
3.6.1  Detection of a Single Anomaly:
A Projection-Type Algorithm .......................... 113
3.6.2  Detection of Multiple Anomalies:
A MUSIC-Type Algorithm ............................. 114
3.7 Impediography ........oouuiiiii 115
3.71 A Mathematical Model ......csmssmsmnvssiiosisiesiiszas 115
3.7.2 A Substitution Algorithm ........................ ... 117
3.8 Magneto-Acoustic Imaging .............ccooviiiiiiiiiiiiiiaa., 118
3.9 Magnetic Resonance Elastography .............................. 121
3.10 Imaging by the Acoustic Radiation Force ...................... 122
3.11 Infrared Thermal Imaging .............oooooiiiiiiiiiiiai.. 124
3.11.1 Detection of a Single Anomaly ......................... 125
3.11.2 Detection of Multiple Anomalies:
A MUSIC-Type Algorithm ..., 126
3.12 Bibliography and Concluding Remarks ......................... 128
RETOrenCes venenammsnssvssssssesnssss s ismsusossnsassmsmses sisases sisesies 129

Electric and Magnetic Activity of the Brain

in Spherical and Ellipsoidal Geometry ........................... 133
George Dassios

4.1 IntrOduCtION c5aesvvs 55755 5555555450000 R BRI SIS 5o on 855 e 133
4.2 Mathematical Formulation....................oooiii.. 136
4.3 The Spherical Brain Model ..................cooooiiiiiin.. .. 141
44 Elements of Ellipsoidal Harmonics .............................. 149

4.5  EEG in Ellipsoidal Geometry .......ccoveiviiiiiiiiaianainnnnnn, 161



Contents xi

4.6  MEG in Ellipsoidal Geometry ... 169
4.7 The Inverse MEG Problem ............coooiiiiiiiiiiiiiiii.. 188
4.8 Open Mathematical Questions ..........c.oooeiiiiiiiiiiiann... 199
ReferenCes . .. ottt e 200

5 Estimation of Velocity Fields and Propagation
on Non-Euclidian Domains: Application
to the Exploration of Cortical

Spatiotemporal Dynamics ... 203
Julien Lefevre and Sylvain Baillet
5.1  Motivation: Time-Resolved Brain Imaging ..................... 203
5.2 Velocity Fields and Transport on Riemannian Surfaces....... 204
5.2.1  Vector Fields in Differential Geometry ................ 205
5.2.2  Optical Flow on a Riemannian Manifold .............. 207
5.2.3 Regularization .. .. sssesmmmmvasssivessssisvsssasssssms 207
5.2.4  Variational Formulation ...............c..ccoiiiiieian.. 208
5.2.5  Vectorial Heat Equation ..................... ..o 210
5.2.6  Advection on Surfaces ............ccooiiiiiiiiiiiiii 211
5.3 Discretization with the Finite Element Method................ 212
5.3.1 Optical Flow Equation.................c.ocooiiiiiint. 213
5.3.2  Pure Advection Equation............................ 215
5.3.3  Vectorial Diffusion................coooiiiiiiiiii 216
5.4 SIMULALIONS . . ottt 216
5.4.1  Definition of Simple Vector Fields ..................... 216
5.4.2  Evaluation of the Advection Process .................. 217
5.4.3  Evaluation of the Optical Flow......................... 219
5.9 Application to Time-Resolved Brain Imaging .................. 222
5.6 COnNCIUSION ...ttt it e 224
ReTOreICeS s oo vvrssivsissessssinnssnamsmaamssmemmng aissssioasessssissss s 224



Chapter 1

Multi-frequency Electrical Impedance
Tomography and Magnetic Resonance
Electrical Impedance Tomography

Jin Keun Seo and Eung Je Woo

1.1 Introduction

Medical imaging modalities such as computerized tomography (CT) using
X-ray and magnetic resonance imaging (MRI) have been well established
providing three-dimensional high-resolution images of anatomical structures
inside the human body and computer-based mathematical methods have
played an essential role for their image reconstructions. However, since each
imaging modality has its own limitations, there have been much research
efforts to expand our ability to see through the human body in different
ways. Lately, biomedical imaging research has been dealing with new imag-
ing techniques to provide knowledge of physiologic functions and pathological
conditions in addition to structural information. Electrical impedance tomog-
raphy (EIT) is one of such attempts for functional imaging and monitoring
of physiological events.

EIT is based on numerous experimental findings that different biological
tissues inside the human body have different electrical properties of conduc-
tivity and permittivity. Viewing the human body as a mixture of distributed
resistors and capacitors, we can evaluate its internal electrical properties
by injecting a sinusoidal current between a pair of surface electrodes and
measuring voltage drops at different positions on the surface. EIT is based
on this bioimpedance measurement technique using multiple surface elec-
trodes as many as 8 to 256. See Figs. 1.1a and 1.2. In EIT, we inject linearly
independent patterns of sinusoidal currents through all or chosen pairs of elec-
trodes and measure induced boundary voltages on all or selected electrodes.

J.K. Seo (=)

Department of Mathematics, Yonsei University, 262 Seongsanno, Seodaemun,
Seoul 120-749, Korea

e-mail: seoj@yonsei.ac.kr

E. Je Woo
College of Electronics and Information, Kyung Hee University, Seoul 130-701, Korea
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H. Ammari, Mathematical Modeling in Biomedical Imaging I, 1
Lecture Notes in Mathematics 1983, DOI 10.1007/978-3-642-03444-2_1,
(© Springer-Verlag Berlin Heidelberg 2009



2 J.K. Seo and E. Je Woo

+ —
1V
EIT System r
(Current sources Q
and voltmeters)
/ ¥

Fig. 1.1 (a) EIT system and (b) TAS system

Fig. 1.2 EIT system at Impedance Imaging Research Center (IIRC) in Korea

The measured boundary current—voltage data set is used to reconstruct
cross-sectional images of the internal conductivity and/or permittivity dis-
tribution. The basic idea of the impedance imaging was introduced by
Henderson and Webster in 1978 [13], and the first clinical application of
a medical EIT system was described by Barber and Brown [7]. Since then,
EIT has received considerable attention and several review papers described
numerous aspects of the EIT technique (8,10, 14, 36,49, 62]. To support the
theoretical basis of the EIT system, mathematical theories such as unique-
ness and stability were developed (2,6, 16,19, 25, 29, 38, 39, 48, 52, 57-59, 61]
since Calderén’s pioneering contribution in 1980 [9)].

Most EIT imaging methods use a forward model of an imaging object with
a presumed conductivity and permittivity distributions. Injecting the same
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currents into the model, boundary voltages are computed to numerically sim-
ulate measured data. Using differences between measured and computed (or
referenced) current-to-voltage data, we produce EIT images through a mis-
fit minimization process. However, the inverse problem in EIT has suffered
from its ill-posed characteristic due to the inherent insensitivity of bound-
ary measurements to any changes of interior conductivity and permittivity
values.

In practice, it is very difficult to construct an accurate forward model of
the imaging object due to technical difficulties in capturing the boundary
shape and electrode positions with a reasonable accuracy and cost. There-
fore, there always exist uncertainties in these geometrical data needed for the
model and this causes systematic errors between measured and computed
voltages without considering mismatch in the true and model conductivity
and permittivity distributions. The ill-posedness of EIT together with these
systematic artifacts related with inaccurate boundary geometry and electrode
positions make it difficult to reconstruct accurate images with a high spatial
resolution in clinical environments. Primarily due to the poor spatial resolu-
tion and accuracy of EIT images, its practical applicability has been limited
in clinical applications. Taking account of these restrictions, it is desirable
for EIT to find clinical applications where its portability and high temporal
resolution to monitor changes in electrical properties are significant merits.

Magnetic resonance electrical impedance tomography (MREIT) was
motivated to deal with the well-known severe ill-posedness of the image
reconstruction problem in EIT. In MREIT, we inject current / (Neumann
data) into an object {2 through a pair of surface electrodes to produce internal
current density J = (J;, Jy, J;) and magnetic flux density B = (B,, By, B:)
in §2. The distribution of the induced magnetic flux density B is governed
by the Ampere law J = LV x B where 0 is the magnetic permeability of
the free space. Let z be the direction of the main magnetic field of an MRI
scanner. Then, the B, data can be measured by using an MRI scanner as
illustrated in Fig. 1.3. MREIT takes advantage of the MRI scanner as a tool
to capture the z-component B, of the induced magnetic flux density in (2.
Conductivity imaging in MREIT is based on the relationship between the
injection current I and the measured B, data which conveys the information
about any local change of the conductivity o via the Biot—Savart law:

e \Ou (I (o a1 O (1
Bz(flf,y,Z):Z—;/Qa(r)[(x x)alyr(i)r,|3(y ¥)5: () dr', r=(z,y,2) €N

where u is the induced electrical potential due to the injection current. This
supplementary use of the internal B, data enables MREIT to bypass the
ill-posedness problem in EIT.

The technique to measure the internal magnetic flux density B using an
MRI scanner was originally developed for magnetic resonance current den-
sity imaging (MRCDI) in late 1980s [17]. In MRCDI, we have to rotate the
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Fig. 1.3 MREIT system at Impedance Imaging Research Center (IIRC) in Korea and its
image reconstruction software

object in three orthogonal directions to obtain all three components of B
since the MRI system can measure only the component of B that is parallel
to the direction of its main magnetic field (usually denoted as the z-direction).
Once we get all three components of B, we can visualize the internal current
density distribution J via the Ampere law J = iv x B [50,51]. This MR-
CDI provided a strong motivation of MREIT which combines EIT and MRI
techniques [15,30,63, 65].

In order for MREIT to be practical, it is obvious that we must be able to
produce images of the internal conductivity distribution without rotating the
object. This means that the z-component B, of B is the only available data.
The first constructive B,-based MREIT algorithm called the harmonic B,
algorithm was proposed by Seo et al. in 2001 [56]. It is based on the following
curl of the Ampere law:

L AB, =¥, (_“, 3)vu> (1.1)

o 0 00

where (-,-) denotes the inner product and A is the Laplacian. After the
harmonic B,-algorithm, various image reconstruction algorithms based on
the B.-based MREIT model have been developed [41,42,44,45,54,55]. Re-
cent published numerical simulations and phantom experiments show that
conductivity images with a high spatial resolution are achievable as long as
the measured B, data has an enough signal-to-noise ratio (SNR).

Although imaging techniques in MREIT have been advanced rapidly, rig-
orous mathematical theories of the numerical algorithms such as stability
and convergence have not been supported yet. Theoretical as well as exper-
imental studies in MREIT are essential for the progress of the technique. In
this lecture note, we explains recent results on the convergence behavior and



1 MFEIT and MREIT 5

numerical stability of the harmonic B, algorithm based on a mathematical
model replicating the actual MREIT system [34, 35]. Before clinical appli-
cations of MREIT, it is necessary to study how errors in the raw data are
propagated to the final result of the conductivity imaging. Hence, it is highly
necessary to set up an actual mathematical model for MREIT describing the
accurate relationship among input current, B, data and conductivity distri-
bution. For the real MREIT model, boundary conditions are different from
conventional styles in PDE and great care is required in using non-standard
boundary conditions. The disadvantages of MREIT over EIT may include the
lack of portability, potentially long imaging time and requirement of an ex-
pensive MRI scanner. Hence, EIT still has various advantages over MREIT
although we should not expect EIT to compete with MREIT in terms of
spatial resolution.

Lately, a frequency-difference electrical impedance tomography (fdEIT)
has been proposed to deal with technical difficulties of the conventional static
EIT imaging caused by unknown boundary geometry, uncertainty in electrode
position and other systematic measurement artifacts [21, 33, 43]. Conduc-
tivity (o) and permittivity (e) spectra of numerous biological tissues show
frequency-dependent changes indicating that we can view a complex conduc-
tivity (o +ie) distribution inside an imaging object as a function of frequency.
In fdEIT, we inject currents with at least two different frequencies and use
the difference between induced boundary voltages at different frequencies
to eliminate unknown common modelling errors. To test its feasibility, we
consider anomaly detection problems where an explicit representation for-
mula for the potential is available. The formula provides a clear connection
between its Cauchy data and the anomaly [3,29]. As an example of such
an anomaly detection problem, let us consider the breast cancer detection
problem. In this case, the inverse problem is reduced to detect a suspicious
abnormality (instead of imaging) underneath the breast skin from measured
boundary data. Figure 1.1b depicts trans-admittance scanner (TAS) which
is a device for breast cancer diagnosis. Most of anomaly detection methods
used a difference between measured data and reference data in the absence
of anomaly. However, in practice, the reference data is not available and its
computation is not possible since the inhomogeneous complex conductivity of
the background is unknown. To deal with this problem, multi-frequency TAS
system has been proposed where a frequency difference of measured data sets
at a certain moment is used for anomaly detection [43].

This lecture note focuses on robust reconstructions of conductivity images
under practical environments having various technical limitations of data col-
lection equipments and fundamental limitations originating from its inherent
nature. We describe the mathematical formulation of MREIT and multi-
frequency EIT in clinical environments, image reconstruction algorithms,
measurement techniques and examples of images.
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1.2 Electrical Impedance Tomography

1.2.1 Inverse Problem in RC-Circuit

The human body can be viewed as a mixture of distributed resistors and
capacitors and a circuit model containing resistors and capacitors can be used
to explain the one-dimensional EIT problem. Let us begin with considering
a simple RC-circuit. Electrical impedance, denoted by Z, is a measure of
the total opposition of a circuit to a time-varying electrical current flow. It
comprises resistance and reactance taking account of the effects from resistors
and capacitors, respectively. :

Consider a linear circuit containing a resistor, capacitor and sinusoidally
time-varying current source connected in series. If the current source in the
circuit is given by I(t) = Ipcos(wt) where Iy is the amplitude and w is the
angular frequency, then the resulting voltage V (¢) is also sinusoidal with the
same angular frequency w. The relation between I(t) and V' (t) is governed by

RI(t) + é / I(t)dt = V(©) (1.2)

where R is the resistance and C' is the capacitance. The voltage can be ex-
pressed as

V(t) := Rlycos(wt) + (j—g, sin(wt) = Vp cos(wt — ¢)

where Vp = (RIO)2 4 (“{—QC—)2 is the amplitude and ¢ is the phase angle

such that tan¢ = ﬁ and 0 < ¢ < 7. In order to see the interrelation
among the impedance Z := R+ ﬁ, voltage and current, it is convenient to
express sinusoidally time-varying functions /(¢) and V() in terms of time-

independent phasors I and V such as
I(t) =R{Ie*'} and V(&) = R{Ve™}
where I = Iy and V = Vye**. The phasor V, corresponding to the time

function V'(¢), contains the amplitude |V| = Vi and phase arg(V) = ¢. With
the use of phasors I and V, (1.2) can be expressed as

1 & i
=z || F wt __ wi
[R + iwC] € Ve

or simply

1 .
|:R -+ iwC] Iy = Vpe 2. (1.3)



