LNCS 2481

Bill Pugh
Chau-Wen Tseng (Eds.)

Languages and
Compilers
for Parallel Computing

15th Workshop, LCPC 2002
College Park, MD, USA, July 2002
Revised Papers

@ Springer

Bill Pugh Chau-Wen Tseng (Eds.)

Languages and Compilers
for Parallel Computing

15th Workshop, LCPC 2002
College Park, MD, USA, July 25-27, 2002
Revised Papers

@ Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Bill Pugh

Chau-Wen Tseng

University of Maryland, Department of Computer Science
College Park, MD 20814, USA

E-mail: {pugh, tseng} @cs.umd.edu

Library of Congress Control Number: 2005937164

CR Subject Classification (1998): D.3, D.1.3, F1.2,B.2.1,C.24, C.2, E. 1

ISSN 0302-9743
ISBN-10 3-540-30781-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30781-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned. specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11596110 06/3142 543210

Lecture Notes in Computer Science 2481
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Preface

The 15th Workshop on Languages and Compilers for Parallel Computing was
held in July 2002 at the University of Maryland, College Park. It was jointly
sponsored by the Department of Computer Science at the University of Mary-
land and the University of Maryland Institute for Advanced Computer Studies
(UMIACS). LCPC 2002 brought together over 60 researchers from academia and
research institutions from many countries.

The program of 26 papers was selected from 32 submissions. Each paper
was reviewed by at least three Program Committee members and sometimes by
additional reviewers. Prior to the workshop, revised versions of accepted papers
were informally published on the workshop’s website and in a paper proceedings
that was distributed at the meeting. This year, the workshop was organized into
sessions of papers on related topics, and each session consisted of two to three
30-minute presentations. Based on feedback from the workshop, the papers were
revised and submitted for inclusion in the formal proceedings published in this
volume. Two papers were presented at the workshop but later withdrawn from
the final proceedings by their authors.

We were very lucky to have Bill Carlson from the Department of Defense
give the LCPC 2002 keynote speech on “UPC: A C Language for Shared Mem-
ory Parallel Programming.” Bill gave an excellent overview of the features and
programming model of the UPC parallel programming language.

LCPC workshop presentations were held on campus in a spacious 140-person
auditorium in the newly constructed Computer Science Instructional Center
(CSIC). Workshop participants also enjoyed an afternoon excursion downtown
to the Smithsonian’s National Museum of Natural History, followed by a banquet
held in the wine room of the D.C. Coast restaurant.

The success of LCPC 2002 was due to many people. We would like to thank
the Program Committee members for their timely and thorough reviews, and
the LCPC Steering Committee (especially David Padua) for providing invaluable
advice and continuity for LCPC. We wish to thank Lawrence Rauchwerger and
Silvius Rus for providing scripts and templates for formatting the proceedings.
We appreciate the hard work performed by Cecilia Khullman, Christina Beal,
and Johanna Weinstein (from UMIACS) handling local arrangements and work-
shop registration. Finally, we would like to thank all the LCPC 2002 authors for
their patience in waiting for the long overdue publication of the formal workshop
proceedings.

July 2005 Bill Pugh
Chau-Wen Tseng

Organization

The 15th Workshop on Languages and Compilers for Parallel Computing was
hosted by the Department of Computer Science at the University of Maryland
and the University of Maryland Institute for Advanced Computer Studies (UMI-
ACS).

Steering Committee

Utpal Banerjee Intel Corporation

David Gelernter Yale University

Alex Nicolau University of California at Irvine

David Padua University of Illinois at Urbana-Champaign

General and Program Co-chairs

Bill Pugh University of Maryland
Chau-Wen Tseng University of Maryland

Program Committee

Hank Dietz University of Kentucky

Manish Gupta IBM T.J. Watson Research Center

Sam Midkiff Purdue University

Jose Moreira IBM T.J. Watson Research Center

Dave Padua University of Illinois at Urbana-Champaign
Bill Pugh University of Maryland

Lawrence Rauchwerger Texas A&M University

Chau-Wen T'seng University of Maryland

Table of Contents

Memory-Constrained Communication Minimization for a Class of
Array Computations

Daniel Cociorva, Gerald Baumgartner, Chi-Chung Lam,

P. Sadayappan, J. Ramanujamc.ouuuieiuneneineennann

Forward Communication Only Placements and Their Use for Parallel
Program Construction

Martin Griebl, Paul Feautrier,

Armin Groflinger ci:vwsms vorms cains savms sasoaiinais i e

Hierarchical Parallelism Control for Multigrain Parallel Processing
Motoki Obata, Jun Shirako, Hiroki Kaminaga, Kazuhisa Ishizaka,
Hironort Kasahara i,

Compiler Analysis and Supports for Leakage Power Reduction on
Microprocessors
Yi-Ping You, Chingren Lee, Jenqg Kuen Lee

Automatic Detection of Saturation and Clipping Idioms
Aart J.C. Bik, Milind Girkar, Paul M. Grey,
Xinmin TEan

Compiler Optimizations with DSP-Specific Semantic Descriptions
Yung-Chia Lin, Yuan-Shin Hwang,
Jeng Kuen Lee

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse
Tiling

Michelle Mills Strout, Larry Carter, Jeanne Ferrante,

Jonathan Freeman, Barbara Kreaseck

A Hybrid Strategy Based on Data Distribution and Migration for
Optimizing Memory Locality
1. Kadayif, M. Kandemir, A. Choudhary

Compiler Optimizations Using Data Compression to Decrease Address

Reference Entropy
H: G Dietz, Tl Moltom i caswssncumsmimesmsmasns vassasms ioass

Towards Compiler Optimization of Codes Based on Arrays of Pointers
F. Corbera, R. Asenjo, E.L. Zapatac.couuuuiienenn..

16

31

45

61

75

90

126

X Table of Contents

An Empirical Study on the Granularity of Pointer Analysis in C
Programs

Tong Chen, Jin Lin, Wei-Chung Hsu,

Pen-Chung Yew o

Automatic Implementation of Programming Language Consistency
Models

Zehra Sura, Chi-Leung Wong, Xing Fang, Jaejin Lee,

Samuel P. Midkiff, David Paduaccciiiuiein...

Parallel Reductions: An Application of Adaptive Algorithm Selection
Hao Yu, Francis Dang,
Lawrence Rauchwerger i,

Adaptively Increasing Performance and Scalability of Automatically

Parallelized Programs
Jaejin Lee, HD.K. Moonesinghecuiiiiiiiennnn..

Selector: A Language Construct for Developing Dynamic Applications
Pedro C. Diniz, Bing Liu 0.

Optimizing the Java Piped I/O Stream Library for Performance
Ji Zhang, Jaejin Lee,
Philip K. McKinley e

A Comparative Study of Stampede Garbage Collection Algorithms
Hasnain A. Mandviwala, Nissim Harel, Kathleen Knobe,
Umakishore Ramachandran iiiiiiiinininen...

Compiler and Runtime Support for Shared Memory Parallelization of
Data Mining Algorithms
Xiaogang Li, Ruoming Jin, Gagan Agrawal

Performance Analysis of Symbolic Analysis Techniques for Parallelizing
Compilers
Hansang Bae, Rudolf Figenmannccciuuiriuuine...

Efficient Manipulation of Disequalities During Dependence Analysis
Robert Seater, David Wonnacottcciviiieeiinn...

Removing Impediments to Loop Fusion Through Code Transformations
Bob Blainey, Christopher Barton,
José Nelson Amaral 0 i

Near-Optimal Padding for Removing Conflict Misses
Xavier Vera, Josep Llosa, Antonio Gonzdlez

Table of Contents

Fine-Grain Stacked Register Allocation for the Itanium Architecture
Alban Douillet, José Nelson Amaral, Guang R. Gao

Evaluating Iterative Compilation
G.G. Fursin, M.F.P. O’Boyle, P.M.W. Knijnenburg

Author Index

XI

Memory-Constrained Communication Minimization
for a Class of Array Computations

Daniel Cociorva', Gerald Baumgartner!, Chi-Chung Lam!,
P. Sadayappan!, and J. Ramanujam?

! Department of Computer and Information Science,

The Ohio State University, Columbus, OH 43210, USA
{cociorva, gb, clam, saday}@cis.ohio-state.edu
2 Department of Electrical and Computer Engineering,
Louisiana State University, Baton Rouge, LA 70803, USA
jxr@ece.lsu.edu

Abstract. The accurate modeling of the electronic structure of atoms and mole-
cules involves computationally intensive tensor contractions involving large mul-
tidimensional arrays. The efficient computation of complex tensor contractions
usually requires the generation of temporary intermediate arrays. These inter-
mediates could be extremely large, but they can often be generated and used in
batches through appropriate loop fusion transformations. To optimize the perfor-
mance of such computations on parallel computers, the total amount of inter-
processor communication must be minimized, subject to the available memory
on each processor. In this paper, we address the memory-constrained communi-
cation minimization problem in the context of this class of computations. Based
on a framework that models the relationship between loop fusion and memory
usage, we develop an approach to identify the best combination of loop fusion
and data partitioning that minimizes inter-processor communication cost with-
out exceeding the per-processor memory limit. The effectiveness of the devel-
oped optimization approach is demonstrated on a computation representative of
a component used in quantum chemistry suites.

1 Introduction

The development of high-performance parallel programs for scientific applications is
usually very time consuming. The time to develop an efficient parallel program for a
computational model can be a primary limiting factor in the rate of progress of the sci-
ence. Our overall goal is to develop a program synthesis system to facilitate the rapid
development of high-performance parallel programs for a class of scientific computa-
tions encountered in quantum chemistry. The domain of our focus is electronic structure
calculations, as exemplified by coupled cluster methods [4], in which many computa-
tionally intensive components are expressible as a set of tensor contractions. We are
developing a synthesis system that will transform an input specification expressed in a
high-level notation into efficient parallel code tailored to the characteristics of the target
architecture.

A number of compile-time optimizations are being incorporated into the program
synthesis system. These include algebraic transformations to minimize the number

B. Pugh and C.-W. Tseng (Eds.): LCPC 2002, LNCS 2481, pp. 1-15, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 D. Cociorva et al.

of arithmetic operations [8,13], loop fusion and array contraction for memory space
minimization [13,12], tiling and data locality optimization [1,2], space-time trade-off
optimization [3], and data partitioning for communication minimization [9,10]. Since
the problem of determining the set of algebraic transformations to minimize operation
count was found to be NP-complete, we developed a pruning search procedure [8] that is
very efficient in practice. The operation-minimization procedure results in the creation
of intermediate temporary arrays. Often, these intermediate arrays that help in reducing
the computational cost create a problem with the memory required. Loop fusion was
found to be effective in significantly reducing the total memory requirement. However,
since some fusions could prevent other fusions, the choice of the optimal set of fusion
transformations is important. So we addressed the problem of finding the choice of fu-
sions for a given operator tree that minimizes the space required for all intermediate
arrays after fusion [12,11].

We have also previously addressed the problem of communication optimization in
the context of the operator trees [9,10]. An efficient polynomial-time dynamic pro-
gramming algorithm was developed for the determination of optimal distributions of
the various arrays through the evaluation of the operator tree so as to minimize inter-
processor communication overhead. However, that model did not consider the effects
of loop fusion for memory minimization. As we elaborate later with examples, it is not
feasible to simply apply the previously developed loop fusion algorithm and the previ-
ous communication minimization algorithm (in either order) to optimize for the parallel
context when memory size constraints are severe. For many computations of interest to
quantum chemists, the unoptimized form of the computation could require in excess of
hundreds of terabytes of memory. Therefore, the following optimization problem is of
great interest: given a set of computations expressed as a sequence of tensor contrac-
tions (explained later on), an empirically derived measure of the communication cost
for a given target computer, and a specified limit on the amount of available memory on
each processor, re-structure the computation so as to minimize the total execution time
while staying within the available memory. In this paper, we present a framework that
we have developed to address this problem. The memory-constrained communication
minimization algorithm we develop here will be incorporated into the synthesis system
being developed.

The computational structures that we target arise in scientific application domains
that are extremely compute-intensive and consume significant computer resources at
national supercomputer centers. They are present in various computational chemistry
codes such as ACES II, GAMESS, Gaussian, NWChem, PSI, and MOLPRO. In par-
ticular, they comprise the bulk of the computation with the coupled cluster approach
to the accurate description of the electronic structure of atoms and molecules [14,15].
Computational approaches to modeling the structure and interactions of molecules, the
electronic and optical properties of molecules, the heats and rates of chemical reac-
tions, etc., are very important to the understanding of chemical processes in real-world
systems.

There has been some recent work on using loop fusion for memory reduction for
sequential execution. Fraboulet et al. [5] use loop alignment to reduce memory require-
ment between adjacent loops by formulating the one-dimensional version of the prob-

Memory-Constrained Communication Minimization 3

lem as a network flow problem; they did look at the effect of their solution on cache
behavior or communication. Song et al. [17,18] present a different network flow for-
mulation of the memory reduction problem and they include a simple model of cache
misses as well. They do not consider trading off memory for recomputation or the im-
pact of data distribution on communication costs while meeting per-processor memory
constraints in a distributed memory machine. There has been much less work investi-
gating the use of loop fusion as a means of reducing memory requirements [6,16]. To
the best of our knowledge, loop fusion transformation for memory reduction, in com-
bination with data partitioning for communication minimization in the parallel context,
has not been previously considered.

The paper is organized as follows. In the next section, we elaborate on the compu-
tational context of interest and the pertinent optimization issues. Section 3 presents our
multi-dimensional processor model, discusses the interaction between distribution of
arrays and loop fusion, and describes our algorithm for the memory-constrained com-
munication minimization problem. Section 4 presents results from the application of the
new algorithm to an example abstracted from NWChem [7]. Conclusions are provided
in Section 5.

2 Elaboration of Problem

In the class of computations considered, the final result to be computed can be expressed
as multi-dimensional summations of the product of several input arrays. Due to com-
mutativity, associativity, and distributivity, there are many different ways to obtain the
same final result and they could differ widely in the number of floating point operations
required. Consider the following example:

S(t) =Y A(i, j,t) x B(j,k,1).
i,j.k

If implemented directly as expressed above, the computation would require 2N;N;NyN;
arithmetic operations to compute. However, assuming associative reordering of the op-
erations and use of distributive law of multiplication over addition is acceptable for the
floating-point computations, the above computation can be rewritten in various ways.
One equivalent form that only requires N;N;N; 4+ NN N; + 2NN, operations is as shown
in Fig. 1(a).

Generalizing from the above example, we can express multi-dimensional integrals
of products of several input arrays as a sequence of formulae. Each formula produces
some intermediate array and the last formula gives the final result. A formula is either:

— a multiplication formula of the form: 7r(...) =X(...) xY(...), or
— a summation formula of the form: 7r(...) = ¥, X(...),

where the terms on the right hand side represent input arrays or intermediate arrays
produced by a previously defined formula. Let X, IY and ITr be the sets of indices in
X(...),Y(...) and Tr(...), respectively. For a formula to be well-formed, every index
in X(...) and Y(...), except the summation index in the second form, must appear in
Tr(...). Thus IX UIY C ITr for any multiplication formula, and /X — {i} C ITr for any

4 D. Cociorva et al.

T1(j,1) = 2 A(i, j,t) r3 x
i

T2(j,t) :28(j7k7t) /\
k

T1 % T2 %
T3(j,t) = T1(j,t) x T2(j,t)
S(t) = Y. T3(j,1) ‘ ‘
J A(i,j,t) B(j,kt)

(a) Formula sequence (b) Binary tree representation

Fig. 1. A formula sequence and its binary tree representation

summation formula. Such a sequence of formulae fully specifies the multiplications and
additions to be performed in computing the final result.

A sequence of formulae can be represented graphically as a binary tree to show
the hierarchical structure of the computation more clearly. In the binary tree, the leaves
are the input arrays and each internal node corresponds to a formula, with the last for-
mula at the root. An internal node may either be a multiplication node or a summation
node. A multiplication node corresponds to a multiplication formula and has two chil-
dren which are the terms being multiplied together. A summation node corresponds to
a summation formula and has only one child, representing the term on which summa-
tion is performed. As an example, the binary tree in Fig. 1(b) represents the formula
sequence shown in Fig. 1(a).

The operation-minimization procedure discussed above usually results in the cre-
ation of intermediate temporary arrays. Sometimes these intermediate arrays that help
in reducing the computational cost create a problem with the memory capacity required.
For example, consider the following expression:

Savij = Y, Aacik X Bpesi X Cafjk X Dedel
cdefkl

If this expression is directly translated to code (with ten nested loops, for indices
a— 1), the total number of arithmetic operations required will be 4N'0 if the range of
each index a — [is N. Instead, the same expression can be rewritten by use of associative
and distributive laws as the following:

Sabij = 2, (Z (ZBbeﬂ X Dcdel) X Czlfjk> X Agcik

ck \df \el

This corresponds to the formula sequence shown in Fig. 2(a) and can be directly
translated into code as shown in Fig. 2(b). This form only requires 6N® operations.
However, additional space is required to store temporary arrays 7’1 and 72. Often, the
space requirements for the temporary arrays poses a serious problem. For this example,

Memory-Constrained Communication Minimization 5

S=20
for b, ¢
T1f = 0; T2f = 0
T1=0; T2=0; S=0 for d, £
T‘MI:§B“I'XDfdf' for b, c, d, e, £, 1 for e, 1
[Tlpcas += Bpefl Dcdel [T1f += Bpef1 Dedel
T2bcji =dZT1m;><Ca/jk for b, ¢, d, £, 3. k for j, k
! [T2pcik += Tlbcat Cafjk [T2f4k += T1f Cqfjk
Savij = 2, T 2hcik X Agcik for a, b, c, i, j, k for a, i, j, k
o [Sabij *= T2bcik Aacik [Sabij *= T2fjk Aacik
(a) Formula sequence (b) Direct implementation (c) Memory-reduced
(unfused code) implementation (fused)

Fig. 2. Example illustrating use of loop fusion for memory reduction

abstracted from a quantum chemistry model, the array extents along indices a —d are
the largest, while the extents along indices i — [are the smallest. Therefore, the size of
temporary array 7'1 would dominate the total memory requirement.

We have previously shown that the problem of determining the operator tree with
minimal operation count is NP-complete, and have developed a pruning search proce-
dure [8,9] that is very efficient in practice. For the above example, although the latter
form is far more economical in terms of the number of arithmetic operations, its im-
plementation will require the use of temporary intermediate arrays to hold the partial
results of the parenthesized array subexpressions. Sometimes, the sizes of intermediate
arrays needed for the “‘operation-minimal” form are too large to even fit on disk.

A systematic way to explore ways of reducing the memory requirement for the
computation is to view it in terms of potential loop fusions. Loop fusion merges loop
nests with common outer loops into larger imperfectly nested loops. When one loop
nest produces an intermediate array which is consumed by another loop nest, fusing the
two loop nests allows the dimension corresponding to the fused loop to be eliminated
in the array. This results in a smaller intermediate array and thus reduces the memory
requirements. For the example considered, the application of fusion is illustrated in
Fig. 2(c). By use of loop fusion, for this example it can be seen that T'1 can actually be
reduced to a scalar and 72 to a 2-dimensional array, without changing the number of
arithmetic operations.

For a computation comprised of a number of nested loops, there will generally be a
number of fusion choices, that are not all mutually compatible. This is because different
fusion choices could require different loops to be made the outermost. In prior work,
we have addressed the problem of finding the choice of fusions for a given operator tree
that minimizes the total space required for all arrays after fusion [13,12,11].

A data-parallel implementation of the unfused code for computing Sgp;; would in-
volve a sequence of three steps, each corresponding to one of the loops in Fig. 2(b).
The communication cost incurred will clearly depend on the way the arrays A, B, C, D,
T1, T2, and S are distributed. We have previously considered the problem of minimiza-
tion of communication with such computations [13,9]. However, the issue of memory
space requirements was not addressed. In practice, many of the computations of in-
terest in quantum chemistry require impractically large intermediate arrays in the un-
fused operation-minimal form. Although the collective memory of parallel machines is

6 D. Cociorva et al.

very large, it is nevertheless insufficient to hold the full intermediate arrays for many
computations of interest. Thus, array contraction through loop fusion is essential in
the parallel context too. However, it is not satisfactory to first find a communication-
minimizing data/computation distribution for the unfused form, and then apply fusion
transformations to minimize memory for that parallel form. This is because 1) fusion
changes the communication cost, and 2) it may be impossible to find a fused form that
fits within available memory, due to constraints imposed by the chosen data distribution
on possible fusions. In this paper we address this problem of finding suitable fusion
transformations and data/computation partitioning that minimize communication costs,
subject to limits on available per-processor memory.

3 Memory-Constrained Communication Minimization

Given a sequence of formulae, we now address the problem of finding the optimal
partitioning of arrays and operations among the processors and the loop fusions on
each processor in order to minimize inter-processor communication and computational
costs while staying within the available memory in implementing the computation on
a message-passing parallel computer. Section 3.1 introduces a multi-dimensional pro-
cessor model used to represent the computational space. Section 3.2 discusses the com-
bined effects of loop fusions and array/operation partitioning on communication cost,
computational cost, and memory usage. An integrated algorithm for solving this prob-
lem is presented in Section 3.3.

3.1 Preliminaries: A Multi-dimensional Processor Model

A logical view of the processors as a multi-dimensional grid is used, where each ar-
ray can be distributed or replicated along one or more of the processor dimensions. As
will be clear later on, the logical view of the processor grid does not impose any re-
striction on the actual physical interconnection topology of the processor system since
empirical characterization of the cost of redistribution between different distributions is
performed on the target system.

Let p; be the number of processors on the d-th dimension of an n-dimensional
processor array, so that the number of processors is p; X p2 X ... X p,. We use an n-
tuple to denote the partitioning or distribution of the elements of a data array on an
n-dimensional processor array. The d-th position in an n-tuple o, denoted a[d], corre-
sponds to the d-th processor dimension. Each position may be one of the following: an
index variable distributed along that processor dimension, a ‘*’ denoting replication of
data along that processor dimension, or a ‘1’ denoting that only the first processor along
that processor dimension is assigned any data. If an index variable appears as an array
subscript but not in the n-tuple, then the corresponding dimension of the array is not
distributed. Conversely, if an index variable appears in the n-tuple but not in the array,
then the data are replicated along the corresponding processor dimension, which is the
same as replacing that index variable with a ‘*’.

As an example, suppose 128 processors form a 4-dimensional 2 x 2 x 4 x 8 array.
For the array B(b, e, f,1) in Fig. 2(a), the 4-tuple (b, e, *, 1) specifies that the first and the

Memory-Constrained Communication Minimization 7

second dimensions of B are distributed along the first and second processor dimensions
respectively (the third and fourth dimensions of B are not distributed), and that data
are replicated along the third processor dimension and are assigned only to processors
whose fourth processor dimension equals 1. Thus, a processor whose id is Py, ;, 75 2, Will
be assigned a portion of B specified by B(myrange(zy,Np, p1),myrange(za,N,, p2),1 :
Nf,1:Np) if z4 = 1 and no part of B otherwise, where myrange(z,N, p) is the range
(z—=1)xN/p+1tozxN/p.

We assume the data-parallel programming model and do not consider distributing
the computation of different formulae on different subsets of processors. A child array
(or a part of it) is redistributed before the evaluation of its parent if their distributions
do not match. For instance, suppose the arrays B(b, e, f,!) and D(c,d,e,!) have distri-
butions (b,e,*,1) and (c,d,*,1) respectively. If we want T'1 to have the distribution
(c,d,f,1) when evaluating T1(b,c,d,f) =¥, B(b,e, f,I) x D(c,d,e,l), B would have
to be redistributed from (b,e,*,1) to (*,*, f,1) because the two distributions do not
match. But since for D(c,d, e, 1), the distribution {(c,d, *, 1) is the same as {(c,d, f,1), D
is not redistributed.

3.2 Interaction Between Array Partitioning and Loop Fusion

The partitioning of data arrays among the processors and the fusions of loops on each
processor are inter-related. Although in our context there are no constraints to loop fu-
sion due to data dependences (there are never any fusion preventing dependences), there
are constraints and interactions with array distribution: (i) both affect memory usage,
by fully collapsing array dimensions (fusion) or by reducing them (distribution), (if)
loop fusion does not change the communication volume, but increases the number of
messages, and therefore the start-up communication cost, and (iii) fusion and commu-
nications patterns may conflict, resulting in mutual constraints. We discuss these issues
next.

(i) Memory Usage and Array Distribution. The memory requirements of the com-
putation depend on both loop fusion and array distribution. Fusing a loop with index ¢
between a node v and its parent eliminates the z-dimension of array v. If the ¢-loop is not
fused but the ¢-dimension of array v is distributed along the d-th processor dimension,
then the range of the 7-dimension of array v on each processor is reduced to N,/ p4. Let
DistSize(v, ., f) be the size on each processor of array v, which has fusion f with its
parent and distribution o.. We have

DistSize(v, 0., f) = [1; ¢ v.dimens DistRange(i,v, ., Set(f))

where v.dimens = v.indices — {v.sumindex} is the array dimension indices of v before
loop fusions, v.indices is the set of loop indices for v including the summation index
v.sumindex if v is a summation node, Ser(f) is the set of fused indices for fusion f, and

1 ifi €x
DistRange(i,v,a,x) = Ni/pa ifi ¢ xand i = ad]
N; ifi¢gxandi ¢ o

In our example, assume that N; = N = N, = Ng = 1000, N, = Ny =70, and N; =
Ny = N; = 30. These are index ranges typical of the quantum chemistry calculations

8 D. Cociorva et al.

Cli,k) = X;A(i, j) x B(j k)
E(i,l) = 3, C(i,k) x D(k,1)

(a) Formula sequence

for i = 1, Ni for i = 1, Ni
for k = (z-1) * Nk/4 + 1, z * Nk/4 Initialize C(k) to zero
for j = 1, Nj for k = (z-1) * Nk/4 + 1, z * Nk/4
[[C(i,k) += A(i,j) * B(j.k) for j = 1, Nj

Redistribute C(i,k) from <k> to <l>=<*> [ctk) += Aa(i,3) * B(3.k)

for i = 1, Ni Redistribute C(k) from <k> to <l>=<*>
for 1 = (z-1) * N1/4 + 1, z * N1/4 for 1 = (z-1) * N1/4 + 1, z * N1/4
for k = 1, Nk for k =1, Nk
[E(i,1) += c(i,k) * D(k,1) [E(i,1) += c(k) * D(k,1)

(b) Before loop fusion (c) After loop fusion

Fig. 3. An example of the increase in communication cost due to loop fusion

of interest, and are used elsewhere in the paper in relation to this example. If the array
B(b,e, f,l) has distribution (b,e,*,1) and fusion (bf) with T, then the size of B on
each processor whose fourth dimension equals one would be N, /2 x N; = 1050 words,
since the e and / dimensions are the only unfused dimensions, and the e dimension is
distributed onto 2 processors. Note that if array v undergoes redistribution from a to j3,
the array size on each processor after redistribution is DistSize(v, B, f), which could be
different from DistSize(v, ., f), the size before redistribution.

(ii) Loop Fusion Increases Communication Cost. The initial and final distributions
of an array v determines the communication pattern and whether v needs redistribution,
while loop fusions change the number of times array v is redistributed and the size of
each message. Let v be an array that needs to be redistributed. If node v is not fused
with its parent, array v is redistributed only once. Fusing a loop with index ¢ between
node v and its parent puts the collective communication code for redistribution inside
the loop. Thus, the number of redistributions is increased by a factor of N;/p, if the
t-dimension of v is distributed along the d-th processor dimension and by a factor of
N; if the ¢t-dimension of v is not distributed. In other words, loop fusions cannot reduce
communication cost. Instead, the number of messages increases with loop fusion, while
the total volume of communication stays the same. Therefore, the communication cost
increases, due to higher start-up costs. Consider the computation sequence presented in
Fig. 3(a), where the array C(i,k) is first “produced” from A(i, j) and B(j,k), and then
“consumed” to produce E(i,1). For this simple example, we assume that the computa-
tion is executed in parallel on 4 processors, with a one-dimensional logical processor
view. Figure 3(b) shows the pseudo-code in the absence of fusion: the array C(i,k) is
re-distributed from (k) to (/) only once. In the presence of fusion, where the i-loop is
the outermost loop, the dimensionality of the array C is reduced to C(k), but the re-
distribution is performed N; times. The pseudo-code in Fig. 3(c) illustrates this effect.

(iii) Potential Conflict Between Array Distribution and Loop Fusion. Solution of
the Conflict by Virtual Partitioning. For the fusion of a loop between nodes « and v to
be possible, the loop must either be undistributed at both u and v, or be distributed onto

