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PREFACE

An analysis of brittle fracture in power engineering, mechanical and civil engi-
neering, transport, and other branches of engineering shows that fracture is
caused in most cases by the growth of crack-like defects in regions of stress
concentration. It is practically impossible to prevent the appearance of cracks -
since a material always contains different types of microscopic cracks i irrespec-
tive of the preliminary processing to which is it subjected. However, one can
learn to design structures in such a way that the growth of these defects should
be a steady-state process that can be monitored even under extreme operating
conditions (dynamic loading, low and high temperatures, corrosive media,
etc.). Hence, the designing of constructions taking into account the viability of
damaged parts requires the development of computational methods for predict-
ing the crack growth right up to the attainment of the limiting state. Such
computations are made by using a new branch of engineering concerning the
strength of materials, viz., fracture mechanics. By applying the criteria of frac-
ture mechanics we can judge the strength, reliability, and life of structures and
work out effective nondestructive methods of control, thus helping in the pre-
vention of accidents which may have serious economic and social repercus-
sions. Moreover, fracture mechanics is used for investigation of technical pro-
cesses involving controlled fracture, for example, in exploration of mineral
deposits, drilling of wells, and cutting of metals.

Investigations in the field of fracture mechanics, which was established as a
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X PREFACE

separate branch of mechanics of deformable bodies back in the fifties, require:
the construction of fracture models; (he creation of analytical and numerical
methods for solving problems of bodies with stationary and running cracks in
the theory of elasticity, plasticity, and viscoelasticity, and for nonlinear media;
as well as the development of experimental techniques. Fracture mechanics is
closely related to the physics of fracture phenomena since the processes occur-
ring on microscopic and macroscopic scales are linked inseparably.

The efforts of scientists and engineers working in various fields led to the
formulation of basic concepts of fracture mechanics, correct statements of
mathematical problems, and the development of methods of their solution by
the end of the sixties. It should be emphasized that these investigations were
carried out by specialists from many countries and a significant contribution
was made by Soviet scientists in establishing the basic principles of fractuie
mechanics. This was made possible by the traditionally high level of the Soviet
school of mathematical theory of elasticity.

Thus, for example, M. Ya. Leonov and V. V. Panasyuk proposed the §,-
model®f fracture, which is far more universal than the well-known model
developed by Dugdale. A large number of problems on the stress distribution in
cracked bodies under complicating factors (complex configuration of cracks
and bodies, bifurcation of cracks, material inhomogeneities, nonlinear and dy-
namic effects, etc.) were solved by V. M. Aleksandrov, G. 1. Barenbfatt, N. M.
Borodachov, G. P. Cherepanov, L. A. Fil’shtinskii, D. V. Grilitskii, A. A.
Kaminskii, B. V. Kostrov, E. M. Morozov, V. I. Mossakovskii, L. V. Nikitis,
V. V. Panasyuk, V. Z. Parton, and others. On the atomic and molecular scaies,
the fracture of metals, polymers, and glasses was studied by the physicists
G. M. Bartenev, N. S. Enikolopov, V. A. Kargin, A. N. Orlov, P. A. Rebin-
der, G. L. Slonimskii, V. I. Vladimirov, S. Ny Zhurkov, and others.

Significant contributions have been made by L. M. Kachanov, V. V. Pana-
syuk, and Yu. N. Rabotnov in developing methods for calcuiating the fracture
toughness of bodies subjected to static, dynamic, and cyclic loading; by V. V.
Bolotin in calculating the safety margin of constructions subjected to random
loading; by A. A. Kaminskii in calculating the crack propagation in viscoelastic
bodies; by B. A. Kudryavtsev and V. Z. Parton in formuiation of fracture
criteria for piezoelectric materials; by E. M. Morozov and G. P. Nikishkov in
developing numerical methods in linear and nonlinezr fracture mechanics; by
G. S. Pisarenko, V. T. Troshchenko, A. Ya. Krasovskii, S. Ya. Yarema, and
others in investigating the effect of low temperature on crack propagation and
fracture toughness under cyclic and static loading, in formulation of the law of
fatigue growth of cracks and the mechanism of crack propagation in brittle
plastic materials, in investigating the effect of loading conditions on the form of
fracture, cyclic thermal fracture, delayed fracture, and hydrogen brittleness; by
V. S. Ivanova, N. A. Makhutov, E. M. Morozov, V. V. Novozhilov, L. 1.
Slepyan, and G. S. Vasil’chenko in formulating new fracture criteria; and by
V. M. Finkel in development of methods of crack arrest.
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Several monographs published in the USSR provide a complete description
of the basic principles of fracture mechanics. These include works by V. V.
Panasyuk [109], V. Z. Parton and E. M. Morozov [129, 130], G. P. Chere-
panov [25], L. L. Slepyan [155], and others. )

In spite of the brilliant achievements in the field of fracture mechanics and its
numerous applications, the formulation and solution of the dynamic problems

of this theory remained unknown until recently on account of their extremely

complicated nature. Only the latest elegant analytic solutions of certain model
problems and the development of new effective numerical methods have helped
in surmounting this obstacle. The number of publications devoted to problems
of dynamic fracture mechanics is continuously rising and several hundred pa-
pers on the subject are published annually in journals like International Journal
of Fracture and Engineering Fracture Mechanics. In order to understand the
growing interest towards investigations in dynamic fracture mechanics, it is
necessary to grasp the essence of the subject and its interaction with the quasis-
tatic fracture mechanics. Indeed, the process of fracture is characterized (at
least in its final stage) by a rapid propagation of the arterial crack or a set of
- branched cracks and is therefore an essentially dynamic process.

A large number of problems still remain unsolved in the description of this
process on microscopic and macroscopic levels. Hence, when we state that
fracture mechanics is an essential tool for computing the strength of bodies and
structures, we mean the quasistatic fracture mechanics which determines
whether or not an arterial crack is stable. Indeed, the quasistatic mechanics of
brittle fracture, which is based on the idealized model of a sharp arterial crack
and the concept of the stress intensity factor at its tip, has bzen developed quite
extensively; however, it provides only the first approximation to the description
of fracture and can simply. indicate whether or not a catastrophic growth of the
crack sets iu.

-Obviously, the field of dynamic fracture mechanics is much more extensive
than that of quasistatic fracture mechanics. While quasistatic fracture mechanics
deals only with the formulation of criteria for a transient crack propagation,
dynamic fracture mechanics requires the formulation of a large number of crite-
ria dealing with the start, arrest, propagation, bending, and branching'of
cracks. In the idealized model mentioned above, this leads to the emergence of
a whole range of critical stress intensity factors: the starting stress intensity
factor, which depends, on the loading rate; the arrest stress intensity factor; the
branching stress intensity factor; and, finally, the critical stress intensity factor,

which depends on the rate of propagation of the crack. Some of the experimen- -

tal results can be explained satisfactorily by this model, while some others lead
to contradictions with the theoretical results. However, the published experi-
mental results themselves are in contradiction with one another. This is prob-
ably due to the fact that many experiments are incorrect because they neglect
the interaction of waves scattered at the boundary with the crack tip, or because
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xii ' PREFACE

the rate of crack propagation and the stress intensity factors were not measured
: quite precisely.

Thus, dynamic fracture mechanics occupies a special place in the mechanics
of a deformabie body. In the first place, a large number of questions still remain
‘to be answered and this branch of science is still in its formative stage. New
results sometimes necessitate a reconsideration of even its basic concepts. Sec-
‘ondly, this field has no equal in the diversity of analytic, numerical, and expen-
mental methods employed in it.

In the present two-volume course we have endeavored to describe the state-
of-the-art in dynamic fracture mechanics, the basic methods, and achievements.
Hence, together with the results of investigations carried out by the authors in
this field, the book also contains important results cf investigations carried out
by other scientists, including those in the USA, who have made a significant
contribution to the development of dynamic fracture mechanics.

A part of Vol. 1 was published as a monograph in the USSR under the title
““Dynamic Fracture Mechanics” in 1985, although the work on the manuscript
was completed in 1983. This two-volume course has been prepared specially
for publication in the USA and contains important results obtained after 1983 in
the USSR and abroad. The first volume contains a description of the basic
principles of dynamic fracture mechanics, and analytic and numerical methods

* for determining the stress intensity factors in two- and three-dimensional bodies
with stationary rectilinear, curvilinear, plane, and penny-shaped cracks sub-
jected to harmonic or impact loading. The second volume contains results of
4nvestigations of the laws of crack propagation at constant and varying rates in
=lastic bodies, taking into account the influence of the elastic lattice. Numerical
and experimental methods of determining stress intensity factors in bodies with
transient cracks are also described in Vol. 2.

The authors would like to take this opportunity to thank Hemisphere Publish-
ing Corporation and our publisher, Mr. William Begell, whose initiative facili-
tated the compietion of this manuscript in such a short time. Acknowledgements
are also due to Drs. L. A. Fil’shtinskii and M. V. Khai for providing material
used in the preparation of Chapters 6 and 7 of Vol. 1. Finally, we thank our
translator, Dr. Ram S. Wadhwa, whose linguistic capabilities are aptly backed
by a scientific career spanning well over a decade.

V. Z. Parton
V. G. Boriskovsky



INTRODUCTION

Two methods stand out among the approaches describing the process of frac-
ture. in the first method, the process is characterized by the behavior of an
arterial crack, while the second one considers the growth and propagation of a
&, of microscopic defects. The first approach dominates in the scientific litera-
¢ mainly because it provides a satisfactory stability criterion and a simple
computational apparatus under quasistatic loading. The second approach has
not been developed extensively so far and has not led to satisfactory computa-
tional methods. However, the development of a set of microscopic defects and
the growth of an arterial crack are interconnected not only at the stage of
origination of a macroscopic crack, but also during its propagation. Macro-
scopic cracks ensure a high localized concentration of stresses and their behav-
ior begins to depend on the growth of microscopic defects appearing in this
case.

In the most prevalent idealized model, the growth of a rectilinear crack is
usually considered in an elastic body. The unbounded stresses appearing at the
crack tip in this case are characterized by the stress intensity factors, and the
fracture is ‘assumed to occur at the very tip of the crack. Moreover, it is as-
sumed that the energy required to create a unit new surface is a constant of the
material. Proceeding from this consideration, we can calculate the elasto-
dynamic stress field at the crack tip and formulate the criterion for crack propa-
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xiv INTRODUCTION

gation, i.e., the energy balance equation. The basic aspects of this idealized
model can be written in the following form:

1. The stress fields at the crack tip are described with the help of stress inten-
sity factors.

2. The criteria of start, arrest, and propagation of a crack are derived from the
condition that the fracture energy per unit area of new surface is constant.

The adequacy of this model can be determined from an analysis of the exper-
imental data on stress intensity factors and a comparison of the conditions of
start, propagation, and arrest of a crack with theoretical conditions. The follow-
ing situation arises in this case. In the first place, the criteria of start, propaga-
tion, and arrest of a crack are found to be “‘disconnected,” which is proven by
the existence of various critical stress intensity factors describing the start,
propagation, and arrest of a crack. Secondly, a one-to-one correspondence is
established between the various stress intensity factors and crack velocity by
using the energy balance equation and assuming that the process is independent
of the rate and past history of loading. However, this correspondence is not
always confirmed by experiment [67, 68]. Finally, the idealized model does not
provide an automatic explanation for the branching of cracks.

In spite of the contradictions concerning the criteria for siart, propagation,
and arrest of cracks, it must be borne in mind that in accordance with the first
basic concept of the idealized model, the stress ficlds are described with the
help of the stress in-.isity factors. Hence, it is interesting to compare the
analytic and experimental values of these coefficients. It must be realized that
such a comparison is quite difficult to make. Analytic solutions are obtained for
infinite regions, while experiments are carried out on small samples. Hence, a
comparison of the results is possible only until the beginning of interaction of
the waves scattered at the boundary with the crack tip, i.e., only for a very
short time. Moreover, experiments are performed on plates where wave disper-
sion and departure of the stress state from the two-dimensional case is observed
(at least at the crack origin). However, the authors of works [68, 140-143] were
able to carry out a direct comparison for plates made of a purely brittle material
Homalite-100 in which a’stationary crack was set into motion by the application
of an impact load at the crack faces. It was shown that as far as the correspon-
dence of theoretical and experimental stress fields is concerned, the idealized
model can be assumed to be quite satisfactory except for some isolated cases of
transient processes.

It is usually assumed that the departure of the behavior of a crack from that
predicted by the idealized model is due to the existence of various nonlinear
effects. A more accurate and realistic substantiation of this disparity was given
by W. G. Knauss and K. Ravi-Chandar [68, 140-143], who used the concept of
leading microscopic cracks. With the help of a visual and microscopic analysis
of fracture surfaces, they showed that the process of dynamic fracture takes
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place in a certain finite region in front of the crack tip, like in the case of
viscous bodies upon quasistatic fracture. In the first place, the authors paid
attention to the inhomogeneity and nonsmoothness of the fracture surfaces in
which three zones could be singled out: a *‘mirror’” zone, a *‘mist’’ zone, and a
““hackle” zone. In the “‘mirror’ zone, the fracture surface is very smooth and
completely reflects light; in the mist region, where the stresses are more pro-
nounced, the fracture surface becomes rougher. and is very coarse in the hackle
region. It was shown that initially a single crack propagates in the mirror zone,
and its behavior does not differ significantly from the quasistatic growth. In the
mist zone there is a simultaneous uniform propagation of a set of cracks. In the
hackle region the crack propagation follows the same physical pattern but the
size of the microscopic fracture region increases. Thus, crack propagation un-
der high stresses is controlled by the growth (transformation) of microscopic
cavities in the microscopic cracks, followed by their union and mutual interac-
tion.

With the help of these concepts it is possible to provide an acceptable qualita-
tive description of branching of cracks as a continuous process of evolution of
leading microscopic cracks, to explain the dependence of the initiating stress
intensity factor on the loading rate, and several other facts. However, at present
it is not possible to make exact quantitative computations for the interaction
between a macroscopic crack and a set of microscopic cracks. These micro-
scopic cracks have a complex and predominantly three-dimensional statistical
distribution and *‘perceive” the existence of other microscopic cracks not in-
stantaneously, but only through the propagation of stress waves.

Thus, it is quite clear that the idealized fracture model has several drawbacks
which should be taken into consideration in actual practice of engineering appli-
cation of the dynamic fracture mechanics. On the other hand, this is practically
the only model which can be used to describe the propagation of the fracture
front at a macroscopic level. On the basis of what has been stated above, it can
be assumed that although the idealized model is unsuitable for the derivation of
fracture criteria (i.e.. criteria for start, propagation, arrest, bending, and
branching), it is quite acceptable in such cases where the basic properties of the
fracture process (crack propagation rate, conditions of start and arrest, etc.) are
known from experiment, and one is required to make computations for the
stress State or to simulate the crack growth. Thus, the mixed analytical-
experimental and numerical-experimental approaches acquire a special signifi-
cance in dynamic fracture mechanics.

As a rule, all the results described in this book have been obtained with the
help of the idealized model (the only exception to this is the propagation of a
crack in a lattice and the construction of the unified fracture model considered
in Vol. II). We shall give a general formulation of the dynamic fracture mechan-
ics problems to be solved. It should be noted that a consideration of inertia
effects is essential in view of the dynamic nature of loading and crack propaga-
tion (this may occur separately or simultaneously). Thus. it is quite possible
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that a crack is stationary (i.e., its rate of propagation is equal to zero), but a
dynamic load is applied to it. If this load assumes the critical value, the crack
begins to propagate (irrespective of whether this happened as a result of dy-
namic or.static lpading). The law of propagation of the crack (i.e., the depen-
dence of its propagation rate on time) is derived from several energy relations.
Subsequently, the crack may be arrested as a result of redistribution of stresses
and again become stationary.

It can be concluded from what has been stated above that the analysis of the
stress state in a body with a stationary crack subjected to a dynamic loading
acquires a special significance in fracture mechanics since it allows a deeper
understanding of the processes preceding brittle fracture. Moreover, it is suffi-
cient to consider two types of loading, viz., impact and harmonic (obviously,
these two types of loading are basic and all other existing types of loading can
be reduced to these two). In the case of impact loading, the right-hand side of
the : sstem of equations of motion is expressed in the form of a Heaviside
function and specific initial conditions must be given. It is required to determinc
the dependence of the basic characteristics of the fracture process, viz., the
stress intensity factors, on time. In the case of harmonic loading, the steady-
state condition is usually considered, when all quantities have a harmonic de-
pendence on time with the same frequency. In this case it is required to deter-
mine the dependence of the stress intensity factors on crack length, amplitude,
and frequency of the applied load.

While formulating the dynamic problems of fracture mechanics for propa-
gating cracks it is assumed that the trajectory of motion of the crack is rectilin-
ear and its rate of propagation is constant or an arbitrary function of time.
Loading may be static, harmonic, or impact-type.

The following factors can be used foi iurther classification of dynamic prob-
lems of fracture mechanics for stationary as well as nonstationary cracks:
1) initial crack length (finite or infinite); 2) type of the body (plane, three-
dimensional, strip, plate, or shell); 3) type of deformation.

On the basis of this classification, we can isolate the following types of
problems:

1.-To determine the dependence of stress intensity factors on frequency for a
stationary crack subjected to a harmonic loading.

2. To determine the dependence of stress intensity factors on time for a station-
ary crack subjected to impact loading.

3. To determine the time dependence of stress intensity factors and the rate of
propagation of a nonstationary crack.

4. To determine the law of motion of a nonstationary crack.

Dynamic fracture mechanics also includes various types of branching prob-
lems and the determination of trajectory of moving cracks.
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The solution of these problems requires the application of numerical as well
as analytic methods in combination (sometimes) with the experimental results.
As a rule, analytic mthods are used while considering plane configurations like
an infinite plane with a semi-infinite crack, a plane with a finite crack, strips
with d finite or a semi-infinite crack, as well as a medium with a penny-shaped
crack. Analytic solutions of proeblems of dynamic fracture mechanics involving
opening modes, and inplane and antiplane shear modes lead to very important
qualitative conclusions about the processes preceding brittle fracture in the case
of dynamic loading, and about the propagation of the fracture front. However,
while solving specific problems of dynamic fracture mechanics in actual prac-
tice one sometimes has to determine the stress intensity factors in finite cracked
bodies, including plates and shells. As a rule, this is accomplished with the help
of various numerical methods and by constructing algorithms for solving these
problems.



NOMENCLATURE

The following notation is used in the text unless stated otherwise:

=

v B
0,
, 0’

~T N
ISERA NS

tA
Uy Uy U, = W

U,, Ug U,

U, U, U,

€i» T j==xyzor
i,j=123

6,_,-, oij (irj = rv 0) Z)

éij' Uij (’v.’ = p, 0) Z)

Lo = I, II, I,

Cartesian coordinates;
cylindrical coordinates:
elliptic coordinates;
time; )

time of crack arrest;
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sian coordinate system;

the same components in cylindrical coordinate
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the same components in elliptic coordinate sys-
tem;

strain and stress tensor components in

Cartesian coordinate system;

the same components in cylindrical coordinate
system;

the same components in elliptic coordinate sys-
tem;

functions of angular distribution of stresses
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NOMENCLATURE

in the vicinity of a crack tip;
Lamé constants;

Poisson’s ratio;

Young’s modulus;

for plane deformation;

for plane stress state;
velocities of dilatational,
waves respectively;
density of material;

shear and Rayleigh

stress intensity factors for opening mode, inplane -
shear and antiplane shear modes, respectively;
static stress intensity factors;

fracture toughness (critical stress intensity factor)
in static approximation;

fracture toughness in dynamic approximation;

crack length (half-length);

velocity of crack propagation;

total deformation energy;

kinetic energy;

strain energy density;

energy release rate;

critical energy release rate;

J-integral,

surface energy of fracture per unit area of new

surface;

boundary of the body;

components of the unit normal vector {n}

directed outward from the contour;

components of the vector {T} denoting tensmn
at the boundary of a body;

components of the vector {F} of mass forces;

opening, inplane shear, and antiplane shear loads,
respectively
loading frequency;

wave numbers;

angle of wave incidence;

vector in the direction of wave propagation;
wave potentials; '
incident wave potentials;
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scattered wave potentials;
Fourier transform parameter;

Heaviside function;
Laplace transform parameters,

Rayleigh function;

ass matrix;

stiffness matrix;

nodal displscement vector;
nodal loading vector;

Kronecker’s delta;

n-th order Bessel function of the first kind for a
real argument;

modified n-th order Bessel functions of the first
and second kind, respectively, for an imaginary
argument.
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