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Preface

“Surfaces in Computer Aided Geometric Design” is an emerging field with interesting
research problems and important applications. This subject draws on many different topics
from Mathematics through Computer Science and Engineering. During the week of 12-16
November 1984 the Second International Symposium on “Surfaces in CAGD” was held at the
Mathematics Institute, Oberwolfach, F.R. Germany. Some 40 speakers and 60 participants were
selected from a large group of interested people to emphasize both breadth and depth of topics.
Thus the participants came from universities, government and industrial laboratories and
represented both theoretical and practical views of the subject. The chairmen of the meeting
were R.E. Barnhill (Salt Lake City), W. Boehm (Braunschweig), and J. Hoschek (Darmstadt).

The spirit of the Oberwolfach meetings, to discuss current, ongoing research, is reflected in
this Volume. Several of the papers herein are “Progress Reports” reflecting the current state of
ongoing topics. This informality led to stimulating discussions.

The term “Computer Aided Geometric Design” was invented by R.E. Barnhill and R.F.
Riesenfeld in 1974 to describe the more mathematical aspects of Computer Aided Design, an
engineering discipline dedicated to the automation of design processes. The term “Surfaces in
Computer Aided Geometric Design” was used by R.E. Barnhill, W. Boehm, and G. Farin in
1981 to describe the emerging emphasis on the more complex topic of surfaces, as distinct from
curves. (Curves are still useful, too, of course.) The First International Symposium on Surfaces
in CAGD, chaired by W. Boehm and J. Hoschek, was held at Oberwolfach in April, 1982 and
the Proceedings were edited by R.E. Barnhill and W. Boehm and published by North-Holland.

The present Volume can be described in terms of research topics as follows: a survey by
Barnhill is followed by five papers on approximations defined over triangles by Farin,
Sablonniere, Chang et al., Gregory, and Sederberg. (Most of these papers use Bernstein—Bézier
representations.) The next topic is bivariate B-splines with papers by Boehm, Prautzsch, and
Dahmen et al. Two papers on general bivariate surfaces by Franke and Hoschek are followed
by a paper on rectangular Coons patches by Worsey, which is followed by six papers on tensor
product surfaces by Fritsch et al., Nowacki et al., Lyche et al., Boechm, Lasser, and Piegl.
Properties and applications of surfaces are discussed in the eight papers by Brunet, Pratt,
Dokken, Strasser et al., Houghton et al., Stead et al., Rabien, and Grieger. Two papers on
curves by Hagen and Schumaker et al. conclude the Volume.

We would like to thank the participants for their many useful contributions to the success of
the meeting and the subsequent papers. We also thank the Referees, who have improved many
of the papers which appear here. Finally, we are grateful to Prof. Dr. Martin Barner, Director of
the Mathematics Research Institute, for the opportunity of holding our research symposium at
Oberwolfach.

We expect to hold the next conference on Surfaces in CAGD in February 8-14, 1987 at
Oberwolfach and we look forward with anticipation to discussing new advances in this rapidly
developing subject.

Robert E. BARNHILL
Wolfgang BOEHM

0167-8396,/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)
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Surfaces in computer aided geometric
design: A survey with new results

R.E. BARNHILL

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, U.S.A.
Presented at Oberwolfach 12 November 1984

Abstract. ‘Surfaces in Computer Aided Geometric Design’ focuses on the representation and design of surfaces
in a computer graphics environment. This new area has the dual attractions of interesting research problems and
important applications. The subject can be approached from two points of view: The design of surfaces which
includes the interactive modification of geometric information and the representation of surfaces for which the
geometric information is relatively fixed. Design takes place in 3-space whereas representation can be higher
dimensional. ‘Surfaces in CAGD’ can be traced from its inception in rectangular Coons patches and Bezier
patches to triangular patches which are current research topics. Triangular patches can interpolate and
approximate to arbitrarily located data and require the preprocessing steps of triangulation and derivative
estimation. New contouring methods have been found using these triangular patches. Finally, multidimensional
interpolation schemes have been based on tetrahedral interpolants and are illustrated by surfaces in 4-space by
means of color computer graphics.

Keywords. Surfaces, interpolation, approximation, design of surfaces, representation of surfaces, Coons patches,
Bézier patches, triangular patches, contouring, multidimensional surfaces, computer graphics.
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Preface

This article is a survey of an emerging subject, ‘Surfaces in Computer Aided Geometric
Design’. The purpose of this article is to present some of the fundamental concepts of our
subject and to provide pointers to other work, enabling the reader to pursue the subject further.
(In our subject many of the results are very new and others are ‘folklore’, making scholarly

study difficult.)

0167-8396,/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)



2 R.E. Barnhill / Surfaces in CAGD: A survey
Introduction and history
Significance of surfaces in CAGD

Most scientific representation of information requires approximations at some level. The
approximation might occur at the level of equations that model the physical reality, or at the
level of the numerical solution of these equations.

As in any science, for creating surfaces one has some quantitative data (such as scientific
measurements) and some qualititative information (such as intuition of a ‘good’ shape). The
quantitative data can be thought of as ‘hard’ data such as given positions and tangents. The
qualitative data may be thought of as ‘soft’ information such as the desired shape. The
philosophy for the construction of surfaces can be either interpolation or approximation.
Interpolation means that one matches the given data exactly and approximation, a more general
term, means one nearly matches the data. This dichotomy is discussed at some length in P.J.
Davis’ book [Davis ’75].

Interpolation and approximation

At the most general level the tools employed to create surfaces include differential geometry,
numerical analysis and computer graphics. Differential geometry is used to define surfaces. The
spirit of numerical analysis is used to define surface interpolation methods to display surface
forms efficiently by means of computer graphics [Barnhill ’83b]. Computer graphics itself is an
important research area which has undergone much growth in the past few years [Newman,
Sproull ’79; Foley, Van Dam ’82]. Computer graphics illustrations play a central role in
understanding and evaluating surfaces. A graphical capability that is tailored to surface schemes
makes possible an immediate presentation of results with minimal interaction by the user. This
wedding of mathematics and technology makes the subject more useful and more difficult.

History: Surfaces in Computer Aided Geometric Design

The representation and approximation of surfaces in a computer graphics environment may
be considered to have been launched by two pioneers: S.A. Coons and P. Bézier. Coons’
surfaces [Coons *64] and Bézier’s' surfaces [Bézier 66, '67] each consist of a network of
‘patches’ which have a rectilinear topology. Coons’ patches match exactly certain information
(namely, whole curves of data). Bézier’s surface methods have the different flavor that some
data are matched exactly and the rest are approximated. Thus Coons’ patches are a form of
interpolation and Bézier’s patches are a form of approximation which corresponds at a high
level to Davis’ dichotomy of interpolation and approximation. Specifically, Coons’ ‘blending
functions’ are the basis functions for Hermite interpolation and Bézier’s blending functions are
the basis functions for Bernstein approximation. [Barnhill ’82] briefly surveys Coons patches
and [Barnhill ’85] and [Farin *85b] are preparing extensive surveys of Coons and Bezier patches,
respectively.

Both Coons and Bézier were working in engineering environments when they discovered their
patch methods. In order for mathematicians to analyze their methods, the underlying structures
of the methods had to be recognized. As we shall see, their basic methods have been generalized
and improved in various ways.

! Bézier and de Casteljau [de Casteljau '59, '63] independently developed equivalent curve and surface schemes now
known only under Bézier’s name.
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W.J. Gordon [Gordon ’69a] discovered that Coons patches have the powerful underlying
algebraic structure of forming distributive lattices. Gordon described Coons’ patches as Boolean
sums of lower-dimensional ‘projectors’ which were themselves interpolants to lower-dimen-
sional information.

At about the same time ‘Gordon surfaces’ [Gordon ’69b, ’69c] consisting of a network of
patches were created. Gordon surfaces blend together a given rectilinear network of curves. The
blending can be achieved, for example, with univariate Lagrange interpolants or interpolatory
splines.

A generalization of Coons’ original patches was also necessary for those situations in which
four-sided topology cannot be assumed. [Barnhill, Birkhoff, Gordon ’73] initiated triangular
Coons’ patches for the case of arbitrarily located information. This innovation created many
new surface possibilities. These triangular methods have a more complicated data structure
through which they solve the more complex problem of interpolation to more general data.
Subsequently additional triangular patches have been discovered [Barnhill ’83a, *83b; Nielson,
Franke ’83].

There has been a parallel set of developments for Bézier's methods:

(1) Gordon showed how Coons’ patches could be analyzed mathematically. The correspond-
ing discovery for Bézier’s patches was done by Forrest [Forrest *72] who showed that Bézier
curves and surfaces could be considered as Bernstein polynomial approximations. This recogni-
tion has made possible the discovery of many important features of Bézier approximations, such
as the convex hull property and the variation diminishing property.

(2) The analogue to Gordon surfaces is a network of rectangular Bézier patches: tensor
product B-splines were discussed in [Gordon, Riesenfeld 74].

(3) The analogue to the Barnhill, Birkhoff, and Gordon triangular Coons patch is the
triangular Bézier patch which, for an arbitrary triangle, was discovered by Farin [Farin '80].
Farin’s generalization has opened up many possibilities for the creation of new triangular
interpolants as well as useful descriptions of known triangular interpolants. In fact, the Bézier
method has become the starting point for generalizations that develop piecewise polynomial
schemes with desired geometric properties, as is mentioned by several authors in this Volume.

The history of Coons patches and Bézier patches is summarized in Fig. 1. (The idea of this
figure was conceived jointly with G. Farin who also made the drawing).

Computer Aided Geometric Design

The term ‘Computer Aided Geometric Design’ was invented by R.E. Barnhill and R.F.
Riesenfeld in 1974 to describe the mathematical aspects of Computer Aided Design (hence the
word ‘geometric’). The term first appeared as the title of the symposium held at The University
of Utah and the subsequent book published by Academic Press. Computer Aided Geometric
Design focuses on design. In order to recognize the need for a new emphasis on representation
and to focus on surfaces instead of curves, the new term ‘Surfaces in Computer Aided
Geometric Design’ was coined by Barnhill, Boehm and Farin in 1981.

Surfaces in Computer Aided Geometric Design

A number of additional significant changes, central to the direction of the field, are
embodied in the new name, ‘Surfaces in Computer Aided Geometric Design’. Let us make these
explicit here.

2 Bézier patches over equilateral triangulations are given in [Sabin *76].
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Coons (1964)

Gordon (1969) Barnhill, Birkhoff, Gordon (1973)
Little (1978)

Bézier (1966)

Gordon and Riesenfeld (1974) Sabin (1976)
Farin (1980)

Fig. 1. History of Coons patches and Bézier patches.

(1) The research focuses on surfaces, not on curves.

(2) The surfaces, moreover, need not be built up from curves.

(3) Geometric data for surfaces can be arbitrarily located. (Surfaces used in practice have
usually been based on rectangularly structured tensor product data.)

(4) Multidimensional surfaces are investigated.

Environment
Scholarly environment for a new subject

Disciplines that have strong technological components tend to be pursued in fragmentary
ways with each problem treated on an ad hoc basis. ‘Surfaces in CAGD’ is an example of such a
discipline. The subject can be made more scientific and integrated by means of research,
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training of new professionals in the field [Keyworth 83], collaborations, research symposia such
as this one, books, and journals. Several books have summarized the research in this area:
Computer Aided Geometric Design, edited by Barnhill and Riesenfeld in 1974, Surfaces in
Computer Aided Geometric Design, edited by Barnhill and Boehm in 1983 and the Surfaces issue
of the Rocky Mountain Journal of Mathematics, edited by Barnhill and Nielson in 1984. The
new journal, Computer Aided Geometric Design, is devoted to recent research in this area.

Surfaces
Choice of surface form: Applications

Surfaces in Computer Aided Geometric Design have many applications, including fitting
experimental data, tables of numbers and discretized solutions of differential equations; the
design of aircraft, cars, and many other objects; and modeling human organs and robots. The
term ‘Computer Aided Design/Computer Aided Manufacturing’ (CAD/CAM) is used to
describe some of these applications, particularly in engineering. The choice of the surface form
depends upon the application, that is, there is no single solution for all problems. The variety of
applications is so great that there cannot be a universal panacea. For example, the surface form
used to model the human heart is unlikely to have the correct properties for modeling a car
body. Consequently, we shall consider several families of methods in both interpolation and
approximation senses. We use the term ‘surface modeling’ to describe all applications since in
all cases the mathematics describes a physical model.

Design and representation of surfaces

‘Surfaces in CAGD’ has two main categories: the Design of Surfaces and the Representation
of Surfaces. Design of Surfaces involves making interactive changes in surfaces and displaying
the surface in real-time. Representation of Surfaces involves using information derived elsewhere
and of viewing the surface in order to understand its properties. These two categories have some
common and some different features.

The features common to both Design and Representation include:

(1) Some smoothness is desirable. (This smoothness might be C° C', or C? continuity or
might be visual continuity’ of some order.)

(2) Shape fidelity must be satisfied. (This may be somewhat vague, such as a designer’s idea
of ‘sweetness’ or a geophysicist’s view of what a surface should look like.)

(3) Methods may be either local or global. (With local methods the evaluation of the surface
depends only on nearby data.)

(4) Computer graphics are useful.

Features that differ for Design and Representation include:

(1) The data can be modified and, possibly augmented for Design. The data for Representa-
tion usually are fixed and are expensive to obtain, e.g., results from wind tunnel tests. (However,
the representation used can affect the design of the experiments.)

(2) Design surfaces are usually in three-space (‘three-dimensional surfaces’), but Representa-
tion can take place in n-space.

(3) Finally, Design involves computer graphics allowing real-time modification so that the
designer can get immediate feedback, whereas Representation involves viewing surfaces in order
to understand them but not necessarily to make interactive changes in them. These functions
may be seen as editing surfaces and viewing surfaces, respectively.
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Fig. 2. Four data curves for the bilinearly
blended Coons patch.

Coons patches and Bézier patches

Rectangular Coons patches

We now discuss Coons patches and Bezier patches. As mentioned above, patches can be
either rectangular or triangular. Let us begin with rectangular Coons patches. The first case is
the bilinearly blended Coons patch which interpolates to four curves as shown in Fig. 2.
Gordon pointed out that this patch can be written as a Boolean sum of linearly ruled lofting
interpolants, more precisely, if

P,=P,F=(1-u) F(0,v)+uF(1,v)
and P, is defined analogously, then the Boolean sum defined by

Pi®P,=P +P,— PP,
interpolates to the four boundary curves. We observe the nice interplay between algebra and
geometry here: one can build up the idea of the Boolean sum by looking at P;, P,, and P, P,,
thus using geometry, and then verify the correctness of the solution by direct substitution, thus
using algebra.

Next let us consider the bicubically blended Coons patch which can be built up algebraically
in an analogous way, namely, by means of the Boolean sum of univariate projectors. The
projector P, is given by

P\ F=ho(u) F(0, v) +h(u) F(1, ) +ho(u) F (0, v) +hy(u) Fio(1, )
where the blending functions &, h,, hg, and h, are the cubic Hermite basis functions and F,
means partial derivative with respect to u. The projector P, F is defined similarly in the second
variable v. The term P, P, F involves the following data:

positions, tangents,

tangents, twists.

The twists, which are (1, 1)-derivatives, can cause problems in using this patch. Solutions to this
problem are given in [Gregory ’74] and in [Barnhill, Brown, Klucewicz ’78]. An application of



R.E. Barnhill / Surfaces in CAGD: A survey 7

their research to reducing surface oscillations by varying twists is given by Brunet in this
Volume.

We recently created the multidimensional compatibly corrected C ' Coons patch for a
higher-dimensional representation problem [Barnhill, Worsey '84]. The generalization to C 2
Coons patches is discussed by Worsey in this Volume.

Coons patches are ‘transfinite’; this term, introduced by Gordon [Gordon *71] connotes that
whole curves of data are interpolated. These data can be discretized leading to finite dimen-
sional interpolants some of which are called ‘serendipity elements’ in the finite element
literature. An example is the discretization of the bicubically blended Coons patch to the
standard 16 degree of freedom bicubic patch obtained by replacing F(u, 0), Fy;(u, 0), etc. by
their respective cubic Hermite interpolants.

Triangular Coons patches

Triangular Coons patches were initiated by Barnhill, Birkhoff, and Gordon [Barnhill et al.
*73] who considered the C' case with the corresponding cubic Hermite projectors along parallels
to each side, that is, P, is the cubic Hermite lofting interpolant along parallels to side 1 etc. The
‘BBG triangle’ is a family of interpolants formed by taking Boolean sums of the three lofting
interpolants P,, P,,and P;. Twist incompatibilities inherent in all Boolean sums must again be
resolved in order to produce suitable schemes. Little [Little *78] made the very important step of
generalizing the ‘BBG’ schemes to an arbitrary triangle [Barnhill, Little 84], a key concept
being a calculus for functions of barycentric coordinates.

Other transfinite triangular interpolants have subsequently been discovered, including Niel-
son’s radial schemes [Nielson 79], Gregory’s symmetric schemes (which are generalized to
n-dimensional simplices in this Volume), and Brown, Dube, and Little’s convex combinations.
Recently Alfeld and Barnhill [Alfeld, Barnhill *84] constructed a C? BBG scheme. Finally,
Little has devised a trivariate C' BBG scheme [Barnhill, Little *84].

Bézier patches

Bernstein—Bézier approximations have recently become very popular and no fewer than 1/4
of the titles at this symposium contain Bézier’s name. Bernstein—Bézier patches interpolate some
data and approximate others. This representation is described by a ‘net’ of ‘control vertices’,
where the vertices of the net are the coefficients of the Bernstein basis functions. (See Fig. 1 in
Farin’s article in this Volume.)

Bézier patches (like Coons patches) can be either rectangular or triangular. Rectangular
Bézier patches are tensor products, so their properties follow from the univariate case. (For
additional information on tensor products, as well as on CAGD in general, see [Boehm, Farin,
Kahmann ’84].) Therefore, we shall content ourselves with a brief introduction to triangular
Bézier patches.

A necessary tool for the construction of a triangular interpolant over an arbitrary triangle is
the concept of barycentric coordinates. The barycentric coordinates of the arbitrary point P in
a triangle with vertices 1, 2, 3 are given by b, = A4,/A where A is the area of the triangle and 4,
is the area of the subtriangle opposite vertex i, i=1, 2, 3. This geometry for barycentric
coordinates appears in Fig. 3. The definition of barycentric coordinates implies that they are
non-negative if P is in the triangle and that they sum to one.

The triangular Bernstein polynomial is given by

n! T
. J Bk
Z l"j'k' b1b2b3Vi.j.k
i+j+k=n""/"""

where the V, ,, are (vector-valued) ‘control vertices’. Imposing continuity between Bézier



