Lecture Notes In

Mathematics

Edited by A. Dold and B. Eckmann

999

Chris Preston

lterates of Maps on an Interval

o

SpringerVerlag
Berlin Heidelberg New York Tokyo



L_ecture Notes Iin
Mathematics

Edited by A. Dold and B. Eckmann

999

Chris Preston

lterates of Maps on an Interval

SpringerVerlag
Berlin Heidelberg New York Tokyo 1983



Author

Chris Preston
Universitat Bielefeld, USP-Mathematisierung
4800 Bielefeld, Federal Republic of Germany

AMS Subiject Classifications (1980): 26 A18, 54 H 20

ISBN 3-540-12322-9 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-12322-9 Springer-Verlag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1983
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2146/3140-543210



for Os and Tam



The elegant body of mathematical theory pertaining to Linear
systems (Fourier analysis, orthogonal functions, and so on),
and tts successful application to many fundamentally Llinear
problems in the physical sciences, tends to dominate even
moderately advanced University courses in mathematics and
theoretical physics. The mathematical intuition so developed
211 equips the student to confront the bizarre behaviour
exhibited by the simplest of discrete nonlinear systems, such

as the equation x = axn(l—xn) . Yet such nonlinear systems

n+l1
are surely the rule, not the exception, outside the physical

setences.

Bob May in Simple mathematical models with very

complicated dynamics in Nature, Vol. 261, June 1976.

These are some notes on the iterates of maps on an interval,
which we hope can be understood by anyone who has had a basic course in
(one-dimensional) real analysis. The main reason for writing this account
is as an attempt tc make the very beautiful mathematics behind the
bizarre behaviour exhibited by the simplest of diserete nonlinear systems
accessible to as wide an audience as possible.

Parts of these notes have appeared as Volumes 34 and 37 in the series:
Materialien des Universitdtsschwerpunktes Mathematisierung from the
Universitdat Bielefeld, and I would like to thank the USP Mathematisierung
for their support. Thanks also to David Griffeath for some pertinent
comments on the text and to Bob May and Alister Mees for getting me

interested in this subject.

Bielefeld Chris Preston

October 1982
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1, INTRODUCTION

Suppose we are studying some physical or biological system on which we
make measurements at regular intervals (say once a year or every ten
seconds). If we are just measuring a single quantity then the n th.
measurement can be represented by a real number X, o The data we thus
obtain is a sequence Xgs Xys cees Xp of real numbers, where of course
m+l is the number of measurements which are made. A very simple
mathematical model of such a system is obtained by assuming that Xl

is only a function of X, s and that this function does not depend on n

f(x )

That is, we assume there is a function f : X — X so that X4l ° n

for all n >0 , where X c R represents the set of possible values
which can be registered by our measuring apparatus. Thus if a measurement
at time 0 gave a value x € X then the model predicts that a measure-
ment at time n would register a value of f"(x) , where f" : X — X
is given inductively by fO(x) = x , fi(x) = f(x) and f"(x) = f(f""1(x)).
With such a model we are therefore interested in the iterates (fn}n>0
of the function f B
Typical functions which have been used (for example as models in

population biology; see, for instance, May (1976)) are the functions

fu : [0,1] — [0,1] (with O < wu < 4 ) and 9, : [0,1] — [0,1] (with
r >1 ) given by fu(x) = ux(1l-x) and 9.(x) = rx exp(l-rx) . The

important feature common to the functions in these two families is that
they all look something like the picture at the top of the next page.
More precisely, each of the functions has a unique maximum in (0,1) and
is strictly increasing (resp. strictly decreasing) to the left (resp.

right) of this point. Thus the fu and g, are elements of the set §



L/

0

S
-

consisting of those continuous functions f : [0,1] — [0,1] for which
there exists ¢ € (0,1) such that f is strictly increasing on [0,¢]

and is strictly decreasing on [@,1]

These notes will be concerned with the question: What kinds of
behaviour can be exhibited by the iterates of a function in § ? With
the help of a programmable calculator the reader can soon convince him-
self that for some functions in S the behaviour of the iterates is very
simple, while for others it is extremely complicated. Consider, for

example, the family of functions (fu}0<u;4 in S given by

fu(x) = ux(l-x) . For each of the five parameter values w = 2.5, 3.1 ,
3.569946 , 3.8291 and 4 compute the first 10000 or so terms of the
orbit {f:(x))n;O corresponding to a “randomly" chosen starting point

x € [0,1] (where we have written and will continue to write fg instead
of (fu)" ). Repeat this several times with other "random" starting

points. The following "facts" can then be observed:

w=2.5. 0.6 is a fixed point of fu (i.e. fu(0'6) = 0.6 ) and all



the points in (0,1) are attracted to this point, i.e. Tim fg(x) = 0.6

n-»co

for all x € (0,1) . (Note however that 0 and 1 are not attracted to

0.6 since f (0) = f (1) =0 .)

w=3.1. 0.55801.. is a periodic point with period 2 and practically
all the points in [0,1] are attracted to the period orbit

{0.55801.., 0.76456..} . (If f : [0,1] — [0,1] then x € [0,1] s
called periodic if fm(x) = x for some m > 1 ; the smallest m > 1
with this property is called the period of x . If x is periodic with
period m then we say y € [0,1] s attracted to the periodic orbit

k

{x,f(x),...,fm_l(x)} if Tlim fmn(y) = f°(x) for some 0 < k <m .)

n—»c
In the present case "practically all" means except for the three points
0,1 and 0.6774.. . ( 0.6774.. = 2.1 is the unique fixed point of fu
3.1

—

in (0,1) .)

w = 3.569946 . The orbit of a randomly chosen x € [0,1] appears to be
attracted to an orbit which is almost, but not quite, periodic. More

m

precisely, the following can be observed: For m 1 et Xn € [0,1] be

v

obtained by rounding off fz(x) to m decimal places. Then for each

m

m >1 there is a periodic sequence {yﬂ} Yorek

m
e. % Y for some

a0 (1

k >1 and for all n >0 ) such that for each randomly chosen x there
exists j > 0 with X2+j = yﬂ for all n > 0 . However, the period of

the sequence {yw}n>0 grows very rapidly with m . (For m = 1 the

period is 16 , for m = 2 it is 128 .) Another feature which can
be seen with this value of yu is that the orbits of points near a

randomly chosen x Tlook very similar to the orbit of x . (For each



€ >0 it is possible to find & > 0 so that if |x-y| < &6 then

|fC(x)-f:(y)| <& for all n 20 .)

w = 3.8291 . 0.15747.. 1is a periodic point with period 3 and almost
all points in [0,1] are attracted to the periodic orbit

{0.15747.., 0.50802.., 0.95702..} . We will later see that "almost all"
can here be taken in the sense of Lebesgue measure on [0,1] , but that
the situation is more complicated than in the first two cases in that
there are uncountably many points which do not get attracted to this

periodic orbit.

w =4 . The orbit of a randomiy chosen x € [0,1] appears to be

completely "chaotic". Moreover, the orbit of x 1loocks nothing like the

orbit of a point chosen "randomly" in any small neighbourhood of x

The above numerical examples suggest that there are at least three
different kinds of behaviour which can be exhibited by the iterates of a

function in § . These are:

(1) There is a periodic orbit which attracts "almost all" of the points

in [0,1] . (This case occurs for w = 2.5, 3.1 and 3.8291 .)

(2) A typical orbit appears to be completely random; there is a sensitive

dependence to initial conditions. ( w = 4 )

(3) There is a "strange attractor" which attracts "almost all" of the
points in [0,1] ; there is no sensitive dependence to initial conditions.

(u = 3.569946 )

These three types of behaviour will provide the key to understanding the

iterates {fn}n>0 of a function f € § . It turns out that for functions



in an important subset of § (which includes the families {fu)0<u;4

and {g'.}',>1 ) the three cases (1), (2) and (3) completely classify the

behaviour which can occur. For a general function in § the situation
can be more complicated, but (1), (2) and (3) are still the basic proto-

types for the possible kinds of behaviour.

The mathematical results which are behind the statements in the
above paragraph are due to Guckenheimer and Misiurewicz (Guckenheimer
(1979), Misiurewicz (1980)). It is the object of these notes to give an
elementary account of these and other results on the iterates of
functions in § . We have tried to make this account understandabie to
anyone who knows the basic facts about continuous and differentiable
functions of one real variable (as can be found, for example, in the
first five chapters of Rudin: Principles of Mathematical Analysis (1964)).
In fact one of the main reasons for writing these notes is as an attempt
to make some very beautiful mathematics accessible to as wide an audience

as possible.

Before giving an outline of what is contained in the various

sections of these notes we will make a couple of general remarks.

1. A lot of the interest in the behaviour of maps on an interval was
kindled by the review article of May in WNature (May (1976)). The reader

is strongly recommended to look at this article.

2. A second strong recommendation is to study the book by Collet and
Eckmann (1980) called Iterated maps on the interval as dynamical systems.
As its title suggests, it is concerned with much the same material as we
will consider and in particular it gives an account of the results of
Guckenheimer and Misiurewicz. Our justification for writing the present

set of notes is that many of our proofs are simpier than the corresponding



ones in Collet and Eckmann. In any case, a second account will have served
some useful purpose if it increases the number of people who are

interested in the iterates of maps on an interval.

3. We only consider the behaviour of the iterates of a single function.
However, in practice it is often more important to study how this
behaviour changes when we vary some parameter. For example, how does the
behaviour of the iterates of fu change as wu increases in the interval
(0,4] ? There has been a lot of interest in such questions in the last
couple of years; this interest started with the discovery by Feigenbaum
(Feigenbaum (1978), (1979)) that the successive bifurcations in any
reasonable one-parameter family of functions from § exhibit a remarkable
quantitative universality (in that the rates at which the bifurcations
occur involve constants which are common to all such families ). Unfortu-
nately, the mathematics needed to handle these problems rigorously is way
beyond what we intend to use here, and so we will not be able to study
this topic. The reader is recommended to look at Hofstadter's column
(Metamagical Themas) in the November 1981 Scientific American. Anyone who
wants to see what kind of mathematics is involved in this area can also

look at Collet, Eckmann and Lanford (1980).

4. We have made several statements involving "almost all" of the points

in [0,1] . For most of these notes this will have a topological, rather
than a measure-theoretical, meaning. In Sections 3 and 4 we will consider
a set to contain "almost all" of the points in [0,1] if it contains a
dense open subset of [0,1] , and in the following sections if it contains
a countable intersection of dense open subsets (i.e. if it is a residual
subset of [0,1] in the terminology of the Baire category theorem ). The
main reason for taking this approach is that it greatly simplifies a lot

of the proofs; it also allows a lot of the notes to be read by someone



who has had no measure theory. In Section 9 we consider a measure-
theoretic version of the main result obtained in the previous sections,

and then "almost all" will mean in the sense of Lebesgue measure.

5. The fact that the functions in § are defined on the interval [0,1]
is not important. Suppose f : [a,b] — [a,b] s a continuous function
for which ¢ € (a,b) exists so that f is strictly increasing on [a,&]

and is strictly decreasing on [&,b] . Then we can define g € § by

_l{f((l—x)a+xb)-a} (i.e. by making a Tinear change of

g(x) = (b-a)
variables), and any properties we are interested in will be invariant

under this transformation.

6. Our description of what happens to the iterates (£My in the case

M nio
when p = 3.569946 was not completely honest. This value of 1 is only
an approximation to the value of the parameter which really gives the
behaviour we described. (The "correct" value of 4y Tlies between

3.5699456 and 3.5699457 .) In fact, when u = 3.569946 then there is

10 which attracts "almost all" of the

a periodic orbit with period 23x2
points in [0,1] . (In Section 10 we will explain how the parameter

value u = 3.569946 was chosen.)

7. There are many topics involving the iterates of a single function

from S which we do not consider in these notes. Perhaps the most
important concerns the existence of absolutely continuous invariant
probability measures. Let f € § and yu be a probability measure on
([0,11,B) , where B denotes the Borel subsets of [0,1] ; u 1is called
invariant under f if u(f_l(F)) = u(F) for all F € B . A question
which has received a lot of attention recently is: Which functions in §
have an absolutely continuous (with respect to Lebesgue measure)

invariant probability measure? ( y is absolutely continuous with respect



to Lebesgue measure if u(F) = 0 whenever the Lebesgue measure of F s
zero.) The main result in this direction is due to Misiurewicz
(Misiurewicz (1980)); an account of this result can be found in Collet
and Eckmann (1980). Another topic which we do not consider is the

problem of determining whether or not two given functions from § are
topologically conjugate. Continuous functions f, g : [0,1] — [0,1]

are said to be topologically conjugate if there exists a homeomorphism

h : [0,1] — [0,1] such that f = h logoh . If f = h !

ogoh then we
also have f" = h—lognoh for each n > 1 ; thus if f, g € S are
topologically conjugate then the iterates of f and g will exhibit

the same kind of topological behaviour. A well-known example of this is

provided by the functions f(x) = 4x(l-x) and the piecewise linear
2x if 0 < x < % .

function g(x) = 1 (For these functions we have
2-2x if 5 <x < 1

f = h_logoh with h(x) = % + % sin_l(Z/_ - 1) .) For an account of this

subject the reader is again referred to Collet and Eckmann (1980).

We now outline what is contained in the various sections; at the
end of each section there are some bibliographic notes to be found. The
main results concerning the iterates of functions in § (Theorems 5.1
and 5.2) are stated in Section 5..It is possible for the reader to start
at Section 5, and in order to make this easier we give an index of

symbols at the end of the notes.

Section 2: Pilecewise monotone functions Let a, b € R with a < b and
let f : [a,b] — [a,b] be continuous; f is called piecewise monotone
if there exist N >0 and a =dy <d; < ... <dy <dy,, =b such that
f is strictly monotone on each of the intervals [dk’dk+l] , k = 0,...,N.

Section 2 deals with some elementary properties of such functions. Our



interest in this class of functions lies in the fact that if f € § then
£ s piecewise monotone for each n > 1 . Moreover, it is often just as
easy to obtain results for piecewise monotone functions as it is for
functions in §

The section is mainly concerned with periodic points, and besides
the usual classification of periodic points as being either stable, one-
sided stable or unstable we also introduce the notion of a periodic point
being "trapped": If x s periodic with period n then we say that x
f2n

is trapped if there exist y < x <z and & > 0 such that is

increasing on the interval ({y-6,z+56] and fzn(y) <y, on(Z) >z . The

most important example of such a point is when a stable periodic point x

is "trapped" between two unstable periodic points y and z

We will see that if a periodic point x is trapped then so are all the
poeints in the periodic orbit [x] = {x,f(x),...,f"-l(x)} , and thus it
also makes sense to talk about a periodic orbit being trapped.

The main result of the section implies that if f € § then f
has at most one periodic orbit [x] = {x,f(x),...,fn'l(x)} such that
(7) [x] 1is either stable or one-sided stable, (ZZ) [x] is not trapped,

and (727) x is not a fixed point of f in [0,p) (where ¢ is the



turning point of f ). Moreover, if this orbit [x] exists then for some
& >0 all the points in (9-8,9)U(w,p+8) are attracted to [x] . This
result is based on the proof of a theorem in Singer (1978). The existence
or non-existence of the orbit [x] will be important in the later
sections for determining what kind of behaviour occurs for the iterates

of f

Section 3: Well-behaved pitecewise monotone functions For a piecewise
monotone function f : [a,b] — [a,b] we let A(f) denote the set of
points in [a,b] which are attracted to some periodic orbit of f ; it

is easily seen that in fact

A(F) = { x € [a,b] : 1im f"™(x) exists for some n > 1 } ,

m-—»co

and thus in some sense A(f) consists of those points y in [a,b] for
which the orbit (f"(y)}n>0 has a particularly simple behaviour. The aim
of Section 3 is to find s:fficient conditions under which A(f) contains
a dense open subset of [a,b] , i.e. under which a "typical" point in
[a,b] gets attracted to a periodic orbit. (See Remark 4 above.) We are
also interested in knowing when A'(f) contains a dense open subset of
[a,b] , where A'(f) 1is the set of points in [a,b] which are attracted
to either a stable or a one-sided stable periodic orbit.

In order to state what the main result of Section 3 says for

functions in § let us fix f € § with turning point ¢ and put

the Targest fixed point of f in [0,¢] if f has a fixed

point in [0,9] ,

0 otherwise.

It is convenient to divide things into three cases:
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Case I is trivial and it is a simple matter to check that A(f) = [0,1]
Case II: Here we will see that A(f) contains a dense open subset of

[0,1] provided

(1.1) f has a continuous second derivative in (0,p)U(e@,l) and

f'(x) # 0 for all x € (0,0)uU(wp,l)

Case III: This is the most interesting situation. We will show that A(f)
contains a dense open subset of [0,1] provided (1.1) holds and one of

the following three conditions is satisfied:

(1.2) ¢ 1is attracted to a stable periodic orbit [y] ;

(1.3) @ is attracted to a one-sided stable periodic orbit [y] but

tX(e) £y for all k >0 ;

v

(1.4) the periodic orbit [x] described in the main result of Section 2



