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EDITOR’S PREFACE

The International Symposium on High Performance Computer Systems was held in
Paris, France, on December 14 to 16, 1987 in the Conference Center of the French
Ministry of Research and Technology.

It received the moral and financial support of the C3 Research Programme (Com-
munication, Concurrency, Cooperation) of the French Research Ministry and of
CNRS, and was organized by Ecole des Hautes Etudes en Informatique.

Its purpose was to bring together researchers in the various areas of computer science
and engineering which contribute to the usage, development and design of advanced
computer systems and of their relevant application algorithms.

Many novel advanced high performance architectures were presented at the sympo-
sium, including the RP3, the Teraflop 1, and the LCAP systems from IBM, the
Connection Machine built by Thinking Machines Corp. and the Hypercube pioneered
by Caltech.

These proceedings contain most of the papers presented at the meeting, while the
authors of some other presentations concerning recent industrial projects did not
make available written reports on the work they presented for understandable
reasons.

The papers in these proceedings are grouped into six subject areas: Parallel Algo-
rithms, Performance Measurement, Performance Analysis, Performance Modelling
of Parallel Systems, User Needs and New Architectures, and Distributed Com-
putations and Systems.

All of the papers in the first subject area concern numerical algorithms, and their
design and adaptation for general purpose or specific parallel architectures. Since
highly parallel large scale computer systems are designed for high performance, it



vi Preface

is important that appropriate methods exist for monitoring and measuring their
performance. This issue is examined in the three papers contained in the second
subject area, and it is useful to notice that two of these papers emanate from the
National Bureau of Standards (USA).

Issues related to the analysis of parallel computer system performance, pertaining
in particular to two novel architectures (the Hypercube, and the Connection Machine)
are examined in the two papers of the third part.

Theoretical performance models which, in this particular instance are relatively
independent of a particular machine, are dealt with in the fourth part of these
proceedings.

Three papers dealing with the effect of very large main memories on the performance
of data base machines, with a recent commercial parallel architecture (the SCS-40)
and with the needs for supercomputing for the academic environment, are discussed
in the fifth part. Two papers concerning granularity of distributed computation
and reliability issues complete the present volume.

I wish to express my gratitude to J.C. BERMOND, M. COSNARD, G. FAYOLLE,
S. LAVENBERG, A. LICHNEWSKY, and D. KUCK for accepting to be on the
organizing committee of this meeting and to M. AUGUIN, F. BACCELLI, F. BOERI,
J. DONGARA, D. EVANS, J.M. FOURNEAU, G. MAZARE, E. MONTAGNE,
J. LENFANT, H. MUHLENBEIN, B. PLATEAU, G. PUJOLLE, P. QUINTON,
Y. SAAD, and U. SCHENDEL for their membership of the programme committee.

In addition to these thanks, I would like to express my special gratitude to a number
of colleagues and friends who have helped considerably in making this meeting a
success. They include Thérése BRICHETEAU of INRIA, Colette CONNAT,
Michel COSNARD, Jean-Michel FOURNEAU, Hector GARCIA-MOLINA, Claude
OUANNES, Steve LAVENBERG, Alain LICHNEWSKY, Maurice NIVAT, Jean-
Claude SIMON, Satish TRIPATHI, and Jean-Pierre VERJUS, as well as Arjen
SEVENSTER of North-Holland for his continued support and encouragement.

FErol GELENBE
Paris, April 1988
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ABSTRACT

We present new techniques for the manipulation of sparse matrices on
parallel MIMD computers. This yields efficient algorithms for the following
problems: matrix addition, matrix multiplication, row and column permuta-
tion, matrix transpose, matrix vector multiplication, and Gaussian elimina-
tion.

1. INTRODUCTION

Many practical problems have computational solutions that involve solving large
systems of linear equations as well as other types of manipulations of large matrices.
In many cases these matrices are sparse, i.e. the number of nonzero entries is small.
Consequently, it is desirable to use data representations and algorithms that avoid
wasting space and time for zero entries. Sparse matrix algorithms for sequential
machines have been extensively studied.

We will consider parallel algorithms that perform the same arithmetic opera-
tions that would be performed by a sequential algorithm. This does not preclude the
achievement of significant speedups. Simple matrix algorithms contain many
independent arithmetic operations that can be executed in parallel. The issue is the
overhead required to allocate the arithmetic operations evenly to the processors of a
parallel computer and to compute the locations of the operands to these operations.
‘We desire overhead per processor to be proportional to the amount of arithmetic
processing done, so that the total execution time is equal, up to a (small) multiplica-
tive constant, to the time required to perform the arithmetic operations, using all
available processors. Such algorithms will exhibit optimal speedup.
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The algorithms use a compact representation of matrices, where only the
nonzero entries are stored. In order to avoid sequential bottlenecks, the entries are
not necessarily stored in row or column order, rather as a set of tuples. We show
how radix sort and prefix operations can be used to organize such a bag of entries
according to the needs of the computation and to distribute work evenly to all pro-
cessors.

It is fairly easy to obtain a matrix addition algorithm that executes with
optimal speedup. The difficulty is to use space proportional only to the sizes of the
input and output matrices. Our algorithm achieves this.

For Gaussian elimination we introduce a new technique of ‘““lazy evaluation”. A
redundant matrix representation is used, which may have several entries with the
same row and column indices; the “true’” value of the matrix entry is the sum of all
these entries. Entries are summed only when the true value is needed, or when there
is a sufficient backlog of work to justify a scan and compaction of the entire data
structure.

2. FOUNDATIONS

We assume the EREW PRAM computation model with p autonomous proces-
sors, all having access to shared memory: At each step each processor performs one
operation from its instruction stream. An instruction may involve access to shared

memory. Concurrent access to the same memory location by several processors is
forbidden.

Let m denote the size of the problem, that is, the number of nonzero entries in
all the matrices involved, or, equivalently, the number of nonzero values in the input
and in the output. Let T'(m ) be the sequential time to solve a problem, and T, (m )
be the parallel time with p processors. The speedup of a parallel algorithm is
T y(m)/T,(m) and its efficiency is T (m )/pT, (m ). An algorithm is efficient if its
efficiency is bounded away from zero, so that it achieves a speedup proportional to
p, for large enough m. We also wish to use an amount of memory that does not
exceed the size of the input or the output by more than a constant factor.

Matrices are assumed to be sparse (most entries are zero), but not too sparse.
Let d denote the sum of the lengths of sides of the matrices. Then, formally, we
assume m = (}(d°) for some positive €. In most cases of interest the number of
nonzero entries will be at least linear in the dimensions of the matrices, so this
assumption is quite reasonable. We also assume that the problem size is somewhat
larger than the number of processors used, or, more formally, that m = Q(p 1+5) for
some positive constant 6. Both assumptions are likely to be fulfilled by problems
that are large enough to justify the use of parallel computers.

The canonical representation of a sparse matrix stores the matrix as a set of
quadruples, one quadruple for each nonzero element. The four components of each
quadruple are matrix name, row index, column index, and value. The quadruples in
the list can be stored in arbitrary order. The name of the matrix need not be expli-
citly stored at each element; algorithms that operate on two matrices (e.g. matrix
addition or matrix multiplication algorithms) will need an extra bit per element to
differentiate the matrices. A row major representation of a matrix stores the nonzero
elements in row major order. The matrix is represented by a list that contains for
each row the number of elements in this row, followed by an ordered list of the
nonzero elements in this row, represented by column index and value. This represen-
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tation is more space efficient whenever the matrix is not too sparse, i.e. whenever
there is at least one entry per row, on the average. The column major representation
of a matrix is defined similarly.

3. BASIC PARALLEL ROUTINES

The sparse matrix algorithms are easy to explain and understand given several
basic routines. They all require time O (n /p + logp ) when using p processors.

Parallel Prefix: Given n numbers z,, . . ., z, stored in consecutive locations in
an array and an associative operation *, the parallel prefiz problem is to compute
the products z,* - - *z,, for ¢=1, ..., n. This can be accomplished in time
O (n/p + logp) and space n + O (p) (see [1] or [2]). Parallel prefix can be com-
puted within the same time bounds when the items are stored on a linked list [3,4].
Summing by Groups: Assume that n items are to be summed and are divided
into groups; items that belong to the same group are contiguous and the first item in
each group is marked. The summing by groups problem is to compute the sum
within each group. This is handled as a parallel prefix computation, by defining a
suitable sum operation that does not carry across set boundaries [2]. The computa-
tion yields the initial sums within each subgroup.

Broadcasting and Packing: The broadcast problem is to create n copies of an
item. This again is parallel prefix, with the product defined as a*bh =a . Broadcast
by groups is executed in a similar manner. Given an array of length n, the packing
problem is to move the nonempty entries in the array to the head of the array, while
preserving their order. Packing can be done by ranking the nonzero entries, and
then moving each to the location indicated by its rank. Ranking can be done by
assigning nonempty elements the value one and empty elements the value zero, and
then applying parallel prefix using addition.

Sorting and Merging: Radix sort can be used to sort n integers in the range 1 to
R in time T, (n)= O((n /p) (logR [ log(n [p))) and space O (pn‘ + n ) for any
constant ¢>0 [5]. The time is O (n /p ), whenever the number of distinct key values
R is at most polynomially larger than n /p . Two sorted lists of sizes m <n can be
merged in time O ((m +n)/p + logn ) [6].

3.1. Cross Product

Consider the problem of forming the cross product (i.e. Cartesian product) of
two sets S and T. The result is to be placed in two arrays S and T, where
S[i]X T [t] is the i th element of the cross product.

First determine the cardinalities s and ¢ of the two sets. We need ¢ copies of
each element of S, and s copies of each element of T'. Consider S and T as_being
two dimensional arrays of size s X ¢, stored in row major order. . Row ¢ of S will
consist of ¢ copies of element ¢ in S, and, similarly, column ¢ of T will consist of s
copies of element ¢ in T .

The following operations will produce S: Place element 1 of S into location
it of array S. Broadcast each element to the next ¢t —1 locations of S. To produce
T ,replace i -t + 7 by gt +1.

A cross product computation makes use of parallel prefix on arrays of size s -t
or smaller; it can be done in time O (s -t + logp ) and space O (st +p)
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Cross products can also be done by groups: Assume that the sets S, are packed
to the top of array S and the sets T} are packed to the top of array T'. The cross
products Sy X T, are to be placed in the arrays S and 7.

(1) Place the cardinality of each S, into o, of a temporary array o and the cardi-
nality of each T} into 7, of a temporary array 7.

(2) Form the products o} 7, to determine the cardinalities of the cross product sets.

(3) Perform a parallel prefix with addition on these products to determine the start-
ing location of each cross product in the final answer.

(4) Copy the starting location of the kth cross product along with the cardinality
of T} to the first element in each set S .

(5) Broadcast the starting of location the kth cross product along with the cardi-
nalities of S; and 7} to all elements within each set Sy, using broadcast by
groups.

(6) Determine the rank of each element within each set (parallel prefix by groups)
(7) Set all locations of S to empty.

(8) Place each element ¢ of each set S into location - | T | plus the starting
location of the k th cross product of array S.

9) Broadcast each element in each set S; to the next 1 -1 locations of S,
k k
using broadcast by groups.

Analyses: Recall that we make two assumptions about the problem size: (1)
m = Q(d) for some positive ¢; and (2) m = Q(p '*%) for some positive constant 6.
Thus, parallel prefix on the m elements of matrix takes time O (m /p ). Also, for
n Xn matrices, the integer range for sorting is R = n 2. Using radix sort, the time
to sort is O (m /p ). The space is O (pm € + m ) for any constant €>0. By assump-
tion (2), there is an € such that the space is O (m ) (namely any €<6). More gen-
erally, for 2-dimensional matrices that are not necessarily square, the length of each
side of a matrix is bounded by d. The integer range for the sorting will be at most
d?, so the radix sort time and space remain the same.

3.2. Format Conversion, Matrix Transpose, and Matrix Addition

It is easy to see that a canonical representation of a ¢ Xr matrix can be com-
puted from its full matricial representation in time O (¢r /p ): Each processor is
allocated gr /p entries of the matrix; it creates a list of quadruples representing the
nonempty entries in its set. These lists are then packed in time O (¢r /p). Con-
versely, a canonical representation can be converted into a full matricial form in
time O (m /p) if the matrix is already initialized to zero, and time O (gr /p ) other-
wise. A sparse matrix in canonical representation is transposed by inverting in each
quadruple the row and column indices, in time O (m /p ) and space O (m ).

Suppose we are given two sparse matrices A and B, and wish to form their
sum C'. We need to pair together elements of A and B with the same indices (i.e.
in the same row and column) and then replace each such pair by the sum of their
values. The pairing of values can easily be done by collecting the A and B quadru-
ples .together, and sorting using an element’s index as the key. The total time for
the algorithm is O ((m /p )(logd )/log(m /p)) and the space is O (pm € + m ). Under
our assumptions, these simplify to time O (m /p) and space O (m ). If the two
matrices are already sorted the addition can be done using merging rather than sort-
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ing, which improves the time and space complexities.

4. MATRIX MULTIPLICATION

We now show how to form the matrix product C' of two sparse matrices A and
B. Every nonzero element of column k in A must be multiplied by every nonzero
element of row k in B. This means that elements of column k£ in A need to be
grouped together with elements of row k in B. Each such group is composed of a
set of elements from A and a set of elements from B. Within each group, form the
cross product of the two sets and multiply the A and B values forming each pair.
The product of the pair a; and by; contributes to ¢;;. Thus, the pairs need to be
sorted by the key (i,7 ), where 1 is the row of the A element and j is the column
of the B element. All products with the same key (i, ) are summed to form the
iz which are packed to the top of the array.

The algorithm works as follows:
(1) Place the two matrices A and B together into one set of quadruples (matrix

name, row index, column index, value).

(2) Sort the quadruples using, for A , the column index and using, for B, the row
index.

(3) Within each group of elements with the same index from step (2), form the
cross product of the elements from set A with the elements from set B .

(4) Multiply the A value with the B value in each cross product pair, and form a
new C element with that value, and with row index from the A element and
the column index from the B element.

(5) Sort the C elements by row and column index.

(6) Sum the values of all C' elements with the same row and column indices (using
summing by groups), and place the value into the first element of the group.

(7) Pack the first element of each group into the final answer C'.

Let T be the number of nontrivial terms occurring in the matrix product. The
serial matrix multiplication algorithm uses O (T') time and O (m +M ) space, where
m is the input size and M is the output size. The parallel algorithm presented here
requires time O ((T /p)log(d )/log(T /p)) and space O (p - T€¢ 4+ T), which
simplifies under our assumptions to time O (T /p ) and space O (T). Although the
time for our parallel algorithm is optimal, the space may be significantly larger than
optimal. We now refine the parallel algorithm so as to reduce the amount of space.

The main idea is to process the cross products in blocks. A partial result matrix
C is kept of the accumulated sums computed so far. Whenever a new block is pro-
cessed, a matrix of values produced from the cross products in that block is formed.
The partial result matrix C is then updated by adding to it the new matrix. After
all of the blocks are processed, C' will be the desired product matrix. The goal is to
choose the block sizes small enough so as not to use extra space, but large enough so
that significant time is not wasted updating C'.

Assume that the cross products are formed from groups U; of elements from A
and groups V; of elements from B .

(1) Form array R; of the cross product sizes | Ui | -] Vi|. Assume, wlog, that
each R; > 0.
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i
(2) Use parallel prefix to form S; = Y7 R; (and set S y=0).
=1
(3) Let the product matrix ¢ = 0 (by initializing it to the empty list). Let ¢y = 0.

Repeat for k =1,2, - - - until all of the blocks are processed.

(4) Let b = max (m,|C |).

(5) Let 4 =min {i:S; - S, > b} (if the condition never holds, let 1, = index of
the last group).

(6) Form the product matrix using groups U; and Vs for 4, <7 <i.

(7) Update C by adding to it the new matrix.

At each iteration, the time to compute the new product matrix is at least as
large as the time to add the two matrices, since the number of terms in the block is
always chosen to be at least as large as the size of the current product matrix C.
Let t, be the number of products computed at the k th iteration of the above algo-
rithm (4 = S;, - S;_)- Then, not counting the time to determine the next block,
the total time for the algorithm is

b logd
YO —————— | »
[ p log(t /p)

where $t, = T . By our assumptions, this simplifies to ¥O (¢ /p)=0O(T/p).

The value of 7, can be determined at each iteration by just one processor using
unbounded binary search: Conservatively, the processor starts at 1 =1, _+1 and
continues increasing i by doubling the difference -7 _, until S; —S; > b; after
that, a traditional binary search (between the last two values of 1) will find ¢ in
total time O (log(; —ix_;)). Since i —1;_<t;, the time to determine 7; is bounded
by O (logt; ). By our assumptions, p < ¢ 1-¢ which implies

'
2> ¢ = Qlogt ) -
P

The time to broadcast 7, to all of the processors is O (logp ). Similar reasoning to
the above shows that logp = O (t; /p ). Thus the searching and broadcasting time
is dominated by the computation time.

Finally, we need to show that the space usage is not large: At each iteration,
the total size of the new matrix, not counting the last cross product group in the
block, is proportional to the maximum of m and the current size of the product
matrix C. This is clearly O (m 4+ M). All of the terms in a given cross product
group are associated with a distinct element of the product matrix. Thus, the last
group has size O(M). So, the total size of the matrices at each iteration is
O (m + M). The sorting algorithm uses space O (p (m +M )* + (m +M)). By our
assumptions this is simply O (m + M).

5. GAUSSIAN ELIMINATION

Standard algorithms for the inversion or decomposition of an n Xn (dense)
matrix involve a sequence of n stages (one stage for each row of the matrix). Most
of the computations done at each stage are independent vector operations; these can
be computed efficiently in parallel. The computations done at successive stages are
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strongly data dependent. In order to reduce the time required to invert or decom-
pose a matrix in parallel below time €2(n ) it is necessary to use different algorithms
(e.g. [7]). Such algorithms seem to be both numerically unstable and inefficient with
respect to the number of operations performed. We shall, therefore, consider parallel
versions of the standard serial algorithms. We first show how to do Gaussian elimi-
nation assuming that the pivots are known in advance, and then discuss pivot selec-
tion.

Let A be a square n Xn (sparse) matrix with m nonzero entries. Assume that
m > n; otherwise the matrix is singular. We shall consider the problem of solving
the system of linear equations Az = b using Gaussian elimination. Computing an
LU decomposition for the matrix A is done essentially in the same manner, and will
not be discussed.

Gaussian elimination consists of an elimination phase and a back substitution
phase. The elimination phase consists of a sequence of n stages that modify the
entries in the extended matrix [Ab]. A pivot element is chosen in this matrix, and
suitable multiples of the row containing this element are subtracted from the remain-
ing rows.

Each row of the matrix is stored as a set of pairs, (column, value). The column
indices need not be distinct so that the actual value of an element in row r and
column ¢ is the sum of the values in the row r set having column index ¢ . Simi-
larly, each column is stored as a set of pairs, (row, value), where the row indices need
not be distinet. Thus, the value of an element can be determined from its row or
column set. The actual values of the elements in some particular row (column) are
resolved, i.e., the values of the elements with the same column index (row index) are
summed when the new pivot element is from that row (column). Thus, the algo-
rithm uses lazy evaluation to avoid wastefully accessing all the elements of a row or
column when only a few elements need to be resolved. In order not to waste space
storing each element as the sum of many pairs, all of the row and column sets are
resolved whenever the total number of pairs in the row and column sets reaches a
certain threshold (which is dynamically set).

The algorithm consists of n stages. At each stage, the next pivot element is
selected. The values in its row and column sets are resolved (independently). The
values on these two sets are then used to determine the set of values needed to zero
out the column of the pivot element while keeping the other matrix values con-
sistent. This set is unioned into the row and column sets.

More formally, let E be the extended matrix [Ab] and let <i LI, <igJe>,
vy <1, ,Jn > be the successive pivots, then the algorithm works as follows:
Forward Elimination:
let prev_size = | E |;
for k := 1 to n do begin
(1) resolve row 7; place it in row vector U;

(2) resolve column j; place it, without the pivot (a;, j, ) into row vector V';
-1

(QMsz_M&wW@Vh=mm)
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